1
|
Safarpour M, Cabrera-Sosa L, Gamboa D, Van geertruyden JP, Delgado-Ratto C. Detecting imported malaria infections in endemic settings using molecular surveillance: current state and challenges. FRONTIERS IN EPIDEMIOLOGY 2025; 5:1490141. [PMID: 40078574 PMCID: PMC11897264 DOI: 10.3389/fepid.2025.1490141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/22/2025] [Indexed: 03/14/2025]
Abstract
The Global Technical Strategy for Malaria 2016-2030 targets eliminating malaria from at least 35 countries and reducing case incidence by 90% globally. The importation of parasites due to human mobilization poses a significant obstacle to achieve malaria elimination as it can undermine the effectiveness of local interventions. Gaining a comprehensive understanding of parasite importation is essential to support control efforts and advance progress toward elimination. Parasite genetic data is widely used to investigate the spatial and temporal dynamics of imported infections. In this context, this systematic review aimed to aggregate evidence on the application of parasite genetic data for mapping imported malaria and the analytical methods used to analyze it. We discuss the advantages and limitations of the genetic approaches employed and propose a suitable type of genetic data along with an analytical framework to discriminate imported malaria infections from local infections. The findings offer potential actionable insights for national control programs, enabling them select the most effective methods for detecting imported cases. This also may aid in the evaluation and refinement of elimination programs by identifying high-risk areas and enabling the targeted allocation of resources to these regions.
Collapse
Affiliation(s)
- Mahdi Safarpour
- Malaria Research Group (MaRch), Family Medicine and Population Health Department, Faculty of Medicine and Health Sciences, Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Luis Cabrera-Sosa
- Malaria Research Group (MaRch), Family Medicine and Population Health Department, Faculty of Medicine and Health Sciences, Global Health Institute, University of Antwerp, Antwerp, Belgium
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Grupo Malaria: Epidemiología Molecular, Instituto de Medicina Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Dionicia Gamboa
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Grupo Malaria: Epidemiología Molecular, Instituto de Medicina Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jean-Pierre Van geertruyden
- Malaria Research Group (MaRch), Family Medicine and Population Health Department, Faculty of Medicine and Health Sciences, Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Christopher Delgado-Ratto
- Malaria Research Group (MaRch), Family Medicine and Population Health Department, Faculty of Medicine and Health Sciences, Global Health Institute, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
2
|
Atarihuana S, Gallardo-Condor J, López-Cortés A, Jimenes-Vargas K, Burgos G, Karina-Zambrano A, Flores-Espinoza R, Coral M, Cabrera-Andrade A. Genetic basis and spatial distribution of glucose-6-phosphate dehydrogenase deficiency in ecuadorian ethnic groups: a malaria perspective. Malar J 2023; 22:283. [PMID: 37752491 PMCID: PMC10521485 DOI: 10.1186/s12936-023-04716-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Glucose-6-phosphate dehydrogenase deficiency (G6PDd) is an X-linked disorder affecting over 400 million people worldwide. Individuals with molecular variants associated with reduced enzymatic activity are susceptible to oxidative stress in red blood cells, thereby increasing the risk of pathophysiological conditions and toxicity to anti-malarial treatments. Globally, the prevalence of G6PDd varies among populations. Accordingly, this study aims to characterize G6PDd distribution within the Ecuadorian population and to describe the spatial distribution of reported malaria cases. METHODS Molecular variants associated with G6PDd were genotyped in 581 individuals from Afro-Ecuadorian, Indigenous, Mestizo, and Montubio ethnic groups. Additionally, spatial analysis was conducted to identify significant malaria clusters with high incidence rates across Ecuador, using data collected from 2010 to 2021. RESULTS The A- c.202G > A and A- c.968T > C variants underpin the genetic basis of G6PDd in the studied population. The overall prevalence of G6PDd was 4.6% in the entire population. However, this frequency increased to 19.2% among Afro-Ecuadorian people. Spatial analysis revealed 12 malaria clusters, primarily located in the north of the country and its Amazon region, with relative risks of infection of 2.02 to 87.88. CONCLUSIONS The findings of this study hold significant implications for public health interventions, treatment strategies, and targeted efforts to mitigate the burden of malaria in Ecuador. The high prevalence of G6PDd among Afro-Ecuadorian groups in the northern endemic areas necessitates the development of comprehensive malaria eradication strategies tailored to this geographical region.
