1
|
Tenywa FSC, Kibondo UA, Entwistle J, Dogan O, Haruna M, Phisoo RP, Moore J, Machange JJ, Makame H, Tripet F, Müller P, Mondy M, Nimmo D, Stevenson JC, Moore SJ. Bioassays for the evaluation of the attractiveness of attractive targeted sugar bait (ATSB) against Anopheles mosquitoes in controlled semi-field systems. Parasit Vectors 2025; 18:38. [PMID: 39905480 PMCID: PMC11792329 DOI: 10.1186/s13071-024-06653-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/27/2024] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Sugar feeding is an essential aspect of mosquito biology that may be exploited for mosquito control by adding insecticides to sugar attractants, so-called 'attractive targeted sugar baits' (ATSBs). To optimize their effectiveness, ATSB products need to be maximally attractive at both short and long range and induce high levels of feeding. This study aimed to assess the attractiveness and feeding success of Anopheles mosquitoes exposed to attractive sugar baits (ASBs). METHOD Experiments were conducted in 2 × 5 × 2-m cages constructed within the semi-field systems (SFS) at Ifakara Health Institute, Bagamoyo, Tanzania. Male and female Anopheles gambiae s.s. and An. funestus s.s. mosquitoes were exposed to either 20% sucrose or different ASB station prototypes produced by Westham Co. in either (1) no-choice experiments or (2) choice experiments. Mosquitoes were exposed overnight and assessed for intrinsic or relative olfactory attraction using fluorescent powder markers dusted over the ASB stations and 20% sucrose and for feeding using uranine incorporated within the bait station and food dye in 20% sucrose controls. RESULTS Both male and female An. gambiae and An. funestus mosquitoes were attracted to the ASBs, with no significant difference between the sexes for each of the experiments conducted. Older mosquitoes (3-5 days) were more attracted to the ASBs (OR = 8.3, [95% CI 6.6-10.5] P < 0.001) than younger mosquitoes (0-1 day). Similarly, older mosquitoes responded more to 20% sucrose (OR = 4.6, [3.7-5.8], P < 0.001) than newly emerged Anopheles. Of the four prototypes tested, the latest iteration, ASB prototype v1.2.1, showed the highest intrinsic attraction of both Anopheles species, attracting 91.2% [95% CI 87.9-94.5%]. Relative to ATSB v1.1.1, the latest prototype, v.1.2.1, had higher attraction (OR = 1.19 [95% CI 1.07-1.33], P < 0.001) and higher feeding success (OR = 1.71 [95% CI 1.33-2.18], P < 0.001). CONCLUSIONS Data from these experiments support using ASBs v1.2.1, deployed in large-scale epidemiological trials, as it is the most attractive and shows the highest feeding success of the Westham prototypes tested. The findings indicate that future bioassays to evaluate ATSBs should use mosquitoes of both sexes, aged 3-5 days, include multiple species in the same cage or chamber, and utilize both non-choice and choice tests with a standard comparator.
Collapse
Affiliation(s)
- Frank S C Tenywa
- Vector Control Product Testing Unit, Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania.
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland.
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland.
| | - Ummi A Kibondo
- Vector Control Product Testing Unit, Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Julian Entwistle
- Liverpool School of Tropical Medicine, The Innovative Vector Control Consortium, Pembroke Place, Liverpool, L3 5QA, UK
| | - Osward Dogan
- Vector Control Product Testing Unit, Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Mapipi Haruna
- Vector Control Product Testing Unit, Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Restuta P Phisoo
- Vector Control Product Testing Unit, Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Jason Moore
- Vector Control Product Testing Unit, Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
| | - Jane J Machange
- Vector Control Product Testing Unit, Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
- Nelson Mandela African Institute of Science and Technology (NM-AIST), P.O. Box 447, Tengeru, Tanzania
| | - Haji Makame
- Vector Control Product Testing Unit, Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Frederic Tripet
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Newcastle, Staffordshire, ST5 5BG, UK
| | - Pie Müller
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Mathias Mondy
- Liverpool School of Tropical Medicine, The Innovative Vector Control Consortium, Pembroke Place, Liverpool, L3 5QA, UK
| | - Derric Nimmo
- Liverpool School of Tropical Medicine, The Innovative Vector Control Consortium, Pembroke Place, Liverpool, L3 5QA, UK
| | - Jennifer C Stevenson
- Vector Control Product Testing Unit, Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Sarah J Moore
- Vector Control Product Testing Unit, Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
- Nelson Mandela African Institute of Science and Technology (NM-AIST), P.O. Box 447, Tengeru, Tanzania
| |
Collapse
|
2
|
Poda BS, Cribellier A, Feugère L, Fatou M, Nignan C, Hien DFDS, Müller P, Gnankiné O, Dabiré RK, Diabaté A, Muijres FT, Roux O. Spatial and temporal characteristics of laboratory-induced Anopheles coluzzii swarms: Shape, structure, and flight kinematics. iScience 2024; 27:111164. [PMID: 39524359 PMCID: PMC11546533 DOI: 10.1016/j.isci.2024.111164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/02/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Malaria mosquitoes mate in swarms, but how these swarms are formed and maintained remains poorly understood. We characterized three-dimensional spatiotemporal flight kinematics of Anopheles coluzzii males swarming at sunset above a ground marker. The location, shape, and volume of swarms were highly stereotypic, consistent over the complete swarming duration. Swarms have an elliptical cone shape; mean flight kinematics varies spatially within the swarm, but remain rather consistent throughout swarming duration. Using a sensory system-informed model, we show that swarming mosquitoes use visual perception of both the ground marker and sunset horizon to display the swarming behavior. To control their height, swarming individuals maintain an optical angle of the marker ranging from 24° to 55°. Limiting the viewing angle deviation to 4.5% of the maximum value results in the observed elliptical cone swarm shape. We discuss the implications of these finding on malaria mosquito mating success, speciation and for vector control.
