1
|
Behzadi M, Akbarzadeh M, Mohammadi Sartang M, Rabiee M, Bideshki MV. Effect of carotenoid supplementation on blood pressure in adults: a GRADE-assessed systematic review and dose-response meta-analysis of randomized controlled trials. Nutr Rev 2025; 83:13-28. [PMID: 38219250 DOI: 10.1093/nutrit/nuad172] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
CONTEXT Hypertension (HTN) is regarded as a serious public health issue throughout the world. High blood pressure (BP) may be improved by carotenoid supplementation; however, randomized controlled trials (RCTs) provide conflicting evidence. OBJECTIVE The aim of this study was to evaluate the effects of carotenoid supplementation on BP in RCTs by systematically review and meta-analysis. DATA SOURCES A comprehensive literature search was performed in the Scopus, PubMed, and Web of Science databases until October 2023, with no limitation on the date or language of publication. DATA EXTRACTION Studies that evaluated the net effects of carotenoids in the form of supplements on BP in adults were selected. Weighted mean differences (WMDs) and 95% confidence intervals (CIs) were calculated on the basis of a fixed or random-effects model. Sensitivity analysis, meta-regression, publication bias, and heterogeneity were assessed using standard methods. Cochrane quality assessments were used to evaluate the included studies' bias risks. Evidence certainty was calculated using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) framework). DATA ANALYSIS Reports on a total of 19 RCTs involving 1151 participants were included in this review. Carotenoid supplementation significantly reduced the systolic BP (SBP) (WMD, -2.492 mmHg; 95%CI, -4.52, -0.47; P = 0.016) and diastolic BP (DBP) (WMD, -1.60 mmHg; 95%CI, -2.73, -0.47; P = 0.005). Greater effects were observed in Asian participants, those aged >50 years, nonhealthy participants, and participants with a baseline SBP ≥130 mmHg and DBP ≥80 mmHg, at dose >10 mg. Dose-response analysis showed that carotenoid supplementation decreased SBP and DBP levels at doses of, respectively, 0-25 and 0-20 mg/d. Evidence for all SBP, DBP, and heart rate values was high quality. CONCLUSIONS Carotenoid supplementation had a beneficial effect on BP parameters, especially in nonhealthy study participants with high BP baseline levels. PROSPERO REGISTRATION NO CRD42023402740.
Collapse
Affiliation(s)
- Mehrdad Behzadi
- Student Research Committee, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Akbarzadeh
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Mohammadi Sartang
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammadreza Rabiee
- Department of Sport Sciences, International Division, Shiraz University, Shiraz, Iran
| | - Mohammad Vesal Bideshki
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry and Diet Therapy, School of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Fenech MF, Bull CF, Van Klinken BJW. Protective Effects of Micronutrient Supplements, Phytochemicals and Phytochemical-Rich Beverages and Foods Against DNA Damage in Humans: A Systematic Review of Randomized Controlled Trials and Prospective Studies. Adv Nutr 2023; 14:1337-1358. [PMID: 37573943 PMCID: PMC10721466 DOI: 10.1016/j.advnut.2023.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 07/19/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023] Open
Abstract
Accumulation of deoxyribonucleic acid (DNA) damage diminishes cellular health, increases risk of developmental and degenerative diseases, and accelerates aging. Optimizing nutrient intake can minimize accrual of DNA damage. The objectives of this review are to: 1) assemble and systematically analyze high-level evidence for the effect of supplementation with micronutrients and phytochemicals on baseline levels of DNA damage in humans, and 2) use this knowledge to identify which of these essential micronutrients or nonessential phytochemicals promote DNA integrity in vivo in humans. We conducted systematic literature searches of the PubMed database to identify interventional, prospective, cross-sectional, or in vitro studies that explored the association between nutrients and established biomarkers of DNA damage associated with developmental and degenerative disease risk. Biomarkers included lymphocyte chromosome aberrations, lymphocyte and buccal cell micronuclei, DNA methylation, lymphocyte/leukocyte DNA strand breaks, DNA oxidation, telomere length, telomerase activity, and mitochondrial DNA mutations. Only randomized, controlled interventions and uncontrolled longitudinal intervention studies conducted in humans were selected for evaluation and data extraction. These studies were ranked for the quality of their study design. In all, 96 of the 124 articles identified reported studies that achieved a quality assessment score ≥ 5 (from a maximum score of 7) and were included in the final review. Based on these studies, nutrients associated with protective effects included vitamin A and its precursor β-carotene, vitamins C, E, B1, B12, folate, minerals selenium and zinc, and phytochemicals such as curcumin (with piperine), lycopene, and proanthocyanidins. These findings highlight the importance of nutrients involved in (i) DNA metabolism and repair (folate, vitamin B12, and zinc) and (ii) prevention of oxidative stress and inflammation (vitamins A, C, E, lycopene, curcumin, proanthocyanidins, selenium, and zinc). Supplementation with certain micronutrients and their combinations may reduce DNA damage and promote cellular health by improving the maintenance of genome integrity.
