1
|
Commons RJ, Rajasekhar M, Allen EN, Yilma D, Chotsiri P, Abreha T, Adam I, Awab GR, Barber BE, Brasil LW, Chu CS, Cui L, Edler P, Gomes MDSM, Gonzalez-Ceron L, Grigg MJ, Hamid MMA, Hwang J, Karunajeewa H, Lacerda MVG, Ladeia-Andrade S, Leslie T, Longley RJ, Monteiro WM, Pasaribu AP, Poespoprodjo JR, Richmond CL, Rijal KR, Taylor WRJ, Thanh PV, Thriemer K, Vieira JLF, White NJ, Zuluaga-Idarraga LM, Workman LJ, Tarning J, Stepniewska K, Guerin PJ, Simpson JA, Barnes KI, Price RN. Primaquine for uncomplicated Plasmodium vivax malaria in children younger than 15 years: a systematic review and individual patient data meta-analysis. THE LANCET. CHILD & ADOLESCENT HEALTH 2024; 8:798-808. [PMID: 39332427 PMCID: PMC11480364 DOI: 10.1016/s2352-4642(24)00210-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/29/2024]
Abstract
BACKGROUND Primaquine, the only widely available treatment to prevent relapsing Plasmodium vivax malaria, is produced as 15 mg tablets, and new paediatric formulations are being developed. To inform the optimal primaquine dosing regimen for children, we aimed to determine the efficacy and safety of different primaquine dose strategies in children younger than 15 years. METHODS We undertook a systematic review (Jan 1, 2000-July 26, 2024) for P vivax efficacy studies with at least one treatment group that was administered primaquine over multiple days, that enrolled children younger than 15 years, that followed up patients for at least 28 days, and that had data available for inclusion by June 30, 2022. Patients were excluded if they were aged 15 years or older, presented with severe malaria, received adjunctive antimalarials within 14 days of diagnosis, commenced primaquine more than 7 days after starting schizontocidal treatment, had a protocol violation in the original study, or were missing data on age, sex, or primaquine dose. Available individual patient data were collated and standardised. To evaluate efficacy, the risk of recurrent P vivax parasitaemia between days 7 and 180 was assessed by time-to-event analysis for different total mg/kg primaquine doses (low total dose of ∼3·5 mg/kg and high total dose of ∼7 mg/kg). To evaluate tolerability and safety, the following were assessed by daily mg/kg primaquine dose (low daily dose of ∼0·25 mg/kg, intermediate daily dose of ∼0·5 mg/kg, and high daily dose of ∼1 mg/kg): gastrointestinal symptoms (vomiting, anorexia, or diarrhoea) on days 5-7, haemoglobin decrease of at least 25% to less than 7g/dL (severe haemolysis), absolute change in haemoglobin from day 0 to days 2-3 or days 5-7, and any serious adverse events within 28 days. This study is registered with PROSPERO, CRD42021278085. FINDINGS In total, 3514 children from 27 studies and 15 countries were included. The cumulative incidence of recurrence by day 180 was 51·4% (95% CI 47·0-55·9) following treatment without primaquine, 16·0% (12·4-20·3) following a low total dose of primaquine, and 10·2% (8·4-12·3) following a high total dose of primaquine. The hazard of recurrent P vivax parasitaemia in children younger than 15 years was reduced following primaquine at low total doses (adjusted hazard ratio [HR] 0·17, 95% CI 0·11-0·25) and high total doses (0·09, 0·07-0·12), compared with no primaquine. In 525 children younger than 5 years, the relative rates of recurrence were also reduced, with an adjusted HR of 0·33 (95% CI 0·18-0·59) for a low total dose and 0·13 (0·08-0·21) for a high total dose of primaquine compared with no primaquine. The rate of recurrence following a high total dose was reduced compared with a low dose in children younger than 15 years (adjusted HR 0·54, 95% CI 0·35-0·85) and children younger than 5 years (0·41, 0·21-0·78). Compared with no primaquine, children treated with any dose of primaquine had a greater risk of gastrointestinal symptoms on days 5-7 after adjustment for confounders, with adjusted risks of 3·9% (95% CI 0-8·6) in children not treated with primaquine, 9·2% (0-18·7) with a low daily dose of primaquine, 6·8% (1·7-12·0) with an intermediate daily dose of primaquine, and 9·6% (4·8-14·3) with a high daily dose of primaquine. In children with 30% or higher glucose-6-phosphate dehydrogenase (G6PD) activity, there were few episodes of severe haemolysis following no primaquine (0·4%, 95% CI 0·1-1·5), a low daily dose (0·0%, 0·0-1·6), an intermediate daily dose (0·5%, 0·1-1·4), or a high daily dose (0·7%, 0·2-1·9). Of 15 possibly drug-related serious adverse events in children, two occurred following a low, four following an intermediate, and nine following a high daily dose of primaquine. INTERPRETATION A high total dose of primaquine was highly efficacious in reducing recurrent P vivax parasitaemia in children compared with a low dose, particularly in children younger than 5 years. In children treated with high and intermediate daily primaquine doses compared with low daily doses, there was no increase in gastrointestinal symptoms or haemolysis (in children with 30% or higher G6PD activity), but there were more serious adverse events. FUNDING Medicines for Malaria Venture, Bill & Melinda Gates Foundation, and Australian National Health and Medical Research Council.
