1
|
Hendricks SA, Paul MJ, Subramaniam Y, Vijayam B. A collectanea of food insulinaemic index: 2023. Clin Nutr ESPEN 2024; 63:92-104. [PMID: 38941186 DOI: 10.1016/j.clnesp.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/28/2024] [Accepted: 06/11/2024] [Indexed: 06/30/2024]
Abstract
BACKGROUND AND AIMS To systematically update and publish the lnsulinaemic Index (II) value compilation of food/beverages. METHODS A literature search identified around 400 scholarly articles published between inception and December 2023. II values were pooled according to the selection criteria of at least 10 healthy, non-diabetic subjects with normal BMI. In addition, the II reported should have been derived from incremental area under the curve (iAUC) calculation of the insulin concentration over time. The reference food used from the pooled articles were either glucose or bread. RESULTS The II of 629 food/beverage items were found from 80 distinct articles. This is almost a five-fold increase in the number of entries from a previous compilation in 2011. Furthermore, these articles originated from 32 different countries, and were cleaved into 25 food categories. The II values ranged from 1 to 209. The highest overall recorded II was for a soy milk-based infant formula while the lowest was for both acacia fibre and gin. Upon clustering to single food, the infant formula retained the highest II while both acacia fibre and gin maintained the lowest recording. As for mixed meal, a potato dish served with a beverage recorded the highest II while a type of taco served with a sweetener, vegetable and fruit had the lowest II. Our minimum and maximum II data values replace the entries reported by previous compilations. CONCLUSION Acknowledging some limitations, these data would facilitate clinical usage of II for various applications in research, clinical nutrition, clinical medicine, diabetology and precision medicine. Future studies concerning II should investigate standardisation of reference food, including glucose and the test food portion. Although this collectanea adds up new food/beverages II values, priority should be given to populate this database.
Collapse
Affiliation(s)
| | | | - Yuganeswary Subramaniam
- Surgical Department, Hospital Besar Pulau Pinang, Jalan Residensi, 10990 Georgetown, Pulau Pinang, Malaysia
| | - Bhuwaneswaran Vijayam
- Newcastle University Medicine Malaysia (NUMed), Iskandar Puteri, 79200 Johor, Malaysia; Regenerative Medicine Working Group, Newcastle University Medicine Malaysia (NUMed), 79200 Iskandar Puteri, Johor, Malaysia.
| |
Collapse
|
2
|
Kim KJ, Kim JY. Polyphenols in foods: a potential strategy for preventing and managing the postprandial hyperglycemic response. Food Sci Biotechnol 2024; 33:2699-2713. [PMID: 39184987 PMCID: PMC11339232 DOI: 10.1007/s10068-024-01607-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/05/2024] [Accepted: 05/16/2024] [Indexed: 08/27/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a significant health risk worldwide, and effective management strategies are needed. Polyphenols exhibit diverse biological functions, are abundant in various plants, and influence carbohydrate digestion and absorption. This review provides a comprehensive overview of clinical evidence regarding the relationship between dietary polyphenols and the postprandial hyperglycemic response. Human intervention studies have demonstrated the benefits of polyphenol-rich foods in improving glucose and insulin metabolism, underscoring their role in preventing T2DM. These findings highlight the potential of polyphenol-rich foods for managing hyperglycemia and mitigating T2DM risk and provide insight into effective dietary strategies for glycemic control and overall health.
Collapse
Affiliation(s)
- Kyeong Jin Kim
- Department of Nano Bio Engineering, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811 Republic of Korea
| | - Ji Yeon Kim
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811 Republic of Korea
| |
Collapse
|
3
|
Fanaro GB, Marques MR, Calaza KDC, Brito R, Pessoni AM, Mendonça HR, Lemos DEDA, de Brito Alves JL, de Souza EL, Cavalcanti Neto MP. New Insights on Dietary Polyphenols for the Management of Oxidative Stress and Neuroinflammation in Diabetic Retinopathy. Antioxidants (Basel) 2023; 12:1237. [PMID: 37371967 PMCID: PMC10295526 DOI: 10.3390/antiox12061237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Diabetic retinopathy (DR) is a neurodegenerative and vascular pathology that is considered one of the leading causes of blindness worldwide, resulting from complications of advanced diabetes mellitus (DM). Current therapies consist of protocols aiming to alleviate the existing clinical signs associated with microvascular alterations limited to the advanced disease stages. In response to the low resolution and limitations of the DR treatment, there is an urgent need to develop more effective alternative therapies to optimize glycemic, vascular, and neuronal parameters, including the reduction in the cellular damage promoted by inflammation and oxidative stress. Recent evidence has shown that dietary polyphenols reduce oxidative and inflammatory parameters of various diseases by modulating multiple cell signaling pathways and gene expression, contributing to the improvement of several chronic diseases, including metabolic and neurodegenerative diseases. However, despite the growing evidence for the bioactivities of phenolic compounds, there is still a lack of data, especially from human studies, on the therapeutic potential of these substances. This review aims to comprehensively describe and clarify the effects of dietary phenolic compounds on the pathophysiological mechanisms involved in DR, especially those of oxidative and inflammatory nature, through evidence from experimental studies. Finally, the review highlights the potential of dietary phenolic compounds as a prophylactic and therapeutic strategy and the need for further clinical studies approaching the efficacy of these substances in DR management.