Collapse
Affiliation(s)
- Sebastián Atarihuana
- Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, Quito, Ecuador
| | | | - Andrés López-Cortés
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Madrid, Spain
| | - Karina Jimenes-Vargas
- Grupo de Bio-Quimioinformática, Universidad de Las Américas, Quito, Ecuador
- Department of Computer Science and Information Technologies, Computer Science Faculty, CITIC, RNASA Group, University of A Coruña, A Coruña, Spain
| | - Germán Burgos
- One Health Research Group, Facultad de Medicina, Universidad de las Américas, Quito, Ecuador
- Grupo de Medicina Xenómica, Instituto de Ciencias Forenses, Universidad de Santiago de Compostela, A Coruña, Spain
| | - Ana Karina-Zambrano
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Rodrigo Flores-Espinoza
- Laboratório de Diagnóstico por DNA (LDD), Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marco Coral
- Grupo de Bio-Quimioinformática, Universidad de Las Américas, Quito, Ecuador
- Carrera de Medicina Veterinaria, Facultad de Ciencias de la Salud, Universidad de Las Américas, Quito, Ecuador
| | - Alejandro Cabrera-Andrade
- Grupo de Bio-Quimioinformática, Universidad de Las Américas, Quito, Ecuador.
- Escuela de Enfermería, Facultad de Ciencias de la Salud, Universidad de Las Américas, Quito, Ecuador.
| |
Collapse
|
3
|
Ghansah A, Tiedje KE, Argyropoulos DC, Onwona CO, Deed SL, Labbé F, Oduro AR, Koram KA, Pascual M, Day KP. Comparison of molecular surveillance methods to assess changes in the population genetics of Plasmodium falciparum in high transmission. FRONTIERS IN PARASITOLOGY 2023; 2:1067966. [PMID: 38031549 PMCID: PMC10686283 DOI: 10.3389/fpara.2023.1067966] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/14/2023] [Indexed: 12/01/2023]
Abstract
A major motivation for developing molecular methods for malaria surveillance is to measure the impact of control interventions on the population genetics of Plasmodium falciparum as a potential marker of progress towards elimination. Here we assess three established methods (i) single nucleotide polymorphism (SNP) barcoding (panel of 24-biallelic loci), (ii) microsatellite genotyping (panel of 12-multiallelic loci), and (iii) varcoding (fingerprinting var gene diversity, akin to microhaplotyping) to identify changes in parasite population genetics in response to a short-term indoor residual spraying (IRS) intervention. Typical of high seasonal transmission in Africa, multiclonal infections were found in 82.3% (median 3; range 1-18) and 57.8% (median 2; range 1-12) of asymptomatic individuals pre- and post-IRS, respectively, in Bongo District, Ghana. Since directly phasing multilocus haplotypes for population genetic analysis is not possible for biallelic SNPs and microsatellites, we chose ~200 low-complexity infections biased to single and double clone infections for analysis. Each genotyping method presented a different pattern of change in diversity and population structure as a consequence of variability in usable data and the relative polymorphism of the molecular markers (i.e., SNPs < microsatellites < var). Varcoding and microsatellite genotyping showed the overall failure of the IRS intervention to significantly change the population structure from pre-IRS characteristics (i.e., many diverse genomes of low genetic similarity). The 24-SNP barcode provided limited information for analysis, largely due to the biallelic nature of SNPs leading to a high proportion of double-allele calls and a view of more isolate relatedness compared to microsatellites and varcoding. Relative performance, suitability, and cost-effectiveness of the methods relevant to sample size and local malaria elimination in high-transmission endemic areas are discussed.
