1
|
Proellochs NI, Andolina C, Ramjith J, Stoter R, van Gemert GJ, Graumans W, Campino S, Vanheer LN, Okitwi M, Tumwebaze PK, Conrad MD, Clark TG, Fidock DA, Ménard D, Mok S, Bousema T. Gametocyte production and transmission fitness of African and Asian Plasmodium falciparum isolates with differential susceptibility to artemisinins. Antimicrob Agents Chemother 2025:e0193024. [PMID: 40261068 DOI: 10.1128/aac.01930-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/21/2025] [Indexed: 04/24/2025] Open
Abstract
The emergence of Plasmodium falciparum parasites partially resistant to artemisinins (ART-R) poses a significant threat to recent gains in malaria control. ART-R has been associated with PfKelch13 (K13) mutations, which differ in fitness costs. This study investigates the gametocyte production and transmission fitness of African and Asian P. falciparum isolates with different K13 genotypes across multiple mosquito species. We tested three ART-sensitive (ART-S) isolates (NF54, NF135, and NF180) and three ART-R isolates (ARN1G, 3815, and PAT-023) for sexual conversion and transmission to Anopheles stephensi, An. gambiae, and An. coluzzii. ART-R levels were quantified in vitro using the Ring-stage Survival Assay (RSA), and the transmission-reducing effects of dihydroartemisinin (DHA) on mature gametocytes were assessed. Results showed that ART-S parasite lines consistently produced gametocytes and transmitted effectively in all three mosquito species. ART-R isolates showed variability: ARN1G maintained high transmission levels, whereas 3815 showed limited transmission potential despite higher sporozoite loads in An. coluzzii. The African ART-R isolate PAT-023 demonstrated low gametocyte commitment but was transmitted efficiently in both An. gambiae and An. coluzzii. DHA exposure reduced mosquito infectivity for all isolates, regardless of K13 genotype. These findings, based on a limited number of field isolates, suggest that ART-R parasites remain transmissible across different Anopheles species. However, ART-R does not appear to confer a direct transmission advantage. This study highlights the complexity of ART-R dynamics and underscores the need for further research to inform malaria control strategies in regions where ART-R parasites are circulating.
Collapse
Affiliation(s)
- Nicholas I Proellochs
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Chiara Andolina
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Jordache Ramjith
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Rianne Stoter
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Geert-Jan van Gemert
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Wouter Graumans
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Susana Campino
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Leen N Vanheer
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Martin Okitwi
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Melissa D Conrad
- Department of Medicine, University of California, San Francisco, California, USA
| | - Taane G Clark
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, USA
| | - Didier Ménard
- Malaria Parasite Biology and Vaccines Unit, Institut Pasteur, Université Paris Cité, Paris, Île-de-France, France
- Malaria Genetics and Resistance Team (MEGATEAM), UR 3073-Pathogens Host Arthropods Vectors Interactions, Université de Strasbourg, Strasbourg, Grand Est, France
- Laboratory of Parasitology and Medical Mycology, CHU Strasbourg, Strasbourg, Grand Est, France
- Institut Universitaire de France (IUF), Paris, Île-de-France, France
| | - Sachel Mok
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, USA
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, the Netherlands
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
2
|
Adeyemi O, Osuntoki A, Magbagbeola O, Abdel Hamid MM, Elaagip A, Mueller AK, Ibrahim M. Evidence for infectious merozoites of Plasmodium falciparum from natural isolates of cultured hepatoma cells infected with sporozoites. PLoS One 2025; 20:e0319901. [PMID: 40106488 PMCID: PMC11922282 DOI: 10.1371/journal.pone.0319901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/06/2025] [Indexed: 03/22/2025] Open
Abstract
Previous cell culture systems using various human hepatoma cell lines established that the intra-hepatic stages of Plasmodium falciparum could be studied ex vivo. However, only one of these culture systems yielded infective merozoites that subsequently completed the parasite's life cycle outside a human host. We hypothesized that a major limitation is the use of laboratory-adapted P. falciparum blood stages for sporozoites generation. Plasmodium falciparum sporozoites were generated by membrane-feeding of gametocyte-infected blood samples from hospital patients to Anopheles arabiensis. Subsequently, cultured HepG2 cells were infected with the sporozoites. From 6 days post-sporozoite inoculation, liver merozoites could be harvested from the cell supernatants. When co-cultured with O + erythrocytes, these merozoites established a blood infection and yielded erythrocytic stage parasites that re-infected erythrocytes. To confirm that the erythrocytic parasites generated were P. falciparum, RNA expressed by the erythrocytic parasites was isolated and used as control in microarray analysis against RNA expressed by irradiated erythrocytic parasites; subsequently, P. falciparum genes were identified. The cultured HepG2 cells permitted the full intra-hepatic maturation of P. falciparum parasites from natural isolates. Infective merozoites were yielded which gave rise to the erythrocytic stage P. falciparum post-infection into O + erythrocytes. The full intra-hepatic maturation of the naturally isolated P. falciparum parasites in a HepG2 cell culture system is possible. This finding has important implications for malaria research and vaccine development.