Collapse
Affiliation(s)
- Gustavo Bernardes Fanaro
- Institute of Health and Biotechnology, Federal University of Amazonas, Manaus 69460000, Amazonas, Brazil;
| | | | - Karin da Costa Calaza
- Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói 24210201, Rio de Janeiro, Brazil;
| | - Rafael Brito
- Department of Cellular and Molecular Biology, Institute of Biology, Fluminense Federal University, Niterói 24210201, Rio de Janeiro, Brazil;
| | | | - Henrique Rocha Mendonça
- Institute of Biodiversity and Sustainability (NUPEM), Federal University of Rio de Janeiro, Macaé 27965045, Rio de Janeiro, Brazil; (H.R.M.); (M.P.C.N.)
| | | | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051900, Paraíba, Brazil; (D.E.d.A.L.); (J.L.d.B.A.)
| | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051900, Paraíba, Brazil; (D.E.d.A.L.); (J.L.d.B.A.)
| | - Marinaldo Pacífico Cavalcanti Neto
- Institute of Biodiversity and Sustainability (NUPEM), Federal University of Rio de Janeiro, Macaé 27965045, Rio de Janeiro, Brazil; (H.R.M.); (M.P.C.N.)
| |
Collapse
|
4
|
Boscaro V, Rivoira M, Sgorbini B, Bordano V, Dadone F, Gallicchio M, Pons A, Benetti E, Rosa AC. Evidence-Based Anti-Diabetic Properties of Plant from the Occitan Valleys of the Piedmont Alps. Pharmaceutics 2022; 14:2371. [PMID: 36365189 PMCID: PMC9693256 DOI: 10.3390/pharmaceutics14112371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 10/29/2023] Open
Abstract
Data on urban and rural diabetes prevalence ratios show a significantly lower presence of diabetes in rural areas. Several bioactive compounds of plant origin are known to exert anti-diabetic properties. Interestingly, most of them naturally occur in different plants present in mountainous areas and are linked to traditions of herbal use. This review will aim to evaluate the last 10 years of evidence-based data on the potential anti-diabetic properties of 9 plants used in the Piedmont Alps (North-Western Italy) and identified through an ethnobotanical approach, based on the Occitan language minority of the Cuneo province (Sambucus nigra L., Achillea millefolium L., Cornus mas L., Vaccinium myrtillus L., Fragaria vesca L., Rosa canina L., Rubus idaeus L., Rubus fruticosus/ulmifolius L., Urtica dioica L.), where there is a long history of herbal remedies. The mechanism underlying the anti-hyperglycemic effects and the clinical evidence available are discussed. Overall, this review points to the possible use of these plants as preventive or add-on therapy in treating diabetes. However, studies of a single variety grown in the geographical area, with strict standardization and titration of all the active ingredients, are warranted before applying the WHO strategy 2014-2023.