Collapse
Affiliation(s)
- Anita Ghansah
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Kathryn E. Tiedje
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute and Peter Doherty Institute, Melbourne, VIC, Australia
| | - Dionne C. Argyropoulos
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute and Peter Doherty Institute, Melbourne, VIC, Australia
| | - Christiana O. Onwona
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Samantha L. Deed
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute and Peter Doherty Institute, Melbourne, VIC, Australia
| | - Frédéric Labbé
- Department Ecology and Evolution, The University of Chicago, Chicago, IL, United States
| | - Abraham R. Oduro
- Navrongo Health Research Centre, Ghana Health Service, Navrongo, Ghana
| | - Kwadwo A. Koram
- Epidemiology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Mercedes Pascual
- Department Ecology and Evolution, The University of Chicago, Chicago, IL, United States
- Santa Fe Institute, Santa Fe, NM, United States
| | - Karen P. Day
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute and Peter Doherty Institute, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Ruybal-Pesántez S, Sáenz FE, Deed SL, Johnson EK, Larremore DB, Vera-Arias CA, Tiedje KE, Day KP. Molecular epidemiology of continued Plasmodium falciparum disease transmission after an outbreak in Ecuador. FRONTIERS IN TROPICAL DISEASES 2023; 4:1085862. [PMID: 39525803 PMCID: PMC11546077 DOI: 10.3389/fitd.2023.1085862] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
To better understand the factors underlying the continued incidence of clinical episodes of falciparum malaria in E-2025 countries targeting elimination, we characterized the molecular epidemiology of Plasmodium falciparum disease transmission after a clonal outbreak in Ecuador. Here we study disease transmission by documenting the diversity and population structure of the major variant surface antigen of the blood stages of P. falciparum encoded by the var multigene family. We used a high-resolution genotyping method, "varcoding", involving targeted amplicon sequencing to fingerprint the DBLα encoding region of var genes to describe both antigenic var diversity and var repertoire similarity or relatedness in parasite isolates from clinical cases. We identified nine genetic varcodes in 58 P. falciparum isolates causing clinical disease in 2013-2015. Network analyses revealed that four of the varcodes were highly related to the outbreak varcode, with identification of possible diversification of the outbreak parasites by recombination as seen in three of those varcodes. The majority of clinical cases in Ecuador were associated with parasites with highly related or recombinant varcodes to the outbreak clone and due to local transmission rather than recent importation of parasites from other endemic countries. Sharing of types in Ecuadorian varcodes to those sampled in South American varcodes reflects historical parasite importation of some varcodes, especially from Colombia and Peru. Our findings highlight the translational application of varcoding for outbreak surveillance in epidemic/unstable malaria transmission, such as in E-2025 countries, and point to the need for surveillance of local reservoirs of infection in Ecuador to achieve the malaria elimination goal by 2025.
Collapse
Affiliation(s)
- Shazia Ruybal-Pesántez
- School of BioSciences/Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Fabián E. Sáenz
- Centro de Investigación para la Salud en América Latina, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Samantha L. Deed
- School of BioSciences/Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute and Peter Doherty Institute, Melbourne, VIC, Australia
| | - Erik K. Johnson
- Department of Applied Mathematics, University of Colorado Boulder, Boulder, CO, United States
| | - Daniel B. Larremore
- Department of Computer Science, University of Colorado Boulder, Boulder, CO, United States
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, United States
| | - Claudia A. Vera-Arias
- Centro de Investigación para la Salud en América Latina, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Kathryn E. Tiedje
- School of BioSciences/Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute and Peter Doherty Institute, Melbourne, VIC, Australia
| | - Karen P. Day
- School of BioSciences/Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute and Peter Doherty Institute, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Márquez S, Lee GO, Andrade P, Zuniga J, Trueba G, Eisenberg JNS, Coloma J. A Chikungunya Outbreak in a Dengue-endemic Region in Rural Northern Coastal Ecuador. Am J Trop Med Hyg 2022; 107:1226-1233. [PMID: 36375454 PMCID: PMC9768284 DOI: 10.4269/ajtmh.22-0296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Dengue virus (DENV) reemerged in the Americas in the 1980s and 1990s, whereas chikungunya virus (CHIKV) emerged in 2014. Although CHIKV produced large epidemics from 2014 to 2017, dengue fever has been the prominent arboviral disease identified through passive surveillance, bringing to question the degree to which cases are misdiagnosed. To address this concern, we conducted an active household-based surveillance of arboviral-like illnesses in six rural and remote communities in northern coastal Ecuador from May 2019 to February 2020. Although passive surveillance conducted by the Ecuadorian Ministry of Health reported only DENV cases in the region, more than 70% of the arbovirus-like illnesses detected by active surveillance in our study were positive for CHIKV. These findings underline the need for active surveillance of arboviral infections with laboratory confirmation, especially in rural communities where arboviral illnesses are more likely to be underreported.