Collapse
Affiliation(s)
- Olumide Adeyemi
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Akinniyi Osuntoki
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Olubunmi Magbagbeola
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Muzamil Mahdi Abdel Hamid
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Arwa Elaagip
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Ann-Kristin Mueller
- Heidelberg University Hospital, Department of Infectious Diseases, Heidelberg, Germany
| | - Muntaser Ibrahim
- Department of Molecular Biology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| |
Collapse
|
3
|
Proellochs NI, Andolina C, Ramjith J, Stoter R, van Gemert GJ, Graumans W, Campino S, Vanheer LN, Okitwi M, Tumwebaze PK, Conrad MD, Clark TG, Fidock DA, Menard D, Mok S, Bousema T. Gametocyte production and transmission fitness of African and Asian Plasmodium falciparum isolates with differential susceptibility to artemisinins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.23.630038. [PMID: 39763803 PMCID: PMC11703160 DOI: 10.1101/2024.12.23.630038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
The emergence of Plasmodium falciparum parasites partially resistant to artemisinins (ART-R) poses a significant threat to recent gains in malaria control. ART-R has been associated with PfKelch13 (K13) mutations, which differ in fitness costs. This study investigates the gametocyte production and transmission fitness of African and Asian P. falciparum isolates with different K13 genotypes across multiple mosquito species. We tested three ART-sensitive (ART-S) isolates (NF54, NF135, NF180) and three ART-R isolates (ARN1G, 3815, PAT-023) for sexual conversion and transmission to Anopheles stephensi, An. gambiae and An. coluzzii . ART-R levels were quantified in vitro using the Ring-stage Survival Assay (RSA), and the transmission-reducing effects of dihydroartemisinin (DHA) on mature gametocytes were assessed. Results showed that ART-S parasite lines consistently produced gametocytes and transmitted effectively in all three mosquito species. ART-R isolates showed variability: ARN1G maintained high transmission levels, whereas 3815 showed limited transmission potential despite higher sporozoite loads in An. coluzzii . The African ART-R isolate PAT-023 demonstrated low gametocyte commitment but was transmitted efficiently in both An. gambiae and An. coluzzii . DHA exposure reduced mosquito infectivity for all isolates, regardless of K13 genotype. These findings, based on a limited number of field isolates, suggest that ART-R parasites remain transmissible across different Anopheles species. However, ART-R does not appear to confer a direct transmission advantage. This study highlights the complexity of ART-R dynamics and underscores the need for further research to inform malaria control strategies in regions where ART-R parasites are circulating.