Collapse
Affiliation(s)
- Valentina Boscaro
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Matteo Rivoira
- Dipartimento di Studi Umanistici, University of Turin, Via Sant’Ottavio 20, 10124 Turin, Italy
- Atlante Linguistico Italiano (ALI), Via Sant’Ottavio 20, 10124 Turin, Italy
| | - Barbara Sgorbini
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Valentina Bordano
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Francesca Dadone
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Margherita Gallicchio
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Aline Pons
- Dipartimento di Studi Umanistici, University of Turin, Via Sant’Ottavio 20, 10124 Turin, Italy
| | - Elisa Benetti
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Arianna Carolina Rosa
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| |
Collapse
|
5
|
Törrönen R, Järvinen S, Kolehmainen M. Postprandial glycemic responses to a high-protein dairy snack and energy-enriched berry snacks in older adults. Clin Nutr ESPEN 2022; 51:231-238. [DOI: 10.1016/j.clnesp.2022.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022]
|
6
|
Nordström EA, Teixeira C, Montelius C, Jeppsson B, Larsson N. Lactiplantibacillus plantarum 299v (LP299V ®): three decades of research. Benef Microbes 2021; 12:441-465. [PMID: 34365915 DOI: 10.3920/bm2020.0191] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review aims to provide a comprehensive overview of the in vitro, animal, and clinical studies with the bacterial strain Lactiplantibacillus plantarum 299v (L. plantarum 299v; formerly named Lactobacillus plantarum 299v) published up until June 30, 2020. L. plantarum 299v is the most documented L. plantarum strain in the world, described in over 170 scientific publications out of which more than 60 are human clinical studies. The genome sequence of L. plantarum 299v has been determined and is available in the public domain (GenBank Accession number: NZ_LEAV01000004). The probiotic strain L. plantarum 299v was isolated from healthy human intestinal mucosa three decades ago by scientists at Lund University, Sweden. Thirty years later, a wealth of data coming from in vitro, animal, and clinical studies exist, showing benefits primarily for gastrointestinal health, such as reduced flatulence and abdominal pain in patients with irritable bowel syndrome (IBS). Moreover, several clinical studies have shown positive effects of L. plantarum 299v on iron absorption and more recently also on iron status. L. plantarum 299v is safe for human consumption and does not confer antibiotic resistance. It survives the harsh conditions of the human gastrointestinal tract, adheres to mannose residues on the intestinal epithelial cells and has in some cases been re-isolated more than ten days after administration ceased. Besides studying health benefits, research groups around the globe have investigated L. plantarum 299v in a range of applications and processes. L. plantarum 299v is used in many different food applications as well as in various dietary supplements. In a freeze-dried format, L. plantarum 299v is robust and stable at room temperature, enabling long shelf-lives of consumer healthcare products such as capsules, tablets, or powder sachets. The strain is patent protected for a wide range of indications and applications worldwide as well as trademarked as LP299V®.
Collapse
Affiliation(s)
| | - C Teixeira
- Probi AB, Ideongatan 1A, 22370 Lund, Sweden
| | | | - B Jeppsson
- Department of Surgery, Lund University, Universitetssjukhuset, 22184 Lund, Sweden
| | - N Larsson
- Probi AB, Ideongatan 1A, 22370 Lund, Sweden
| |
Collapse
|
7
|
How Y, Pui L. Survivability of microencapsulated probiotics in nondairy beverages: A review. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yuhsuan How
- Department of Food Science with Nutrition, Faculty of Applied Sciences UCSI University Wilayah Persekutuan Kuala Lumpur Malaysia
| | - Liewphing Pui
- Department of Food Science with Nutrition, Faculty of Applied Sciences UCSI University Wilayah Persekutuan Kuala Lumpur Malaysia
| |
Collapse
|
8
|
Fruits and fruit by-products as sources of bioactive compounds. Benefits and trends of lactic acid fermentation in the development of novel fruit-based functional beverages. Food Res Int 2020; 140:109854. [PMID: 33648172 DOI: 10.1016/j.foodres.2020.109854] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/07/2020] [Accepted: 10/25/2020] [Indexed: 12/11/2022]
Abstract
Current awareness about the benefits of a balanced diet supports ongoing trends in humans towards a healthier diet. This review provides an overview of fruits and fruit-by products as sources of bioactive compounds and their extraction techniques, and the use of lactic acid fermentation of fruit juices to increase their functionality. Fruit matrices emerge as a technological alternative to be fermented by autochthonous or allochthonous lactic acid bacteria (LAB such as Lactiplantibacillus plantarum, Lacticaseibacillus rhamnosus, and other Lactobacillus species), and also as probiotic vehicles. During fermentation, microbial enzymes act on several fruit phytochemicals producing new derived compounds with impact on the aroma and the functionality of the fermented drinks. Moreover, fermentation significantly reduces the sugar content improving their nutritional value and extending the shelf-life of fruit-based beverages. The generation of new probiotic beverages as alternatives to consumers with intolerance to lactose or with vegan or vegetarian diets is promising for the worldwide functional food market. An updated overview on the current knowledge of the use of fruit matrices to be fermented by LAB and the interaction between strains and the fruit phytochemical compounds to generate new functional foods as well as their future perspectives in association with the application of nanotechnology techniques are presented in this review.
