1
|
Wu S, Tong C, Liu J. Obesogenic effects of six classes of emerging contaminants. J Environ Sci (China) 2025; 151:252-272. [PMID: 39481937 DOI: 10.1016/j.jes.2024.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 11/03/2024]
Abstract
There is growing concern about the concept that exposure to environmental chemicals may be contributing to the obesity epidemic. However, there is no consensus on the obesogenic effects of emerging contaminants from a toxicological and environmental perspective. The potential human exposure and experimental evidence for obesogenic effects of emerging contaminants need to be systematically discussed. The main objective of this review is to provide recommendations for further subsequent policy development following a critical analysis of the literature for humans and experimental animals exposed to emerging contaminants. This article reviews human exposure to emerging contaminants (with a focus on antimicrobials, preservatives, water and oil repellents, flame retardants, antibiotics and bisphenols) and the impact of emerging contaminants on obesity. These emerging contaminants have been widely detected in human biological samples. Epidemiological studies provide evidence linking exposure to emerging contaminants to the risks of obesity in humans. Studies based on animal models and adipose cells show the obesogenic effects of emerging contaminants and identify modes of action by which contaminants may induce changes in body fat accumulation and lipid metabolic homeostasis. Some knowledge gaps in this area and future directions for further investigation are discussed.
Collapse
Affiliation(s)
- Siying Wu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chaoyu Tong
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Shin MW, Kim SH. Hidden link between endocrine-disrupting chemicals and pediatric obesity. Clin Exp Pediatr 2025; 68:199-222. [PMID: 39608365 PMCID: PMC11884955 DOI: 10.3345/cep.2024.00556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/30/2024] Open
Abstract
The increasing prevalence of pediatric obesity has emerged as a significant public health concern. Among various contributing factors, exposure to endocrine-disrupting chemicals (EDCs) has gained recognition for its potential role. EDCs, including bisphenols, phthalates, per- and polyfluoroalkyl substances, polycyclic aromatic hydrocarbons, and organochlorines, disrupt hormonal regulation and metabolic processes, contributing to alterations in fat storage, appetite regulation, and insulin sensitivity. This study offers a comprehensive review of the current research linking EDC exposure to pediatric obesity by integrating the findings from experimental and epidemiological studies. It also addresses the complexities of interpreting this evidence in the context of public health, highlighting the urgent need for further research.
Collapse
Affiliation(s)
- Min Won Shin
- Department of Pediatrics, Inje University Sanggye Paik Hospital, Seoul, Korea
| | - Shin-Hye Kim
- Department of Pediatrics, Inje University Sanggye Paik Hospital, Seoul, Korea
| |
Collapse
|
3
|
Rousseau-Ralliard D, Bozec J, Ouidir M, Jovanovic N, Gayrard V, Mellouk N, Dieudonné MN, Picard-Hagen N, Flores-Sanabria MJ, Jammes H, Philippat C, Couturier-Tarrade A. Short-Half-Life Chemicals: Maternal Exposure and Offspring Health Consequences-The Case of Synthetic Phenols, Parabens, and Phthalates. TOXICS 2024; 12:710. [PMID: 39453131 PMCID: PMC11511413 DOI: 10.3390/toxics12100710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 10/26/2024]
Abstract
Phenols, parabens, and phthalates (PPPs) are suspected or known endocrine disruptors. They are used in consumer products that pregnant women and their progeny are exposed to daily through the placenta, which could affect offspring health. This review aims to compile data from cohort studies and in vitro and in vivo models to provide a summary regarding placental transfer, fetoplacental development, and the predisposition to adult diseases resulting from maternal exposure to PPPs during the gestational period. In humans, using the concentration of pollutants in maternal urine, and taking the offspring sex into account, positive or negative associations have been observed concerning placental or newborn weight, children's BMI, blood pressure, gonadal function, or age at puberty. In animal models, without taking sex into account, alterations of placental structure and gene expression linked to hormones or DNA methylation were related to phenol exposure. At the postnatal stage, pollutants affect the bodyweight, the carbohydrate metabolism, the cardiovascular system, gonadal development, the age of puberty, sex/thyroid hormones, and gamete quality, but these effects depend on the age and sex. Future challenges will be to explore the effects of pollutants in mixtures using models and to identify the early signatures of in utero exposure capable of predicting the health trajectory of the offspring.