Collapse
|
4
|
Bekkering ET, Yoo R, Hailemariam S, Heide F, Ivanochko D, Jackman M, Proellochs NI, Stoter R, Wanders OT, van Daalen RC, Inklaar MR, Andrade CM, Jansen PW, Vermeulen M, Bousema T, Rubinstein JL, Kooij TW, Jore MM, Julien JP. Structure of endogenous Pfs230:Pfs48/45 in complex with potent malaria transmission-blocking antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.14.638310. [PMID: 39990443 PMCID: PMC11844449 DOI: 10.1101/2025.02.14.638310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The Pfs230:Pfs48/45 complex is essential for malaria parasites to infect mosquitoes and forms the basis for current leading transmission-blocking vaccine candidates, yet little is known about its molecular assembly. Here, we used cryogenic electron microscopy to elucidate the structure of the endogenous Pfs230:Pfs48/45 complex bound to six potent transmission-blocking antibodies. Pfs230 consists of multiple domain clusters rigidified by interactions mediated through insertion domains. Membrane-anchored Pfs48/45 forms a disc-like structure and interacts with a short C-terminal peptide on Pfs230 that is critical for Pfs230 membrane-retention in vivo. Analyses of Pfs48/45- and Pfs230-targeted antibodies identify conserved epitopes on the Pfs230:Pfs48/45 complex and provides a structural paradigm for complement-dependent activity of Pfs230-targeting antibodies. Altogether, the Pfs230:Pfs48/45 antibody-complex structure presented improves our understanding of malaria transmission biology and the mechanisms of action of transmission-blocking antibodies, informing the development of next-generation transmission-blocking interventions.
Collapse
Affiliation(s)
- Ezra T. Bekkering
- Department of Medical Microbiology, Radboud University Medical Center, The Netherlands
| | - Randy Yoo
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Sophia Hailemariam
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Fabian Heide
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Danton Ivanochko
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Matthew Jackman
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | | | - Rianne Stoter
- Department of Medical Microbiology, Radboud University Medical Center, The Netherlands
| | - Oscar T. Wanders
- Department of Medical Microbiology, Radboud University Medical Center, The Netherlands
| | - Renate C. van Daalen
- Department of Medical Microbiology, Radboud University Medical Center, The Netherlands
| | - Maartje R. Inklaar
- Department of Medical Microbiology, Radboud University Medical Center, The Netherlands
| | - Carolina M. Andrade
- Department of Medical Microbiology, Radboud University Medical Center, The Netherlands
| | - Pascal W.T.C. Jansen
- Department of Molecular Biology, Faculty of Science, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Medical Center, The Netherlands
| | - John L. Rubinstein
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Taco W.A. Kooij
- Department of Medical Microbiology, Radboud University Medical Center, The Netherlands
| | - Matthijs M. Jore
- Department of Medical Microbiology, Radboud University Medical Center, The Netherlands
| | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Graumans W, van der Starre A, Stoter R, van Gemert GJ, Andolina C, Ramjith J, Kooij T, Bousema T, Proellochs N. AlbuMAX supplemented media induces the formation of transmission-competent P. falciparum gametocytes. Mol Biochem Parasitol 2024; 259:111634. [PMID: 38823647 DOI: 10.1016/j.molbiopara.2024.111634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Asexual blood stage culture of Plasmodium falciparum is routinely performed but reproducibly inducing commitment to and maturation of viable gametocytes remains difficult. Culture media can be supplemented with human serum substitutes to induce commitment but these generally only allow for long-term culture of asexual parasites and not transmission-competent gametocytes due to their different lipid composition. Recent insights demonstrated the important roles lipids play in sexual commitment; elaborating on this we exposed ring stage parasites (20-24 hours hpi) for one day to AlbuMAX supplemented media to trigger induction to gametocytogenesis. We observed a significant increase in gametocytes after AlbuMAX induction compared to serum. We also tested the transmission potential of AlbuMAX inducted gametocytes and found a significant higher oocyst intensity compared to serum. We conclude that AlbuMAX supplemented media induces commitment, allows a more stable and predictable production of transmittable gametocytes than serum alone.