Collapse
|
9
|
Ready to Use Therapeutical Beverages: Focus on Functional Beverages Containing Probiotics, Prebiotics and Synbiotics. BEVERAGES 2020. [DOI: 10.3390/beverages6020026] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The growing global interest in functional foods containing nutrients capable of adding possible beneficial health effects is rapidly increasing both interest and consumer demand. In particular, functionalized beverages for their potential positive effect on health e.g., decreasing cholesterol level, lowering sugar, high fiber content, ability to enhance the immune system, and help digestion, have recently received special attention. Among the different beverages available on the market, probiotic dairy and non-dairy products have attracted much attention because of their affordable cost and their numerous therapeutic activities. Fermented milk and yogurt are currently worth €46 billion, with 77% of the market reported in Europe, North America, and Asia. Consumption of dairy beverages has some limitations due for example to lactose intolerance and allergy to milk proteins, thereby leading consumers to use non-dairy beverages such as fruit, grains, and vegetable juices to add probiotics to diet as well as driving the manufacturers to food matrices-based beverages containing probiotic cultures. The purpose of this review article is to evaluate the therapeutic performance and properties of dairy and non-dairy beverages in terms of probiotic, prebiotic, and synbiotic activities.
Collapse
|
10
|
Glycaemic regulation, appetite and ex vivo oxidative stress in young adults following consumption of high-carbohydrate cereal bars fortified with polyphenol-rich berries. Br J Nutr 2020; 121:1026-1038. [PMID: 31062684 DOI: 10.1017/s0007114519000394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Consumption of certain berries appears to slow postprandial glucose absorption, attributable to polyphenols, which may benefit exercise and cognition, reduce appetite and/or oxidative stress. This randomised, crossover, placebo-controlled study determined whether polyphenol-rich fruits added to carbohydrate-based foods produce a dose-dependent moderation of postprandial glycaemic, glucoregulatory hormone, appetite and ex vivo oxidative stress responses. Twenty participants (eighteen males/two females; 24 (sd 5) years; BMI: 27 (sd 3) kg/m2) consumed one of five cereal bars (approximately 88 % carbohydrate) containing no fruit ingredients (reference), freeze-dried black raspberries (10 or 20 % total weight; LOW-Rasp and HIGH-Rasp, respectively) and cranberry extract (0·5 or 1 % total weight; LOW-Cran and HIGH-Cran), on trials separated by ≥5 d. Postprandial peak/nadir from baseline (Δmax) and incremental postprandial AUC over 60 and 180 min for glucose and other biochemistries were measured to examine the dose-dependent effects. Glucose AUC0-180 min trended towards being higher (43 %) after HIGH-Rasp v. LOW-Rasp (P=0·06), with no glucose differences between the raspberry and reference bars. Relative to reference, HIGH-Rasp resulted in a 17 % lower Δmax insulin, 3 % lower C-peptide (AUC0-60 min and 3 % lower glucose-dependent insulinotropic polypeptide (AUC0-180 min) P<0·05. No treatment effects were observed for the cranberry bars regarding glucose and glucoregulatory hormones, nor were there any treatment effects for either berry type regarding ex vivo oxidation, appetite-mediating hormones or appetite. Fortification with freeze-dried black raspberries (approximately 25 g, containing 1·2 g of polyphenols) seems to slightly improve the glucoregulatory hormone and glycaemic responses to a high-carbohydrate food item in young adults but did not affect appetite or oxidative stress responses at doses or with methods studied herein.
Collapse
|
11
|
Sireswar S, Biswas S, Dey G. Adhesion and anti-inflammatory potential of Lactobacillus rhamnosus GG in a sea buckthorn based beverage matrix. Food Funct 2020; 11:2555-2572. [DOI: 10.1039/c9fo02249j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A seabuckthorn based beverage matrix retains the functionality of L. rhamnosus GG and exhibits enhanced anti-inflammatory effects against LPS-induced inflammation in zebrafish.