Collapse
Affiliation(s)
- Sully Márquez
- Instituto de Microbiología, Universidad San Francisco de Quito, Quito, Ecuador
| | - Gwenyth O. Lee
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Paulina Andrade
- Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito, Quito, Ecuador
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California
| | - Julio Zuniga
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Gabriel Trueba
- Instituto de Microbiología, Universidad San Francisco de Quito, Quito, Ecuador
| | - Joseph N. S. Eisenberg
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Josefina Coloma
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California
| |
Collapse
|
6
|
Prevalencia de malaria gestacional en Ecuador. BIOMÉDICA 2022; 42:127-135. [PMID: 35471175 PMCID: PMC9059921 DOI: 10.7705/biomedica.6184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Indexed: 11/21/2022]
Abstract
Introducción. La malaria gestacional, definida como la presencia de Plasmodium spp. en sangre periférica materna o el hallazgo del parásito en la placenta, es considerada un importante problema de salud pública en las regiones tropicales y subtropicales. Objetivo. Determinar la frecuencia de casos de malaria gestacional diagnosticados en Ecuador entre 2015 y 2018. Materiales y métodos. Se hizo un estudio descriptivo, retrospectivo y transversal. Resultados. Se determinaron 46 casos de malaria gestacional en el período evaluado, 25 por Plasmodium falciparum y 21 por Plasmodium vivax, siendo el 2018 el año con más casos. En cuanto a las variables de edad y trimestre de gestación, prevalecieron en el grupo de 20 a 29 años (46 %) y en el segundo trimestre (37 %). Solo se observó una diferencia significativa entre los casos por año y la especie parasitaria. Conclusión. La malaria gestacional en Ecuador ha aumentado en los últimos cinco años, por lo que es importante informar a las mujeres en estado de gravidez sobre las medidas preventivas para evitar el contagio con el parásito, dadas las graves consecuencias que conlleva para ellas y sus hijos.
Collapse
|
7
|
Argyropoulos DC, Ruybal‐Pesántez S, Deed SL, Oduro AR, Dadzie SK, Appawu MA, Asoala V, Pascual M, Koram KA, Day KP, Tiedje KE. The impact of indoor residual spraying on Plasmodium falciparum microsatellite variation in an area of high seasonal malaria transmission in Ghana, West Africa. Mol Ecol 2021; 30:3974-3992. [PMID: 34143538 PMCID: PMC8456823 DOI: 10.1111/mec.16029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/26/2021] [Accepted: 06/01/2021] [Indexed: 01/16/2023]
Abstract
Here, we report the first population genetic study to examine the impact of indoor residual spraying (IRS) on Plasmodium falciparum in humans. This study was conducted in an area of high seasonal malaria transmission in Bongo District, Ghana. IRS was implemented during the dry season (November-May) in three consecutive years between 2013 and 2015 to reduce transmission and attempt to bottleneck the parasite population in humans towards lower diversity with greater linkage disequilibrium. The study was done against a background of widespread use of long-lasting insecticidal nets, typical for contemporary malaria control in West Africa. Microsatellite genotyping with 10 loci was used to construct 392 P. falciparum multilocus infection haplotypes collected from two age-stratified cross-sectional surveys at the end of the wet seasons pre- and post-IRS. Three-rounds of IRS, under operational conditions, led to a >90% reduction in transmission intensity and a 35.7% reduction in the P. falciparum prevalence (p < .001). Despite these declines, population genetic analysis of the infection haplotypes revealed no dramatic changes with only a slight, but significant increase in genetic diversity (He : pre-IRS = 0.79 vs. post-IRS = 0.81, p = .048). Reduced relatedness of the parasite population (p < .001) was observed post-IRS, probably due to decreased opportunities for outcrossing. Spatiotemporal genetic differentiation between the pre- and post-IRS surveys (D = 0.0329 [95% CI: 0.0209 - 0.0473], p = .034) was identified. These data provide a genetic explanation for the resilience of P. falciparum to short-term IRS programmes in high-transmission settings in sub-Saharan Africa.