Collapse
Affiliation(s)
- Wouter Graumans
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Alex van der Starre
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Rianne Stoter
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Geert-Jan van Gemert
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Chiara Andolina
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Jordache Ramjith
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Taco Kooij
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands; Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Nicholas Proellochs
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands.
| |
Collapse
|
6
|
Taylor R, Messenger LA, Abeku TA, Clarke SE, Yadav RS, Lines J. Invasive Anopheles stephensi in Africa: insights from Asia. Trends Parasitol 2024; 40:731-743. [PMID: 39054167 DOI: 10.1016/j.pt.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/03/2024] [Accepted: 06/19/2024] [Indexed: 07/27/2024]
Abstract
Anopheles stephensi is a highly competent urban malaria vector species, endemic in South Asia and the Persian Gulf, which has colonised eight countries in sub-Saharan Africa (SSA) since 2013 and is now spreading uncontrollably. In urban areas of Africa, where malaria transmission has previously been low or non-existent, the invasion of An. stephensi represents a significant problem, particularly to immunologically naïve populations. Despite this rapidly advancing threat, there is a paucity of information regarding the bionomics of An. stephensi in SSA. Here, we offer a critical synthesis of literature from An. stephensi's native range, focusing on the future of An. stephensi in a rapidly urbanising Africa, and highlighting key questions that warrant prioritisation by the global malaria vector control community.
Collapse
Affiliation(s)
- Roz Taylor
- RAFT (Resilience Against Future Threats Through Vector Control) Consortium, Department of Disease Control, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK.
| | - Louisa A Messenger
- Department of Environmental and Occupational Health, School of Public Health, University of Nevada, Las Vegas, NV 89154, USA; Parasitology and Vector Biology (PARAVEC) Laboratory, School of Public Health, University of Nevada, Las Vegas, NV 89154, USA
| | - Tarekegn A Abeku
- Malaria Consortium, Green House, 244-254 Cambridge Heath Road, London E2 9DA, UK
| | - Sian E Clarke
- RAFT (Resilience Against Future Threats Through Vector Control) Consortium, Department of Disease Control, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Rajpal S Yadav
- Academy of Public Health Entomology, Udaipur 313002, Rajasthan, India
| | - Jo Lines
- RAFT (Resilience Against Future Threats Through Vector Control) Consortium, Department of Disease Control, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK.
| |
Collapse
|
7
|
Andolina C, Graumans W, Guelbeogo M, van Gemert GJ, Ramijth J, Harouna S, Soumanaba Z, Stoter R, Vegte-Bolmer M, Pangos M, Sinnis P, Collins K, Staedke SG, Tiono AB, Drakeley C, Lanke K, Bousema T. Quantification of sporozoite expelling by Anopheles mosquitoes infected with laboratory and naturally circulating P. falciparum gametocytes. eLife 2024; 12:RP90989. [PMID: 38517746 PMCID: PMC10959522 DOI: 10.7554/elife.90989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024] Open
Abstract
It is currently unknown whether all Plasmodium falciparum-infected mosquitoes are equally infectious. We assessed sporogonic development using cultured gametocytes in the Netherlands and naturally circulating strains in Burkina Faso. We quantified the number of sporozoites expelled into artificial skin in relation to intact oocysts, ruptured oocysts, and residual salivary gland sporozoites. In laboratory conditions, higher total sporozoite burden was associated with shorter duration of sporogony (p<0.001). Overall, 53% (116/216) of infected Anopheles stephensi mosquitoes expelled sporozoites into artificial skin with a median of 136 expelled sporozoites (interquartile range [IQR], 34-501). There was a strong positive correlation between ruptured oocyst number and salivary gland sporozoite load (ρ = 0.8; p<0.0001) and a weaker positive correlation between salivary gland sporozoite load and number of sporozoites expelled (ρ = 0.35; p=0.0002). In Burkina Faso, Anopheles coluzzii mosquitoes were infected by natural gametocyte carriers. Among salivary gland sporozoite positive mosquitoes, 89% (33/37) expelled sporozoites with a median of 1035 expelled sporozoites (IQR, 171-2969). Again, we observed a strong correlation between ruptured oocyst number and salivary gland sporozoite load (ρ = 0.9; p<0.0001) and a positive correlation between salivary gland sporozoite load and the number of sporozoites expelled (ρ = 0.7; p<0.0001). Several mosquitoes expelled multiple parasite clones during probing. Whilst sporozoite expelling was regularly observed from mosquitoes with low infection burdens, our findings indicate that mosquito infection burden is positively associated with the number of expelled sporozoites. Future work is required to determine the direct implications of these findings for transmission potential.