Collapse
Affiliation(s)
- Delphine Rousseau-Ralliard
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Jeanne Bozec
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Marion Ouidir
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Nicolas Jovanovic
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Véronique Gayrard
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31062 Toulouse, France
| | - Namya Mellouk
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Marie-Noëlle Dieudonné
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Nicole Picard-Hagen
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31062 Toulouse, France
| | - Maria-José Flores-Sanabria
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Hélène Jammes
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Claire Philippat
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Anne Couturier-Tarrade
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| |
Collapse
|
4
|
Ozcagli E, Kubickova B, Jacobs MN. Addressing chemically-induced obesogenic metabolic disruption: selection of chemicals for in vitro human PPARα, PPARγ transactivation, and adipogenesis test methods. Front Endocrinol (Lausanne) 2024; 15:1401120. [PMID: 39040675 PMCID: PMC11260640 DOI: 10.3389/fendo.2024.1401120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/10/2024] [Indexed: 07/24/2024] Open
Abstract
Whilst western diet and sedentary lifestyles heavily contribute to the global obesity epidemic, it is likely that chemical exposure may also contribute. A substantial body of literature implicates a variety of suspected environmental chemicals in metabolic disruption and obesogenic mechanisms. Chemically induced obesogenic metabolic disruption is not yet considered in regulatory testing paradigms or regulations, but this is an internationally recognised human health regulatory development need. An early step in the development of relevant regulatory test methods is to derive appropriate minimum chemical selection lists for the target endpoint and its key mechanisms, such that the test method can be suitably optimised and validated. Independently collated and reviewed reference and proficiency chemicals relevant for the regulatory chemical universe that they are intended to serve, assist regulatory test method development and validation, particularly in relation to the OECD Test Guidelines Programme. To address obesogenic mechanisms and modes of action for chemical hazard assessment, key initiating mechanisms include molecular-level Peroxisome Proliferator-Activated Receptor (PPAR) α and γ agonism and the tissue/organ-level key event of perturbation of the adipogenesis process that may lead to excess white adipose tissue. Here we present a critical literature review, analysis and evaluation of chemicals suitable for the development, optimisation and validation of human PPARα and PPARγ agonism and human white adipose tissue adipogenesis test methods. The chemical lists have been derived with consideration of essential criteria needed for understanding the strengths and limitations of the test methods. With a weight of evidence approach, this has been combined with practical and applied aspects required for the integration and combination of relevant candidate test methods into test batteries, as part of an Integrated Approach to Testing and Assessment for metabolic disruption. The proposed proficiency and reference chemical list includes a long list of negatives and positives (20 chemicals for PPARα, 21 for PPARγ, and 11 for adipogenesis) from which a (pre-)validation proficiency chemicals list has been derived.