Collapse
Affiliation(s)
- Dionne C. Argyropoulos
- School of BioSciencesBio21 InstituteThe University of MelbourneMelbourneVic.Australia
- Department of Microbiology and ImmunologyBio21 Institute and Peter Doherty InstituteThe University of MelbourneMelbourneVic.Australia
| | - Shazia Ruybal‐Pesántez
- School of BioSciencesBio21 InstituteThe University of MelbourneMelbourneVic.Australia
- Present address:
Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical ResearchMelbourneVic.Australia
- Present address:
Department of Medical Biology and Bio21 InstituteThe University of MelbourneMelbourneVic.Australia
- Present address:
Burnet InstituteMelbourneVic.Australia
| | - Samantha L. Deed
- School of BioSciencesBio21 InstituteThe University of MelbourneMelbourneVic.Australia
- Department of Microbiology and ImmunologyBio21 Institute and Peter Doherty InstituteThe University of MelbourneMelbourneVic.Australia
| | - Abraham R. Oduro
- Navrongo Health Research CentreGhana Health ServiceNavrongoGhana
| | - Samuel K. Dadzie
- Noguchi Memorial Institute for Medical ResearchUniversity of GhanaLegonGhana
| | - Maxwell A. Appawu
- Noguchi Memorial Institute for Medical ResearchUniversity of GhanaLegonGhana
| | - Victor Asoala
- Navrongo Health Research CentreGhana Health ServiceNavrongoGhana
| | - Mercedes Pascual
- Department of Ecology and EvolutionUniversity of ChicagoChicagoUSA
| | - Kwadwo A. Koram
- Noguchi Memorial Institute for Medical ResearchUniversity of GhanaLegonGhana
| | - Karen P. Day
- School of BioSciencesBio21 InstituteThe University of MelbourneMelbourneVic.Australia
- Department of Microbiology and ImmunologyBio21 Institute and Peter Doherty InstituteThe University of MelbourneMelbourneVic.Australia
| | - Kathryn E. Tiedje
- School of BioSciencesBio21 InstituteThe University of MelbourneMelbourneVic.Australia
- Department of Microbiology and ImmunologyBio21 Institute and Peter Doherty InstituteThe University of MelbourneMelbourneVic.Australia
| |
Collapse
|
8
|
Carrillo Bilbao GA, Navarro JC, Garigliany MM, Martin-Solano S, Minda E, Benítez-Ortiz W, Saegerman C. Molecular Identification of Plasmodium falciparum from Captive Non-Human Primates in the Western Amazon Ecuador. Pathogens 2021; 10:791. [PMID: 34206700 PMCID: PMC8308908 DOI: 10.3390/pathogens10070791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Malaria is a disease caused by hemoparasites of the Plasmodium genus. Non-human primates (NHP) are hosts of Plasmodium sp. around the world. Several studies have demonstrated that Plasmodium sp. emerged from Africa. However, little information is currently available about Plasmodium falciparum in the neotropical NHP and even less in Ecuador. Indeed, the objective of our study was to identify by molecular phylogenetic analyses the Plasmodium species associated with NHP from the Western Amazon region of Ecuador, and to design a molecular taxonomy protocol to use in the NHP disease ecology. Methods: We extracted DNA from faecal samples (n = 26) from nine species of captive (n = 19) and free-ranging (n = 7) NHP, collected from 2011 to 2019 in the Western Amazon region of Ecuador. Results: Using a pan-Plasmodium PCR, we obtained one positive sample from an adult female Leontocebus lagonotus. A maximum likelihood phylogenetic analysis showed that this sequence unequivocally clustered with Plasmodium falciparum. Conclusions: The identification of Plasmodium sp. in NHP of the Ecuadorian Amazon would be essential to identify their role as potential zoonotic reservoirs, and it is also important to identify their origin in wildlife and their transmission in captive NHP.
Collapse
Affiliation(s)
- Gabriel Alberto Carrillo Bilbao
- Instituto de Salud Pública y Zoonosis (CIZ), Universidad Central del Ecuador, Quito 170521, Ecuador; (G.A.C.B.); (S.M.-S.); (E.M.); (W.B.-O.)
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULg), Fundamental and Applied Research for Animal and Health (FARAH) Center, Department of Infections and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium
| | - Juan-Carlos Navarro
- Grupo de Investigación en Enfermedades Emergentes, Ecoepidemiología y Biodiversidad, Facultad de Ciencias de la Salud, Universidad Internacional SEK, Quito 170107, Ecuador;
| | - Mutien-Marie Garigliany
- Department of Pathology, Fundamental and Applied Research for Animal and Health (FARAH) Center, Liège University, B-4000 Liège, Belgium;
- Department of Animal Pathology, Liège University, B-4000 Liège, Belgium
| | - Sarah Martin-Solano
- Instituto de Salud Pública y Zoonosis (CIZ), Universidad Central del Ecuador, Quito 170521, Ecuador; (G.A.C.B.); (S.M.-S.); (E.M.); (W.B.-O.)
- Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas—ESPE, Sangolquí 171103, Ecuador
| | - Elizabeth Minda
- Instituto de Salud Pública y Zoonosis (CIZ), Universidad Central del Ecuador, Quito 170521, Ecuador; (G.A.C.B.); (S.M.-S.); (E.M.); (W.B.-O.)
| | - Washington Benítez-Ortiz
- Instituto de Salud Pública y Zoonosis (CIZ), Universidad Central del Ecuador, Quito 170521, Ecuador; (G.A.C.B.); (S.M.-S.); (E.M.); (W.B.-O.)
| | - Claude Saegerman
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULg), Fundamental and Applied Research for Animal and Health (FARAH) Center, Department of Infections and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium
| |
Collapse
|
9
|
Taylor AR, Echeverry DF, Anderson TJC, Neafsey DE, Buckee CO. Identity-by-descent with uncertainty characterises connectivity of Plasmodium falciparum populations on the Colombian-Pacific coast. PLoS Genet 2020; 16:e1009101. [PMID: 33196661 PMCID: PMC7704048 DOI: 10.1371/journal.pgen.1009101] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 11/30/2020] [Accepted: 09/08/2020] [Indexed: 01/09/2023] Open
Abstract
Characterising connectivity between geographically separated biological populations is a common goal in many fields. Recent approaches to understanding connectivity between malaria parasite populations, with implications for disease control efforts, have used estimates of relatedness based on identity-by-descent (IBD). However, uncertainty around estimated relatedness has not been accounted for. IBD-based relatedness estimates with uncertainty were computed for pairs of monoclonal Plasmodium falciparum samples collected from five cities on the Colombian-Pacific coast where long-term clonal propagation of P. falciparum is frequent. The cities include two official ports, Buenaventura and Tumaco, that are separated geographically but connected by frequent marine traffic. Fractions of highly-related sample pairs (whose classification using a threshold accounts for uncertainty) were greater within cities versus between. However, based on both highly-related fractions and on a threshold-free approach (Wasserstein distances between parasite populations) connectivity between Buenaventura and Tumaco was disproportionally high. Buenaventura-Tumaco connectivity was consistent with transmission events involving parasites from five clonal components (groups of statistically indistinguishable parasites identified under a graph theoretic framework). To conclude, P. falciparum population connectivity on the Colombian-Pacific coast abides by accessibility not isolation-by-distance, potentially implicating marine traffic in malaria transmission with opportunities for targeted intervention. Further investigations are required to test this hypothesis. For the first time in malaria epidemiology (and to our knowledge in ecological and epidemiological studies more generally), we account for uncertainty around estimated relatedness (an important consideration for studies that plan to use genotype versus whole genome sequence data to estimate IBD-based relatedness); we also use threshold-free methods to compare parasite populations and identify clonal components. Threshold-free methods are especially important in analyses of malaria parasites and other recombining organisms with mixed mating systems where thresholds do not have clear interpretation (e.g. due to clonal propagation) and thus undermine the cross-comparison of studies.
Collapse
Affiliation(s)
- Aimee R. Taylor
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Diego F. Echeverry
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
- Universidad Icesi, Calle 18 No. 122-135, Cali, Colombia
- Departamento de Microbiologia, Facultad de Salud, Universidad del Valle, Cali, Colombia
| | - Timothy J. C. Anderson
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Daniel E. Neafsey
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Caroline O. Buckee
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Martin JA, Hendershot AL, Saá Portilla IA, English DJ, Woodruff M, Vera-Arias CA, Salazar-Costa BE, Bustillos JJ, Saénz FE, Ocaña-Mayorga S, Koepfli C, Lobo NF. Anopheline and human drivers of malaria risk in northern coastal, Ecuador: a pilot study. Malar J 2020; 19:354. [PMID: 33008438 PMCID: PMC7532652 DOI: 10.1186/s12936-020-03426-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/23/2020] [Indexed: 11/28/2022] Open
Abstract
Background Understanding local anopheline vector species and their bionomic traits, as well as related human factors, can help combat gaps in protection. Methods In San José de Chamanga, Esmeraldas, at the Ecuadorian Pacific coast, anopheline mosquitoes were sampled by both human landing collections (HLCs) and indoor-resting aspirations (IAs) and identified using both morphological and molecular methods. Human behaviour observations (HBOs) (including temporal location and bed net use) were documented during HLCs as well as through community surveys to determine exposure to mosquito bites. A cross-sectional evaluation of Plasmodium falciparum and Plasmodium vivax infections was conducted alongside a malaria questionnaire. Results Among 222 anopheline specimens captured, based on molecular analysis, 218 were Nyssorhynchus albimanus, 3 Anopheles calderoni (n = 3), and one remains unidentified. Anopheline mean human-biting rate (HBR) outdoors was (13.69), and indoors (3.38) (p = 0.006). No anophelines were documented resting on walls during IAs. HBO-adjusted human landing rates suggested that the highest risk of being bitten was outdoors between 18.00 and 20.00 h. Human behaviour-adjusted biting rates suggest that overall, long-lasting insecticidal bed nets (LLINs) only protected against 13.2% of exposure to bites, with 86.8% of exposure during the night spent outside of bed net protection. The malaria survey found 2/398 individuals positive for asymptomatic P. falciparum infections. The questionnaire reported high (73.4%) bed net use, with low knowledge of malaria. Conclusion The exophagic feeding of anopheline vectors in San Jose de Chamanga, when analysed in conjunction with human behaviour, indicates a clear gap in protection even with high LLIN coverage. The lack of indoor-resting anophelines suggests that indoor residual spraying (IRS) may have limited effect. The presence of asymptomatic infections implies the presence of a human reservoir that may maintain transmission.