Collapse
Affiliation(s)
- Bèwadéyir Serge Poda
- Département de Biologie Médicale et Santé Publique, Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
- Laboratoire d’Entomologie Fondamentale et Appliquée, Unité de Formation et de Recherche en Sciences de la Vie et de la Terre, Université Joseph KI-ZERBO, Ouagadougou, Burkina Faso
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
- Experimental Zoology Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Antoine Cribellier
- Experimental Zoology Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Lionel Feugère
- Natural Resources Institute, University of Greenwich, Chatham, UK
- L2TI, Université Sorbonne Paris Nord, Villetaneuse, France
| | - Mathurin Fatou
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Charles Nignan
- Département de Biologie Médicale et Santé Publique, Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
- Laboratoire d’Entomologie Fondamentale et Appliquée, Unité de Formation et de Recherche en Sciences de la Vie et de la Terre, Université Joseph KI-ZERBO, Ouagadougou, Burkina Faso
- Unité de Formation et de Recherche en Sciences Appliquées et Technologies, Université de Dédougou, Dédougou, Burkina Faso
| | | | - Pie Müller
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Olivier Gnankiné
- Laboratoire d’Entomologie Fondamentale et Appliquée, Unité de Formation et de Recherche en Sciences de la Vie et de la Terre, Université Joseph KI-ZERBO, Ouagadougou, Burkina Faso
| | - Roch Kounbobr Dabiré
- Département de Biologie Médicale et Santé Publique, Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | - Abdoulaye Diabaté
- Département de Biologie Médicale et Santé Publique, Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | - Florian T. Muijres
- Experimental Zoology Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Olivier Roux
- Département de Biologie Médicale et Santé Publique, Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
| |
Collapse
|
3
|
Shannon DM, Richardson N, Lahondère C, Peach D. Mosquito floral visitation and pollination. CURRENT OPINION IN INSECT SCIENCE 2024; 65:101230. [PMID: 38971524 DOI: 10.1016/j.cois.2024.101230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/07/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024]
Abstract
We often consider mosquitoes through an 'anthropocentric lens' that disregards their interactions with nonhuman and nonpathogenic organisms, even though these interactions can be harnessed for mosquito control. Mosquitoes have been recognized as floral visitors, and pollinators, for more than a century. However, we know relatively little about mosquito-plant interactions, excepting some nutrition and chemical ecology-related topics, compared with mosquito-host interactions, and frequently use flawed methodology when investigating them. Recent work demonstrates mosquitoes use multimodal sensory cues to locate flowers, including ultraviolet visual cues, and we may underestimate mosquito pollination. This review focuses on current knowledge of how mosquitoes locate flowers, floral visitation assay methodology, mosquito pollination, and implications for technologies such as sterile male mosquito release through genetic control programs or Wolbachia infection.
Collapse
Affiliation(s)
- Danica M Shannon
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802, USA; Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Nalany Richardson
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802, USA; Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Chloé Lahondère
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; The Global Change Center, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; The Fralin Life Science Institute Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; Center of Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Daniel Peach
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802, USA; Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA; Precision One Health Initiative, University of Georgia, University of Georgia, Athens, GA 30602, USA; Center for the Ecology of Infectious Diseases, University of Georgia, University of Georgia, Athens, GA 30602, USA; Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada.