Collapse
Affiliation(s)
- Michael F Fenech
- Molecular Diagnostics Solutions, CSIRO Health & Biosecurity, Adelaide, South Australia, Australia; Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, South Australia, Australia; Genome Health Foundation, North Brighton, South Australia, Australia.
| | - Caroline F Bull
- Molecular Diagnostics Solutions, CSIRO Health & Biosecurity, Adelaide, South Australia, Australia; School of Molecular and Biomedical Sciences, University of Adelaide, North Terrace, Adelaide, South Australia, Australia.
| | - B Jan-Willem Van Klinken
- GSK Consumer Healthcare (now named Haleon), Warren, New Jersey, USA; Brightseed, San Francisco, CA, United States.
| |
Collapse
|
3
|
Jeong JH, Lee HL, Park HJ, Yoon YE, Shin J, Jeong MY, Park SH, Kim DH, Han SW, Kang CG, Hong KJ, Lee SJ. Effects of tomato ketchup and tomato paste extract on hepatic lipid accumulation and adipogenesis. Food Sci Biotechnol 2023; 32:1111-1122. [PMID: 37215254 PMCID: PMC10195947 DOI: 10.1007/s10068-023-01244-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/09/2022] [Accepted: 01/02/2023] [Indexed: 02/09/2023] Open
Abstract
Tomatoes include high levels of lycopene, which is a potent antioxidative, hypolipidemic, and antidiabetic phytochemical. The intake of lycopene is associated with a reduced risk of insulin resistance and metabolic syndrome. The aim of this study was to investigate whether tomato ketchup and tomato paste, major dietary sources for tomato and lycopene, could regulate hepatic lipid metabolism and adipogenesis. To investigate the regulatory effects of tomato ketchup and tomato paste, we prepared a tomato ketchup extract (TKE) and a tomato paste extract (TPE) in 80% (v/v) ethyl acetate for the experiment. TKE and TPE reduced lipid accumulation and key markers for gluconeogenesis and induced a higher rate of fatty acid oxidation in HepG2 hepatocytes. In 3T3-L1 adipocytes, TKE and TPE increased adipogenesis and intracellular triglyceride accumulation, and stimulated glucose uptake. Peroxisome proliferator-activated receptor alpha and gamma expression levels were increased by TKE and TPE treatment. A single oral dose of tomato ketchup and tomato paste (9.28 g/kg) significantly improved glucose and insulin tolerance in mice. These findings suggest that lycopene-containing tomato ketchup and tomato paste may have beneficial regulatory effects in terms of energy metabolism in hepatocytes and adipocytes, and thus may improve blood glucose metabolism.