Collapse
Affiliation(s)
- James A Martin
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Allison L Hendershot
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Iván Alejandro Saá Portilla
- Centro de Investigación Para La Salud en América Latina, Facultad de Ciencias Exactas Y Naturales, Pontificia Universidad Católica del Ecuador, Calle San Pedro Y Pambahacienda, 170530, Nayón, Ecuador
| | - Daniel J English
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Madeline Woodruff
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Claudia A Vera-Arias
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA.,Centro de Investigación Para La Salud en América Latina, Facultad de Ciencias Exactas Y Naturales, Pontificia Universidad Católica del Ecuador, Calle San Pedro Y Pambahacienda, 170530, Nayón, Ecuador
| | - Bibiana E Salazar-Costa
- Centro de Investigación Para La Salud en América Latina, Facultad de Ciencias Exactas Y Naturales, Pontificia Universidad Católica del Ecuador, Calle San Pedro Y Pambahacienda, 170530, Nayón, Ecuador
| | - Juan José Bustillos
- Centro de Investigación Para La Salud en América Latina, Facultad de Ciencias Exactas Y Naturales, Pontificia Universidad Católica del Ecuador, Calle San Pedro Y Pambahacienda, 170530, Nayón, Ecuador
| | - Fabián E Saénz
- Centro de Investigación Para La Salud en América Latina, Facultad de Ciencias Exactas Y Naturales, Pontificia Universidad Católica del Ecuador, Calle San Pedro Y Pambahacienda, 170530, Nayón, Ecuador
| | - Sofía Ocaña-Mayorga
- Centro de Investigación Para La Salud en América Latina, Facultad de Ciencias Exactas Y Naturales, Pontificia Universidad Católica del Ecuador, Calle San Pedro Y Pambahacienda, 170530, Nayón, Ecuador.
| | - Cristian Koepfli
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Neil F Lobo
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA
| |
Collapse
|
11
|
Escobar DF, Lucchi NW, Abdallah R, Valenzuela MT, Udhayakumar V, Jercic MI, Chenet SM. Molecular and epidemiological characterization of imported malaria cases in Chile. Malar J 2020; 19:289. [PMID: 32792011 PMCID: PMC7427082 DOI: 10.1186/s12936-020-03353-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022] Open
Abstract
Background Chile is one of the South American countries certified as malaria-free since 1945. However, the recent increase of imported malaria cases and the presence of the vector Anopheles pseudopunctipennis in previously endemic areas in Chile require an active malaria surveillance programme. Methods Specimens from 268 suspected malaria cases—all imported—collected between 2015 and 2018 at the Public Health Institute of Chile (ISP), were diagnosed by microscopy and positive cases were included for epidemiological analysis. A photo-induced electron transfer fluorogenic primer real-time PCR (PET-PCR) was used to confirm the presence of malaria parasites in available blood samples. Sanger sequencing of drug resistance molecular markers (pfk13, pfcrt and pfmdr1) and microsatellite (MS) analysis were performed in confirmed Plasmodium falciparum samples and results were related to origin of infection. Results Out of the 268 suspected cases, 65 were Plasmodium spp. positive by microscopy. A total of 63% of the malaria patients were male and 37% were female; 43/65 of the patients acquired infections in South American endemic countries. Species confirmation of available blood samples by PET-PCR revealed that 15 samples were positive for P. falciparum, 27 for Plasmodium vivax and 4 were mixed infections. The P. falciparum samples sequenced contained four mutant pfcrt genotypes (CVMNT, CVMET, CVIET and SVMNT) and three mutant pfmdr1 genotypes (Y184F/S1034C/N1042D/D1246Y, Y184F/N1042D/D1246Y and Y184F). MS analysis confirmed that all P. falciparum samples presented different haplotypes according to the suspected country of origin. Four patients with P. vivax infection returned to the health facilities due to relapses. Conclusion The timely detection of polymorphisms associated with drug resistance will contribute to understanding if current drug policies in the country are appropriate for treatment of imported malaria cases and provide information about the most frequent resistant genotypes entering Chile.