| |
Collapse
|
4
|
Takken W, Charlwood D, Lindsay SW. The behaviour of adult Anopheles gambiae, sub-Saharan Africa's principal malaria vector, and its relevance to malaria control: a review. Malar J 2024; 23:161. [PMID: 38783348 PMCID: PMC11112813 DOI: 10.1186/s12936-024-04982-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Mosquitoes of the Anopheles gambiae complex are one of the major vectors of malaria in sub-Saharan Africa. Their ability to transmit this disease of major public health importance is dependent on their abundance, biting behaviour, susceptibility and their ability to survive long enough to transmit malaria parasites. A deeper understanding of this behaviour can be exploited for improving vector surveillance and malaria control. FINDINGS Adult mosquitoes emerge from aquatic habitats at dusk. After a 24 h teneral period, in which the cuticle hardens and the adult matures, they may disperse at random and search upwind for a mate or to feed. Mating generally takes place at dusk in swarms that form over species-specific 'markers'. Well-nourished females may mate before blood-feeding, but the reverse is true for poorly-nourished insects. Females are monogamous and only mate once whilst males, that only feed on nectar, swarm nightly and can potentially mate up to four times. Females are able to locate hosts by following their carbon dioxide and odour gradients. When in close proximity to the host, visual cues, temperature and relative humidity are also used. Most blood-feeding occurs at night, indoors, with mosquitoes entering houses mainly through gaps between the roof and the walls. With the exception of the first feed, females are gonotrophically concordant and a blood meal gives rise to a complete egg batch. Egg development takes two or three days depending on temperature. Gravid females leave their resting sites at dusk. They are attracted by water gradients and volatile chemicals that provide a suitable aquatic habitat in which to lay their eggs. CONCLUSION Whilst traditional interventions, using insecticides, target mosquitoes indoors, additional protection can be achieved using spatial repellents outdoors, attractant traps or house modifications to prevent mosquito entry. Future research on the variability of species-specific behaviour, movement of mosquitoes across the landscape, the importance of light and vision, reproductive barriers to gene flow, male mosquito behaviour and evolutionary changes in mosquito behaviour could lead to an improvement in malaria surveillance and better methods of control reducing the current over-reliance on the indoor application of insecticides.
Collapse
Affiliation(s)
- Willem Takken
- Laboratory of Entomology, Wageningen University & Research, PO Box 16, 6700 AA, Wageningen, The Netherlands.
| | - Derek Charlwood
- Global Health and Tropical Medicine, Instituto de Hygiene e Medicina Tropical, Lisbon, Portugal
| | | |
Collapse
|
5
|
Baeshen R. Swarming Behavior in Anopheles gambiae (sensu lato): Current Knowledge and Future Outlook. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:56-66. [PMID: 34617121 PMCID: PMC8755986 DOI: 10.1093/jme/tjab157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Indexed: 06/13/2023]
Abstract
Effective management of insect disease vectors requires a detailed understanding of their ecology and behavior. In Anopheles gambiae sensu lato (s.l.) (Diptera: Culicidae) mating occurs during swarming, but knowledge of their mating behavior under natural conditions is limited. Mosquitoes mate in flight over specific landmarks, known as swarm markers, at particular locations. Swarms consist of males; the females usually approach the swarm and depart following copulation. The number of mating pairs per swarm is closely associated with swarm size. The shape and height of swarm markers vary and may depend on the environmental conditions at the swarm's location. Male-male interactions in mosquito swarms with similar levels of attractive flight activity can offer a mating advantage to some individuals. Flight tone is used by mosquitoes to recognize the other sex and choose a desirable mate. Clarifying these and other aspects of mosquito reproductive behavior can facilitate the development of population control measures that target swarming sites. This review describes what is currently known about swarming behavior in Anopheles gambiae s.l., including swarm characteristics; mating within and outside of swarms, insemination in females, and factors affecting and stimulating swarming.
Collapse
Affiliation(s)
- Rowida Baeshen
- Faculty of Sciences, Biology Department, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| |
Collapse
|
6
|
Viglietta M, Bellone R, Blisnick AA, Failloux AB. Vector Specificity of Arbovirus Transmission. Front Microbiol 2021; 12:773211. [PMID: 34956136 PMCID: PMC8696169 DOI: 10.3389/fmicb.2021.773211] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022] Open
Abstract
More than 25% of human infectious diseases are vector-borne diseases (VBDs). These diseases, caused by pathogens shared between animals and humans, are a growing threat to global health with more than 2.5 million annual deaths. Mosquitoes and ticks are the main vectors of arboviruses including flaviviruses, which greatly affect humans. However, all tick or mosquito species are not able to transmit all viruses, suggesting important molecular mechanisms regulating viral infection, dissemination, and transmission by vectors. Despite the large distribution of arthropods (mosquitoes and ticks) and arboviruses, only a few pairings of arthropods (family, genus, and population) and viruses (family, genus, and genotype) successfully transmit. Here, we review the factors that might limit pathogen transmission: internal (vector genetics, immune responses, microbiome including insect-specific viruses, and coinfections) and external, either biotic (adult and larvae nutrition) or abiotic (temperature, chemicals, and altitude). This review will demonstrate the dynamic nature and complexity of virus–vector interactions to help in designing appropriate practices in surveillance and prevention to reduce VBD threats.