Collapse
Affiliation(s)
- Chiara Andolina
- Department of Medical Microbiology, Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Wouter Graumans
- Department of Medical Microbiology, Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Moussa Guelbeogo
- Centre National de Recherche et de Formation sur le PaludismeOuagadougouBurkina Faso
| | - Geert-Jan van Gemert
- Department of Medical Microbiology, Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Jordache Ramijth
- Department of Medical Microbiology, Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Soré Harouna
- Centre National de Recherche et de Formation sur le PaludismeOuagadougouBurkina Faso
| | - Zongo Soumanaba
- Centre National de Recherche et de Formation sur le PaludismeOuagadougouBurkina Faso
| | - Rianne Stoter
- Department of Medical Microbiology, Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Marga Vegte-Bolmer
- Department of Medical Microbiology, Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Martina Pangos
- Department of Plastic and Reconstructive Surgery, Azienda Ospedaliero Universitaria GiulianoIsontina TriesteTriesteItaly
| | - Photini Sinnis
- Department of Molecular Microbiology and Immunology, Johns HopkinsBloomberg School of Public HealthBaltimoreUnited States
| | - Katharine Collins
- Department of Medical Microbiology, Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Sarah G Staedke
- Liverpool School of Tropical MedicineLiverpoolUnited Kingdom
| | - Alfred B Tiono
- Centre National de Recherche et de Formation sur le PaludismeOuagadougouBurkina Faso
| | - Chris Drakeley
- Department of Immunology and Infection, London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Kjerstin Lanke
- Department of Medical Microbiology, Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Nijmegen Medical CentreNijmegenNetherlands
- Department of Immunology and Infection, London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| |
Collapse
|
8
|
Phelan JE, Turkiewicz A, Manko E, Thorpe J, Vanheer LN, van de Vegte-Bolmer M, Ngoc NTH, Binh NTH, Thieu NQ, Gitaka J, Nolder D, Beshir KB, Dombrowski JG, Di Santi SM, Bousema T, Sutherland CJ, Campino S, Clark TG. Rapid profiling of Plasmodium parasites from genome sequences to assist malaria control. Genome Med 2023; 15:96. [PMID: 37950308 PMCID: PMC10636944 DOI: 10.1186/s13073-023-01247-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Malaria continues to be a major threat to global public health. Whole genome sequencing (WGS) of the underlying Plasmodium parasites has provided insights into the genomic epidemiology of malaria. Genome sequencing is rapidly gaining traction as a diagnostic and surveillance tool for clinical settings, where the profiling of co-infections, identification of imported malaria parasites, and detection of drug resistance are crucial for infection control and disease elimination. To support this informatically, we have developed the Malaria-Profiler tool, which rapidly (within minutes) predicts Plasmodium species, geographical source, and resistance to antimalarial drugs directly from WGS data. RESULTS The online and command line versions of Malaria-Profiler detect ~ 250 markers from genome sequences covering Plasmodium speciation, likely geographical source, and resistance to chloroquine, sulfadoxine-pyrimethamine (SP), and other anti-malarial drugs for P. falciparum, but also providing mutations for orthologous resistance genes in other species. The predictive performance of the mutation library was assessed using 9321 clinical isolates with WGS and geographical data, with most being single-species infections (P. falciparum 7152/7462, P. vivax 1502/1661, P. knowlesi 143/151, P. malariae 18/18, P. ovale ssp. 5/5), but co-infections were identified (456/9321; 4.8%). The accuracy of the predicted geographical profiles was high to both continental (96.1%) and regional levels (94.6%). For P. falciparum, markers were identified for resistance to chloroquine (49.2%; regional range: 24.5% to 100%), sulfadoxine (83.3%; 35.4- 90.5%), pyrimethamine (85.4%; 80.0-100%) and combined SP (77.4%). Markers associated with the partial resistance of artemisinin were found in WGS from isolates sourced from Southeast Asia (30.6%). CONCLUSIONS Malaria-Profiler is a user-friendly tool that can rapidly and accurately predict the geographical regional source and anti-malarial drug resistance profiles across large numbers of samples with WGS data. The software is flexible with modifiable bioinformatic pipelines. For example, it is possible to select the sequencing platform, display specific variants, and customise the format of outputs. With the increasing application of next-generation sequencing platforms on Plasmodium DNA, Malaria-Profiler has the potential to be integrated into point-of-care and surveillance settings, thereby assisting malaria control. Malaria-Profiler is available online (bioinformatics.lshtm.ac.uk/malaria-profiler) and as standalone software ( https://github.com/jodyphelan/malaria-profiler ).