Collapse
Affiliation(s)
- Robert J Commons
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia; WorldWide Antimalarial Resistance Network, Asia-Pacific Regional Centre, Melbourne, VIC, Australia; General and Subspecialty Medicine, Grampians Health Ballarat, Ballarat, VIC, Australia.
| | - Megha Rajasekhar
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Elizabeth N Allen
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa; WorldWide Antimalarial Resistance Network Pharmacology Scientific Group, University of Cape Town, Cape Town, South Africa; Infectious Diseases Data Observatory, Oxford, UK
| | - Daniel Yilma
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa; Infectious Diseases Data Observatory, Oxford, UK; Jimma University Clinical Trial Unit, Department of Internal Medicine, Jimma University, Jimma, Ethiopia
| | - Palang Chotsiri
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Tesfay Abreha
- ICAP, Columbia University Mailman School of Public Health, Addis Ababa, Ethiopia
| | - Ishag Adam
- Department of Obstetrics and Gynecology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Ghulam Rahim Awab
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Nangarhar Medical Faculty, Nangarhar University, Jalalabad, Afghanistan
| | - Bridget E Barber
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia; QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Larissa W Brasil
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil; Programa de Pós‑Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Cindy S Chu
- Shoklo Malaria Research Unit, Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Peta Edler
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia; Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Margarete do Socorro M Gomes
- Superintendência de Vigilância em Saúde do Estado do Amapá - SVS/AP, Macapá, Amapá, Brazil; Federal University of aMAPA (Universidade Federal do Amapá - UNIFAP), Macapá, Amapá, Brazil
| | - Lilia Gonzalez-Ceron
- Regional Centre for Public Health Research, National Institute for Public Health, Tapachula, Chiapas, Mexico
| | - Matthew J Grigg
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia; Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Muzamil Mahdi Abdel Hamid
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Jimee Hwang
- US President's Malaria Initiative, Malaria Branch, US Centers for Disease Control and Prevention, Atlanta, GA, USA; Institute for Global Health Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Harin Karunajeewa
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St Albans, VIC, Australia
| | - Marcus V G Lacerda
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil; Instituto Leônidas & Maria Deane, Fiocruz, Manaus, Brazil; University of Texas Medical Branch, Galveston, TX, USA
| | - Simone Ladeia-Andrade
- Laboratory of Parasitic Diseases, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil; Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, NOVA University of Lisbon, Lisbon, Portugal
| | - Toby Leslie
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK; HealthNet-TPO, Kabul, Afghanistan
| | - Rhea J Longley
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia; Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Wuelton Marcelo Monteiro
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil; Universidade do Estado do Amazonas, Manaus, Brazil
| | - Ayodhia Pitaloka Pasaribu
- Department of Pediatrics, Medical Faculty, Universitas Sumatera Utara, Medan, North Sumatera, Indonesia
| | - Jeanne Rini Poespoprodjo
- Mimika District Hospital, Timika, Indonesia; Timika Malaria Research Programme, Papuan Health and Community Development Foundation, Timika, Indonesia; Paediatric Research Office, Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr Sardjito Hospital, Yogyakarta, Indonesia
| | - Caitlin L Richmond
- Infectious Diseases Data Observatory, Oxford, UK; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK; WorldWide Antimalarial Resistance Network, Oxford, UK
| | - Komal Raj Rijal
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Central Department of Microbiology, Tribhuvan University, Kirtipur, Nepal
| | - Walter R J Taylor
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Pham Vinh Thanh
- National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Kamala Thriemer
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
| | - José Luiz F Vieira