Collapse
Affiliation(s)
- Srijita Sireswar
- School of Biotechnology
- Kalinga Institute of Industrial Technology
- Deemed to be University
- Bhubaneswar
- India
| | | | - Gargi Dey
- School of Biotechnology
- Kalinga Institute of Industrial Technology
- Deemed to be University
- Bhubaneswar
- India
| |
Collapse
|
12
|
Pires TCSP, Caleja C, Santos-Buelga C, Barros L, Ferreira IC. Vaccinium myrtillus L. Fruits as a Novel Source of Phenolic Compounds with Health Benefits and Industrial Applications - A Review. Curr Pharm Des 2020; 26:1917-1928. [PMID: 32183662 PMCID: PMC7403651 DOI: 10.2174/1381612826666200317132507] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/08/2020] [Indexed: 12/21/2022]
Abstract
Consumers' demand for healthier foods with functional properties has had a clear influence on the food industry and in this sense, they have been attaching natural sources of bioactive ingredients into food products. Vaccinium myrtillus L. (bilberry) is known to be a functional food, presenting its fruits in the form of a small dark blueberry. This coloration is due to its high content in anthocyanin, being also associated with bilberries' beneficial health effects. In the bilberry industry, there is a very high annual loss of this fruit due to the less aesthetic shape or appearance, in which they cannot be considered suitable for sale and are therefore disposed of as biological waste. Therefore, it is of great importance to valorize this fruit and this review aimed to completely characterize the fruits of V. myrtillus in order to comprehend the relationship between their consumption and the beneficial effects regarding consumer's health. Thus, this review provides a description of the nutritional and bioactive compounds present in bilberry fruits, followed by their beneficial health effects. An overview of the natural pigments present in these fruits was also explored, focusing particularly in the anthocyanins composition, which represents the most widely studied class of bioactive compounds of V. myrtillus fruits. Finally, industrial applications of these fruits and by-products, as an efficient approach to the production of value-added products with economical and environmental impact, were also discussed. In general, V. myrtillus is a rich source of micronutrients and phytochemical compounds, such as organic acids, sugars, vitamins, fibers and phenolic compounds (anthocyanin and non-anthocyanin compounds), with nutritional and functional properties, that justify the growing interest in these berries, not only for food applications, but also in the pharmaceutical industry.
Collapse
Affiliation(s)
| | | | | | - Lillian Barros
- Address correspondence to these authors at the Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Tel: +351273303219; Fax: +351273325405; E-mail: ; Tel: +351273303285; Fax: +351273325405; E-mail:
| | - Isabel C.F.R. Ferreira
- Address correspondence to these authors at the Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Tel: +351273303219; Fax: +351273325405; E-mail: ; Tel: +351273303285; Fax: +351273325405; E-mail:
| |
Collapse
|
13
|
Sun L, Warren FJ, Gidley MJ. Natural products for glycaemic control: Polyphenols as inhibitors of alpha-amylase. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.07.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Sharma R, Kumari M, Kumari A, Sharma A, Gulati A, Gupta M, Padwad Y. Diet supplemented with phytochemical epigallocatechin gallate and probiotic Lactobacillus fermentum confers second generation synbiotic effects by modulating cellular immune responses and antioxidant capacity in aging mice. Eur J Nutr 2019; 58:2943-2957. [DOI: 10.1007/s00394-018-01890-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 12/28/2018] [Indexed: 02/06/2023]
|
15
|
Banerjee A, Dhar P. Amalgamation of polyphenols and probiotics induce health promotion. Crit Rev Food Sci Nutr 2018; 59:2903-2926. [PMID: 29787290 DOI: 10.1080/10408398.2018.1478795] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The residing microbiome with its vast repertoire of genes provide distinctive properties to the host by which they can degrade and utilise nutrients that otherwise pass the gastro-intestinal tract unchanged. The polyphenols in our diet have selective growth promoting effects which is of utmost importance as the state of good health has been linked to dominance of particular microbial genera. The polyphenols in native form might more skilfully exert anti-oxidative and anti-inflammatory properties but in a living system it is the microbial derivatives of polyphenol that play a key role in determining health outcome. This two way interaction has invoked great interest among researchers who have commenced several clinical surveys and numerous studies in in-vitro, simulated environment and living systems to find out in detail about the biomolecules involved in such interaction along with their subsequent physiological benefits. In this review, we have thoroughly discussed these studies to develop a fair idea on how the amalgamation of probiotics and polyphenol has an immense potential as an adjuvant therapeutic for disease prevention as well as treatment.
Collapse
Affiliation(s)
- Arpita Banerjee
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta , 20B Judges Court Road, Alipore, Kolkata , West Bengal , India
| | - Pubali Dhar
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta , 20B Judges Court Road, Alipore, Kolkata , West Bengal , India
| |
Collapse
|