Collapse
Affiliation(s)
- Jody E Phelan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine (LSHTM), London, WC1E 7HT, UK.
| | - Anna Turkiewicz
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine (LSHTM), London, WC1E 7HT, UK
| | - Emilia Manko
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine (LSHTM), London, WC1E 7HT, UK
| | - Joseph Thorpe
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine (LSHTM), London, WC1E 7HT, UK
| | - Leen N Vanheer
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine (LSHTM), London, WC1E 7HT, UK
| | - Marga van de Vegte-Bolmer
- Department of Medical Microbiology and Radboud Center for Infectious Diseases, Radboud University Medical Center, University of Nijmegen, Nijmegen, The Netherlands
| | - Nguyen Thi Hong Ngoc
- Molecular Biology Department, Parasitology and Entomology, Vietnam National Institute of Malariology, Hanoi, Vietnam
| | - Nguyen Thi Huong Binh
- Molecular Biology Department, Parasitology and Entomology, Vietnam National Institute of Malariology, Hanoi, Vietnam
| | - Nguyen Quang Thieu
- Molecular Biology Department, Parasitology and Entomology, Vietnam National Institute of Malariology, Hanoi, Vietnam
| | - Jesse Gitaka
- Directorate of Research and Innovation, Mount Kenya University, Gen. Kago Rd, Thika, Kenya
| | - Debbie Nolder
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine (LSHTM), London, WC1E 7HT, UK
- UK Health Security Agency Malaria Reference Laboratory, LSHTM, London, WC1E 7HT, UK
| | - Khalid B Beshir
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine (LSHTM), London, WC1E 7HT, UK
| | - Jamille G Dombrowski
- Department of Parasitology, Institute of Biomedical Sciences, Univ. of São Paulo, São Paulo, Brazil
| | - Silvia Maria Di Santi
- School of Medicine, Instituto de Medicina Tropical, University of São Paulo, São Paulo, Brazil
| | - Teun Bousema
- Department of Medical Microbiology and Radboud Center for Infectious Diseases, Radboud University Medical Center, University of Nijmegen, Nijmegen, The Netherlands
| | - Colin J Sutherland
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine (LSHTM), London, WC1E 7HT, UK
- UK Health Security Agency Malaria Reference Laboratory, LSHTM, London, WC1E 7HT, UK
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine (LSHTM), London, WC1E 7HT, UK.
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine (LSHTM), London, WC1E 7HT, UK.
- Faculty of Epidemiology and Population Health, LSHTM, London, WC1E 7HT, UK.