Collapse
Affiliation(s)
- Ji Hyun Jeong
- Department of Biotechnology, Graduate School of Life Sciences & Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Ha Lim Lee
- Department of Biotechnology, Graduate School of Life Sciences & Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Hyun Ji Park
- Department of Biotechnology, Graduate School of Life Sciences & Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Ye Eun Yoon
- Department of Biotechnology, Graduate School of Life Sciences & Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Jaeeun Shin
- Department of Biotechnology, Graduate School of Life Sciences & Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Mi-Young Jeong
- Department of Biotechnology, Graduate School of Life Sciences & Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Sung Hoon Park
- Department of Food & Nutrition, College of Life Sciences, Gangneung-Wonju National University, Gangneung, South Korea
| | - Da-hye Kim
- R&D Center, Ottogi Corporation, Anyang-Si, 14060 Republic of Korea
| | - Seung-Woo Han
- R&D Center, Ottogi Corporation, Anyang-Si, 14060 Republic of Korea
| | - Choon-Gil Kang
- R&D Center, Ottogi Corporation, Anyang-Si, 14060 Republic of Korea
| | - Ki-Ju Hong
- R&D Center, Ottogi Corporation, Anyang-Si, 14060 Republic of Korea
| | - Sung-Joon Lee
- Department of Biotechnology, Graduate School of Life Sciences & Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul, 02841 Republic of Korea
- Department of Food Bioscience & Technology, College of Life Sciences & Biotechnology, Korea University, Seoul, South Korea
- Interdisciplinary Program in Precision Public Health, BK21 Four Institute of Precision Public Health, Korea University, Seoul, South Korea
| |
Collapse
|
4
|
Daphnee Ngameni Tchonkouang R, Dulce Carlos Antunes M, Margarida Cortês Vieira M. Potential of Carotenoids from Fresh Tomatoes and Their Availability in Processed Tomato-Based Products. Physiology (Bethesda) 2022. [DOI: 10.5772/intechopen.103933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The high consumption of tomatoes worldwide has made them an essential source of health-promoting carotenoids that prevent a variety of chronic degenerative diseases, such as diabetes, high blood pressure, and cardiovascular disease. Tomatoes are available year-round, consumed fresh, and used as a raw material for the production of many processed products, such as juices, pastes, and purees. A plethora of carotenoids has been characterized in tomatoes. Most of the relevant carotenoids in the human bloodstream are supplied by fresh and processed tomatoes. Lycopene is the predominant carotenoid in tomato and tomato-based food products. Other carotenoids such as α-, β-, γ- and ξ-carotene, phytoene, phytofluene, neurosporene, and lutein are present in tomatoes and related products. There is a growing body of evidence that these bioactive compounds possess beneficial properties, namely anticarcinogenic, cardioprotective, and hepatoprotective effects among other health benefits, due to their antioxidant, anti-mutagenic, anti-proliferative, anti-inflammatory, and anti-atherogenic properties. This chapter analyzes the carotenoid composition of tomatoes and their based products as major contributors to the chronic disease-preventive properties.
Collapse
|
5
|
Rezaei kelishadi M, Asbaghi O, Nazarian B, Naeini F, Kaviani M, Moradi S, Askari G, Nourian M, Ashtary-Larky D. Lycopene Supplementation and Blood Pressure: Systematic review and meta-analyses of randomized trials. J Herb Med 2022. [DOI: 10.1016/j.hermed.2021.100521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
D'Auria Vieira de Godoy PR, Nakamura A, Khavari AP, Sangsuwan T, Haghdoost S. Effect of dose and dose rate of gamma irradiation on the formation of micronuclei in bone marrow cells isolated from whole-body-irradiated mice. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2021; 62:422-427. [PMID: 34296472 DOI: 10.1002/em.22453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/10/2021] [Accepted: 07/18/2021] [Indexed: 06/13/2023]
Abstract
It is well-known that the cytotoxicity and mutagenic effects of high dose rate (HDR) ionizing radiation (IR) are increased by increasing the dose but less is known about the effects of chronic low dose rate (LDR). In vitro, we have shown that in addition to the immediate interaction of IR with DNA (the direct and indirect effects), low doses and chronic LDR exposure induce endogenous oxidative stress. During elevated oxidative stress, reactive oxygen species (ROS) react with DNA modifying its structure. Here, BL6 mice were exposed to IR at LDR and HDR and were then sacrificed 3 hours and 3 weeks after exposure to examine early and late effects of IR. The levels of micronuclei, MN, were determined in bone marrow cells. Our data indicate that the effects of 200 mGy on MN-induction are transient, but 500 and 1000 mGy (both HDR and LDR) lead to increased levels of MN up to 3 weeks after the exposure.
Collapse
Affiliation(s)
| | - Ayumi Nakamura
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Ali Pour Khavari
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Traimate Sangsuwan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Siamak Haghdoost
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- University of Caen Normandy, ARIA-CIMAP Laboratory, Campus Jules Horowitz, Caen, France
| |
Collapse
|
7
|
Fukushi Y, Mariya Y, Yamada K, Yoshida K, Sasa A, Saito H, Hirai A, Suzuki S, Aizawa K, Suganuma H, Itaki C. Tomato Juice Consumption Could Improve Breast Skin Adverse Effects of Radiotherapy in Breast Cancer Patients. In Vivo 2020; 34:3013-3021. [PMID: 32871845 PMCID: PMC7652455 DOI: 10.21873/invivo.12133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/05/2020] [Accepted: 06/15/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM We investigated the beneficial effects of drinking tomato juice (TJ) rich in antioxidant carotenoids on irradiated skin following radiotherapy (RT) in breast cancer patients. PATIENTS/METHODS Twenty-three patients agreed to drink TJ (160 g/day for six months) after the completion of RT. Early and late adverse events (AEs) of irradiated skin were evaluated according to the Common Terminology Criteria for AEs and the European Organization for Research and Treatment of Cancer Global Cosmetic Rating System, respectively. RESULTS With regard to early AEs, acute radiodermatitis of grade 1 was observed in most patients (22/23) at the end of RT. However, the grade of radiodermatitis rapidly changed to 0, 1 month after RT and starting TJ consumption. With regard to late AEs, most patients were in good or excellent dermal condition. CONCLUSION TJ consumption could help in relieving and recovering from early AEs and decreasing the severity of late AEs of irradiated skin.