Collapse
|
5
|
Svensson K, Gennings C, Lindh C, Kiviranta H, Rantakokko P, Wikström S, Bornehag CG. EDC mixtures during pregnancy and body fat at 7 years of age in a Swedish cohort, the SELMA study. ENVIRONMENTAL RESEARCH 2024; 248:118293. [PMID: 38281561 DOI: 10.1016/j.envres.2024.118293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND Some endocrine disrupting chemicals (EDC), are "obesogens" and have been associated with overweight and obesity in children. Daily exposure to different classes of EDCs demands for research with mixtures approach. OBJECTIVES This study evaluates the association, considering sex-specific effects, between prenatal exposure to EDC mixture and children's body fat at seven years of age. METHODS A total of 26 EDCs were assessed in prenatal urine and serum samples from first trimester in pregnancy from 737 mother-child pairs participating in the Swedish Environmental Longitudinal, Mother and child, Asthma and allergy (SELMA) study. An indicator for children's "overall body fat" was calculated, using principal component analysis (PCA), based on BMI, percent body fat, waist, and skinfolds measured at seven years of age. Weighted quantile sum (WQS) regression was used to assess associations between EDC mixture and children's body fat. RESULTS Principal component (PC1) represented 83.6 % of the variance, suitable as indicator for children's "overall body fat", with positive loadings of 0.40-0.42 for each body fat measure. A significant interaction term, WQS*sex, confirmed associations in the opposite direction for boys and girls. Higher prenatal exposure to EDC mixture was borderline significant with more "overall body fat" for boys (Mean β = 0.20; 95 % CI: -0.13, 0.53) and less for girls (Mean β = -0.23; 95 % CI: -0.58, 0.13). Also, higher prenatal exposure to EDC mixture was borderline significant with more percent body fat (standardized score) for boys (Mean β = 0.09; 95 % CI: -0.04, 0.21) and less for girls (Mean β = -0.10 (-0.26, 0.05). The chemicals of concern included bisphenols, phthalates, PFAS, PAH, and pesticides with different patterns for boys and girls. DISCUSSION Borderline significant associations were found between prenatal exposure to a mixture of EDCs and children's body fat. The associations in opposite directions suggests that prenatal exposure to EDCs may present sex-specific effects on children's body fat.
Collapse
Affiliation(s)
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christian Lindh
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Hannu Kiviranta
- Environmental Health Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Panu Rantakokko
- Environmental Health Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Sverre Wikström
- Department of Health Sciences, Karlstad University, Karlstad, Sweden; School of Medical Sciences, Örebro University, Örebro, Sweden; Centre for Clinical Research, County Council of Värmland, Sweden
| | - Carl-Gustaf Bornehag
- Department of Health Sciences, Karlstad University, Karlstad, Sweden; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
6
|
Ouidir M, Cissé AH, Botton J, Lyon-Caen S, Thomsen C, Sakhi AK, Sabaredzovic A, Bayat S, Slama R, Heude B, Philippat C. Fetal and Infancy Exposure to Phenols, Parabens, and Phthalates and Anthropometric Measurements up to 36 Months, in the Longitudinal SEPAGES Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:57002. [PMID: 38728218 PMCID: PMC11086749 DOI: 10.1289/ehp13644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Endocrine-disrupting chemicals may play a role in adiposity development during childhood. Until now literature in this scope suffers from methodologic limitations in exposure assessment using one or few urine samples and missing assessment during the infancy period. OBJECTIVES We investigated the associations between early-life exposure to quickly metabolized chemicals and post-natal growth, relying on repeated within-subject urine collections over pregnancy and infancy. METHODS We studied the associations of four phenols, four parabens, seven phthalates, and one nonphthalate plasticizer from weekly pooled urine samples collected from the mother during second and third trimesters (median 18 and 34 gestational weeks, respectively) and infant at 2 and 12 months of age, and child growth until 36 months. We relied on repeated measures of height, weight and head circumference from study visits and the child health booklet to predict growth outcomes at 3 and 36 months using the Jenss-Bayley nonlinear mixed model. We assessed associations with individual chemicals using adjusted linear regression and mixtures of chemicals using a Bayesian kernel machine regression model. RESULTS The unipollutant analysis revealed few associations. Bisphenol S (BPS) at second trimester was positively associated with all infant growth parameters at 3 and 36 months, with similar patterns between exposure at third trimester and all infant growth parameters at 3 months. Mono-n-butyl phthalate (MnBP) at 12 months was positively associated with body mass index (BMI), weight, and head circumference at 36 months. Mixture analysis revealed positive associations between exposure at 12 months and BMI and weight at 36 months, with MnBP showing the highest effect size within the mixture. CONCLUSIONS This study suggests that exposure in early infancy may be associated with increased weight and BMI in early childhood, which are risk factors of obesity in later life. Furthermore, this study highlighted the impact of BPS, a compound replacing bisphenol A, which has never been studied in this context. https://doi.org/10.1289/EHP13644.