- Federal University of Pará (Universidade Federal do Pará - UFPA), Belém, Pará, Brazil
| | - Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Lina M Zuluaga-Idarraga
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia; Facultad Nacional de Salud Publica, Universidad de Antioquia, Medellín, Colombia
| | - Lesley J Workman
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa; WorldWide Antimalarial Resistance Network Pharmacology Scientific Group, University of Cape Town, Cape Town, South Africa
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Kasia Stepniewska
- Infectious Diseases Data Observatory, Oxford, UK; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK; WorldWide Antimalarial Resistance Network, Oxford, UK
| | - Philippe J Guerin
- Infectious Diseases Data Observatory, Oxford, UK; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK; WorldWide Antimalarial Resistance Network, Oxford, UK
| | - Julie A Simpson
- WorldWide Antimalarial Resistance Network, Asia-Pacific Regional Centre, Melbourne, VIC, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Karen I Barnes
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa; WorldWide Antimalarial Resistance Network Pharmacology Scientific Group, University of Cape Town, Cape Town, South Africa; Infectious Diseases Data Observatory, Oxford, UK
| | - Ric N Price
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia; WorldWide Antimalarial Resistance Network, Asia-Pacific Regional Centre, Melbourne, VIC, Australia; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Kalkman LC, Hanscheid T, Krishna S, Kremsner PG, Grobusch MP. Antimalarial treatment in infants. Expert Opin Pharmacother 2022; 23:1711-1726. [PMID: 36174125 DOI: 10.1080/14656566.2022.2130687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Malaria in infants is common in high-transmission settings, especially in infants >6 months. Infants undergo physiological changes impacting pharmacokinetics and pharmacodynamics of anti-malarial drugs and, consequently, the safety and efficacy of malaria treatment. Yet, treatment guidelines and evidence on pharmacological interventions for malaria often fail to address this vulnerable age-group. This review aims to summarise the available data on anti-malarial treatment in infants. AREAS COVERED The standard recommended treatments for severe and uncomplicated malaria are generally safe and effective in infants. However, infants have an increased risk of drug-related vomiting and have distinct pharmacokinetic parameters of antimalarials compared with older patients. These include larger volumes of distribution, higher clearance rates and immature enzyme systems. Consequently, infants with malaria may be at increased risk of treatment failure and drug toxicity. EXPERT OPINION Knowledge expansion to optimize treatment can be achieved by including more infants in antimalarial drug trials and by reporting separately on treatment outcomes in infants. Additional evidence on the efficacy, safety, tolerability, acceptability and effectiveness of ACTs in infants is needed, as well as population pharmacokinetics studies on antimalarials in the infant population.
Collapse
Affiliation(s)
- Laura C Kalkman
- Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam University Medical Centers, location Amsterdam, Amsterdam Infection & Immunity, Amsterdam Public Health, University of Amsterdam, Amsterdam, The Netherlands
| | - Thomas Hanscheid
- Instituto de Microbiologia, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sanjeev Krishna
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, and German Center for Infection Research (DZIF), Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Clinical Academic Group, Institute for Infection and Immunity, and St. George's University Hospitals NHS Foundation Trust, St. George's University of London, London, UK
| | - Peter G Kremsner
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, and German Center for Infection Research (DZIF), Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
| | - Martin P Grobusch
- Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam University Medical Centers, location Amsterdam, Amsterdam Infection & Immunity, Amsterdam Public Health, University of Amsterdam, Amsterdam, The Netherlands.,Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, and German Center for Infection Research (DZIF), Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Masanga Medical Research Unit (MMRU), Masanga, Sierra Leone
| |
Collapse
|