Collapse
Affiliation(s)
- Yasuyo Fukushi
- Department of Disability and Health, Division of Health Sciences, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
- Department of Radiology, Mutsu General Hospital, Mutsu, Japan
| | - Yasushi Mariya
- Department of Radiology, Mutsu General Hospital, Mutsu, Japan
- Department of Radiation Oncology, Aomori Rosai Hospital, Hachinohe, Japan
| | - Kyogo Yamada
- Department of Surgery, Mutsu General Hospital, Mutsu, Japan
| | - Kazue Yoshida
- Department of Radiology, Mutsu General Hospital, Mutsu, Japan
| | - Asami Sasa
- Department of Radiology, Mutsu General Hospital, Mutsu, Japan
| | - Hitoshi Saito
- Department of Central laboratory, Mutsu General Hospital, Mutsu, Japan
| | - Ayumi Hirai
- Innovation Division, Kagome Co., Ltd., Nasushiobara, Japan
| | | | - Koichi Aizawa
- Innovation Division, Kagome Co., Ltd., Nasushiobara, Japan
| | | | - Chieko Itaki
- Department of Nursing Science, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| |
Collapse
|
8
|
Satyamitra MM, Cassatt DR, Hollingsworth BA, Price PW, Rios CI, Taliaferro LP, Winters TA, DiCarlo AL. Metabolomics in Radiation Biodosimetry: Current Approaches and Advances. Metabolites 2020; 10:metabo10080328. [PMID: 32796693 PMCID: PMC7465152 DOI: 10.3390/metabo10080328] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/01/2020] [Accepted: 08/06/2020] [Indexed: 12/11/2022] Open
Abstract
Triage and medical intervention strategies for unanticipated exposure during a radiation incident benefit from the early, rapid and accurate assessment of dose level. Radiation exposure results in complex and persistent molecular and cellular responses that ultimately alter the levels of many biological markers, including the metabolomic phenotype. Metabolomics is an emerging field that promises the determination of radiation exposure by the qualitative and quantitative measurements of small molecules in a biological sample. This review highlights the current role of metabolomics in assessing radiation injury, as well as considerations for the diverse range of bioanalytical and sampling technologies that are being used to detect these changes. The authors also address the influence of the physiological status of an individual, the animal models studied, the technology and analysis employed in interrogating response to the radiation insult, and variables that factor into discovery and development of robust biomarker signatures. Furthermore, available databases for these studies have been reviewed, and existing regulatory guidance for metabolomics are discussed, with the ultimate goal of providing both context for this area of radiation research and the consideration of pathways for continued development.
Collapse
Affiliation(s)
- Merriline M. Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), and National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 5601 Fishers Lane, Rockville, MD 20852, USA; (D.R.C.); (B.A.H.); (C.I.R.); (L.P.T.); (T.A.W.); (A.L.D.)
- Correspondence: ; Tel.: +1-240-669-5432
| | - David R. Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), and National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 5601 Fishers Lane, Rockville, MD 20852, USA; (D.R.C.); (B.A.H.); (C.I.R.); (L.P.T.); (T.A.W.); (A.L.D.)
| | - Brynn A. Hollingsworth
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), and National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 5601 Fishers Lane, Rockville, MD 20852, USA; (D.R.C.); (B.A.H.); (C.I.R.); (L.P.T.); (T.A.W.); (A.L.D.)
| | - Paul W. Price
- Office of Regulatory Affairs, Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 5601 Fishers Lane, Rockville, MD 20852, USA;
| | - Carmen I. Rios
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), and National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 5601 Fishers Lane, Rockville, MD 20852, USA; (D.R.C.); (B.A.H.); (C.I.R.); (L.P.T.); (T.A.W.); (A.L.D.)