Collapse
Affiliation(s)
- Marine Viglietta
- Unit of Arboviruses and Insect Vectors, Institut Pasteur, Sorbonne Université, Paris, France
| | - Rachel Bellone
- Unit of Arboviruses and Insect Vectors, Institut Pasteur, Sorbonne Université, Paris, France
| | - Adrien Albert Blisnick
- Unit of Arboviruses and Insect Vectors, Institut Pasteur, Sorbonne Université, Paris, France
| | - Anna-Bella Failloux
- Unit of Arboviruses and Insect Vectors, Institut Pasteur, Sorbonne Université, Paris, France
| |
Collapse
|
7
|
Harmonic convergence coordinates swarm mating by enhancing mate detection in the malaria mosquito Anopheles gambiae. Sci Rep 2021; 11:24102. [PMID: 34916521 PMCID: PMC8677761 DOI: 10.1038/s41598-021-03236-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/30/2021] [Indexed: 11/30/2022] Open
Abstract
The mosquito Anopheles gambiae is a major African malaria vector, transmitting parasites responsible for significant mortality and disease burden. Although flight acoustics are essential to mosquito mating and present promising alternatives to insecticide-based vector control strategies, there is limited data on mosquito flight tones during swarming. Here, for the first time, we present detailed analyses of free-flying male and female An. gambiae flight tones and their harmonization (harmonic convergence) over a complete swarm sequence. Audio analysis of single-sex swarms showed synchronized elevation of male and female flight tones during swarming. Analysis of mixed-sex swarms revealed additional 50 Hz increases in male and female flight tones due to mating activity. Furthermore, harmonic differences between male and female swarm tones in mixed-sex swarms and in single-sex male swarms with artificial female swarm audio playback indicate that frequency differences of approximately 50 Hz or less at the male second and female third harmonics (M2:F3) are maintained both before and during mating interactions. This harmonization likely coordinates male scramble competition by maintaining ideal acoustic recognition within mating pairs while acoustically masking phonotactic responses of nearby swarming males to mating females. These findings advance our knowledge of mosquito swarm acoustics and provide vital information for reproductive control strategies.
Collapse
|
8
|
Carvajal-Lago L, Ruiz-López MJ, Figuerola J, Martínez-de la Puente J. Implications of diet on mosquito life history traits and pathogen transmission. ENVIRONMENTAL RESEARCH 2021; 195:110893. [PMID: 33607093 DOI: 10.1016/j.envres.2021.110893] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
The environment, directly and indirectly, affects many mosquito traits in both the larval and adult stages. The availability of food resources is one of the key factors influencing these traits, although its role in mosquito fitness and pathogen transmission remains unclear. Larvae nutritional status determines their survivorship and growth, having also an impact on adult characteristics like longevity, body size, flight capacity or vector competence. During the adult stage, mosquito diet affects their survival rate, fecundity and host-seeking behaviour. It also affects mosquito susceptibility to infection, which may determine the vectorial capacity of mosquito populations. The aim of this review is to critically revise the current knowledge on the effects that both larval and adult quantity and quality of the diet have on mosquito life history traits, identifying the critical knowledge gaps and proposing future research lines. The quantity and quality of food available through their lifetime greatly determine adult body size, longevity or biting frequency, therefore affecting their competence for pathogen transmission. In addition, natural sugar sources for adult mosquitoes, i.e., specific plants providing high metabolic energy, might affect their host-seeking and vertebrate biting behaviour. However, most of the studies are carried out under laboratory conditions, highlighting the need for studies of feeding behaviour of mosquitoes under field conditions. This kind of studies will increase our knowledge of the impact of diets on pathogen transmission, helping to develop successful control plans for vector-borne diseases.
Collapse
Affiliation(s)
- Laura Carvajal-Lago
- Departamento de Ecología de Humedales, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, CSIC, Spain
| | - María José Ruiz-López
- Departamento de Ecología de Humedales, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, CSIC, Spain
| | - Jordi Figuerola
- Departamento de Ecología de Humedales, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, CSIC, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain.
| | - Josué Martínez-de la Puente
- Departamento de Ecología de Humedales, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, CSIC, Spain; Departamento de Parasitología, Facultad de Farmacia, Campus Universitario de Cartuja, Universidad de Granada, 18071 Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| |
Collapse
|