Collapse
Affiliation(s)
- Daniel F Escobar
- Sección de Parasitología, Instituto de Salud Pública de Chile, Santiago, Región Metropolitana, Chile
| | - Naomi W Lucchi
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Rispah Abdallah
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Venkatachalam Udhayakumar
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - María Isabel Jercic
- Sección de Parasitología, Instituto de Salud Pública de Chile, Santiago, Región Metropolitana, Chile
| | - Stella M Chenet
- Sección de Parasitología, Instituto de Salud Pública de Chile, Santiago, Región Metropolitana, Chile. .,Instituto de Investigación en Ganadería y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza, Amazonas, Peru. .,Instituto de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza, Amazonas, Peru.
| |
Collapse
|
12
|
Valenzuela G, Castro LE, Valencia-Zamora J, Vera-Arias CA, Rohrbach P, Sáenz FE. Genotypes and phenotypes of resistance in Ecuadorian Plasmodium falciparum. Malar J 2019; 18:415. [PMID: 31822269 PMCID: PMC6905098 DOI: 10.1186/s12936-019-3044-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 11/28/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria continues to be endemic in the coast and Amazon regions of Ecuador. Clarifying current Plasmodium falciparum resistance in the country will support malaria elimination efforts. In this study, Ecuadorian P. falciparum parasites were analysed to determine their drug resistance genotypes and phenotypes. METHODS Molecular analyses were performed to search for mutations in known resistance markers (Pfcrt, Pfdhfr, Pfdhps, Pfmdr1, k13). Pfmdr1 copy number was determined by qPCR. PFMDR1 transporter activity was characterized in live parasites using live cell imaging in combination with the Fluo-4 transport assay. Chloroquine, quinine, lumefantrine, mefloquine, dihydroartemisinin, and artemether sensitivities were measured by in vitro assays. RESULTS The majority of samples from this study presented the CVMNT genotype for Pfcrt (72-26), NEDF SDFD mutations in Pfmdr1 and wild type genotypes for Pfdhfr, Pfdhps and k13. The Ecuadorian P. falciparum strain ESM-2013 showed in vitro resistance to chloroquine, but sensitivity to quinine, lumefantrine, mefloquine, dihydroartemisinin and artemether. In addition, transport of the fluorochrome Fluo-4 from the cytosol into the digestive vacuole (DV) of the ESM-2013 strain was minimally detected in the DV. All analysed samples revealed one copy of Pfmdr1. CONCLUSION This study indicates that Ecuadorian parasites presented the genotype and phenotype for chloroquine resistance and were found to be sensitive to SP, artemether-lumefantrine, quinine, mefloquine, and dihydroartemisinin. The results suggest that the current malaria treatment employed in the country remains effective. This study clarifies the status of anti-malarial resistance in Ecuador and informs the P. falciparum elimination campaigns in the country.
Collapse
Affiliation(s)
- Gabriela Valenzuela
- Centro de Investigación para la Salud en América Latina, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076, Apartado, 17-01-2184, Quito, Ecuador
| | | | | | - Claudia A Vera-Arias
- Centro de Investigación para la Salud en América Latina, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076, Apartado, 17-01-2184, Quito, Ecuador
| | - Petra Rohrbach
- Institute of Parasitology, McGill University, Montreal, Canada
| | - Fabián E Sáenz
- Centro de Investigación para la Salud en América Latina, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076, Apartado, 17-01-2184, Quito, Ecuador.
| |
Collapse
|