| | - Lanyn P. Taliaferro
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), and National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 5601 Fishers Lane, Rockville, MD 20852, USA; (D.R.C.); (B.A.H.); (C.I.R.); (L.P.T.); (T.A.W.); (A.L.D.)
| | - Thomas A. Winters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), and National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 5601 Fishers Lane, Rockville, MD 20852, USA; (D.R.C.); (B.A.H.); (C.I.R.); (L.P.T.); (T.A.W.); (A.L.D.)
| | - Andrea L. DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), and National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 5601 Fishers Lane, Rockville, MD 20852, USA; (D.R.C.); (B.A.H.); (C.I.R.); (L.P.T.); (T.A.W.); (A.L.D.)
| |
Collapse
|
9
|
Effects of Tomato Juice Intake on Salivary 8-Oxo-dG Levels as Oxidative Stress Biomarker after Extensive Physical Exercise. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8948723. [PMID: 32377311 PMCID: PMC7193759 DOI: 10.1155/2020/8948723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/30/2019] [Accepted: 12/16/2019] [Indexed: 11/18/2022]
Abstract
Reactive oxygen species (ROS) at a normal level are important molecules involved in several cellular processes including immune response and cell signalling. Overproduction of ROS may lead to elevated oxidative stress and consequently to age-related diseases. Most of the studies related to oxidative stress in humans have been done on blood samples. However, blood sampling might be painful, requires special qualified personnel, and has to be performed at medical centers. An alternative to blood is saliva. Saliva sampling is noninvasive and can be performed by the donor. Biomarker determination in saliva is becoming an important part of laboratory diagnosis, but method development is needed before it can be used in the clinics. In the present investigation, 16 donors performed extensive physical exercise by cycling and keeping their heart rate at 80% of maximum for 20 minutes. The physical activity was repeated 3 times: before tomato juice intake, after daily intake of 100 ml tomato juice during 3 weeks, and finally 3 weeks after finishing tomato juice intake (washout period). The level of the stress biomarker, salivary 8-oxo-dG, was determined before and after the physical activity. The results indicate that (a) 20 min extensive physical activity increases the level of 8-oxo-dG in saliva significantly (p = 0.0078) and (b) daily intake of 100 ml tomato juice may inhibit (p = 0.052) overproduction of salivary 8-oxo-dG by 20 min physical activity. We conclude that the 20 min extensive physical activity increases the level of salivary 8-oxo-dG in healthy donors and 100 ml daily intake of tomato juice may inhibit the increase of 8-oxo-dG in saliva.
Collapse
|
10
|
Mozos I, Stoian D, Caraba A, Malainer C, Horbańczuk JO, Atanasov AG. Lycopene and Vascular Health. Front Pharmacol 2018; 9:521. [PMID: 29875663 PMCID: PMC5974099 DOI: 10.3389/fphar.2018.00521] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 04/30/2018] [Indexed: 01/20/2023] Open
Abstract
Lycopene is a lipophilic, unsaturated carotenoid, found in red-colored fruits and vegetables, including tomatoes, watermelon, papaya, red grapefruits, and guava. The present work provides an up to date overview of mechanisms linking lycopene in the human diet and vascular changes, considering epidemiological data, clinical studies, and experimental data. Lycopene may improve vascular function and contributes to the primary and secondary prevention of cardiovascular disorders. The main activity profile of lycopene includes antiatherosclerotic, antioxidant, anti-inflammatory, antihypertensive, antiplatelet, anti-apoptotic, and protective endothelial effects, the ability to improve the metabolic profile, and reduce arterial stiffness. In this context, lycopene has been shown in numerous studies to exert a favorable effect in patients with subclinical atherosclerosis, metabolic syndrome, hypertension, peripheral vascular disease, stroke and several other cardiovascular disorders, although the obtained results are sometimes inconsistent, which warrants further studies focusing on its bioactivity.
Collapse
Affiliation(s)
- Ioana Mozos
- Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, Timiṣoara, Romania
- Center for Translational Research and Systems Medicine, “Victor Babes” University of Medicine and Pharmacy, Timiṣoara, Romania
| | - Dana Stoian
- 2nd Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, Timiṣoara, Romania
| | - Alexandru Caraba
- 1st Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, Timiṣoara, Romania
| | | | - Jarosław O. Horbańczuk
- Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Magdalenka, Poland
| | - Atanas G. Atanasov
- Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Magdalenka, Poland
- Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| |
Collapse
|