| |
Collapse
|
9
|
B. Henry N, Soulama I, S. Sermé S, Bolscher JM, T. G. Huijs T, S. Coulibaly A, Sombié S, Ouédraogo N, Diarra A, Zongo S, Guelbéogo WM, Nébié I, Sirima SB, Tiono AB, Pietro A, Collins KA, Dechering KJ, Bousema T. Assessment of the transmission blocking activity of antimalarial compounds by membrane feeding assays using natural Plasmodium falciparum gametocyte isolates from West-Africa. PLoS One 2023; 18:e0284751. [PMID: 37494413 PMCID: PMC10370769 DOI: 10.1371/journal.pone.0284751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 04/07/2023] [Indexed: 07/28/2023] Open
Abstract
Antimalarial drugs that can block the transmission of Plasmodium gametocytes to mosquito vectors would be highly beneficial for malaria elimination efforts. Identifying transmission-blocking drugs currently relies on evaluation of their activity against gametocyte-producing laboratory parasite strains and would benefit from a testing pipeline with genetically diverse field isolates. The aims of this study were to develop a pipeline to test drugs against P. falciparum gametocyte field isolates and to evaluate the transmission-blocking activity of a set of novel compounds. Two assays were designed so they could identify both the overall transmission-blocking activity of a number of marketed and experimental drugs by direct membrane feeding assays (DMFA), and then also discriminate between those that are active against the gametocytes (gametocyte killing or sterilizing) or those that block development in the mosquito (sporontocidal). These DMFA assays used venous blood samples from naturally infected Plasmodium falciparum gametocyte carriers and locally reared Anopheles gambiae s.s. mosquitoes. Overall transmission-blocking activity was assessed following a 24 hour incubation of compound with gametocyte infected blood (TB-DMFA). Sporontocidal activity was evaluated following addition of compound directly prior to feeding, without incubation (SPORO-DMFA); Gametocyte viability was retained during 24-hour incubation at 37°C when gametocyte infected red blood cells were reconstituted in RPMI/serum. Methylene-blue, MMV693183, DDD107498, atovaquone and P218 showed potent transmission-blocking activity in the TB-DMFA, and both atovaquone and the novel antifolate P218 were potent inhibitors of sporogonic development in the SPORO-DMA. This work establishes a pipeline for the integral use of field isolates to assess the transmission-blocking capacity of antimalarial drugs to block transmission that should be validated in future studies.
Collapse
Affiliation(s)
- Noëlie B. Henry
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Issiaka Soulama
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
- Institut de Recherche en Sciences de la Santé (IRSS)/CNRST, Ouagadougou, Burkina Faso
| | - Samuel S. Sermé
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | | | | | - Aboubacar S. Coulibaly
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Salif Sombié
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Nicolas Ouédraogo
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Amidou Diarra
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Soumanaba Zongo
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Wamdaogo M. Guelbéogo
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Issa Nébié
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso
| | | | - Alfred B. Tiono
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Alano Pietro
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Roma, Italy
| | - Katharine A. Collins
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, Netherland
| | | | - Teun Bousema
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, Netherland
| |
Collapse
|
10
|
Ramjith J, Alkema M, Bradley J, Dicko A, Drakeley C, Stone W, Bousema T. Quantifying Reductions in Plasmodium falciparum Infectivity to Mosquitos: A Sample Size Calculator to Inform Clinical Trials on Transmission-Reducing Interventions. Front Immunol 2022; 13:899615. [PMID: 35720362 PMCID: PMC9205189 DOI: 10.3389/fimmu.2022.899615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Malaria transmission depends on the presence of mature Plasmodium transmission stages (gametocytes) that may render blood-feeding Anopheles mosquitos infectious. Transmission-blocking antimalarial drugs and vaccines can prevent transmission by reducing gametocyte densities or infectivity to mosquitos. Mosquito infection outcomes are thereby informative biological endpoints of clinical trials with transmission blocking interventions. Nevertheless, trials are often primarily designed to determine intervention safety; transmission blocking efficacy is difficult to incorporate in sample size considerations due to variation in infection outcomes and considerable inter-study variation. Here, we use clinical trial data from studies in malaria naive and naturally exposed study participants to present an online sample size calculator tool. This sample size calculator allows studies to be powered to detect reductions in the proportion of infected mosquitos or infection burden (oocyst density) in mosquitos. The utility of this online tool is illustrated using trial data with transmission blocking malaria drugs.
Collapse
Affiliation(s)
- Jordache Ramjith
- Radboud Institute for Molecular Life Sciences, Department of Medical Microbiology, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department for Health Evidence, Biostatistics Research Group, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Manon Alkema
- Radboud Institute for Molecular Life Sciences, Department of Medical Microbiology, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - John Bradley
- Medical Research Council (MRC) International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Alassane Dicko
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Chris Drakeley
- Medical Research Council (MRC) International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Will Stone
- Medical Research Council (MRC) International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Teun Bousema
- Radboud Institute for Molecular Life Sciences, Department of Medical Microbiology, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|