Collapse
Affiliation(s)
- Marion Ouidir
- University Grenoble Alpes, Inserm U-1209, CNRS-UMR-5309, Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, Grenoble, France
| | - Aminata H. Cissé
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), Paris, France
| | - Jérémie Botton
- Faculté de Pharmacie, Université Paris-Saclay, Orsay, France
| | - Sarah Lyon-Caen
- University Grenoble Alpes, Inserm U-1209, CNRS-UMR-5309, Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, Grenoble, France
| | | | | | | | - Sam Bayat
- Department of Pulmonology and Physiology, Grenoble University Hospital, La Tronche, France
- Synchrotron Radiation for Biomedicine Laboratory (STROBE), Inserm UA07, Grenoble Alpes University, Grenoble, France
| | - Rémy Slama
- University Grenoble Alpes, Inserm U-1209, CNRS-UMR-5309, Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, Grenoble, France
| | - Barbara Heude
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), Paris, France
| | - Claire Philippat
- University Grenoble Alpes, Inserm U-1209, CNRS-UMR-5309, Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, Grenoble, France
| |
Collapse
|
7
|
Stevens DR, Starling AP, Bommarito PA, Keil AP, Nakiwala D, Calafat AM, Adgate JL, Dabelea D, Ferguson KK. Midpregnancy Phthalate and Phenol Biomarkers in Relation to Infant Body Composition: The Healthy Start Prospective Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:87017. [PMID: 37616158 PMCID: PMC10449008 DOI: 10.1289/ehp12500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Gestational phthalate and phenol exposure disrupts adipogenesis, contributing to obesity in mice. Whether gestational phthalate or phenol exposure is associated with infant body composition has not been investigated in humans. OBJECTIVE We examined associations between biomarkers of phthalate and phenol exposure in midpregnancy and infant size and body composition at birth and at 5 months of age. METHODS Analyses were conducted among 438 infants from the Healthy Start prospective pregnancy cohort. Sixteen phthalate and phenol biomarkers were quantified in spot urine samples collected at 24-28 wk of gestation. Infant outcomes measured at birth and at 5 months of age included size [weight (in grams)] and body composition [fat and lean masses (in grams); percentage fat mass]. Single- (linear) and multipollutant (quantile g-computation) models were used to estimate associations of phthalate and phenol biomarkers with infant outcomes at birth and at 5 months of age. Models were adjusted for sociodemographics, sample collection timing, and lifestyle factors and used to examine for effect modification by infant sex. RESULTS In single-pollutant models, mono-benzyl phthalate and di-n -butyl phthalate were inversely associated with percentage fat mass [β : - 0.49 (95% CI: - 0.91 , - 0.08 ) and - 0.51 (95% CI: - 1.02 , 0.01), respectively] in male but not female infants at birth. Similar, but less precise, associations were observed at 5 months of age. In multipollutant models, a 1-quartile increase in the phthalate and phenol biomarker mixture was inversely associated with percentage fat mass at birth [- 1.06 (95% CI: - 2.21 , 0.1)] and at 5 months of age [- 2.14 (95% CI: - 3.88 , - 0.39 )] among males, but associations were null among females [0.48 (95% CI: - 0.78 , 1.75) and - 0.64 (95% CI: - 2.68 , 1.41), respectively]. Similar associations were observed with infant weight. CONCLUSION In this U.S.-based prospective cohort, gestational phthalate and phenol biomarkers were inversely associated with infant weight and fat mass, particularly in males. https://doi.org/10.1289/EHP12500.
Collapse
Affiliation(s)
- Danielle R. Stevens
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Anne P. Starling
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Center for Lifecourse Epidemiology of Adiposity and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Paige A. Bommarito
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Alexander P. Keil
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dorothy Nakiwala
- Center for Lifecourse Epidemiology of Adiposity and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Antonia M. Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - John L. Adgate
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Public Health Campus, Aurora, Colorado, USA
| | - Dana Dabelea
- Center for Lifecourse Epidemiology of Adiposity and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kelly K. Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| |
Collapse
|
8
|
Chen M, Hu Y, Lv C, Shi R, Zhang Y, Tang W, Yu X, Tian Y, Gao Y. Associations between repeated measurements of childhood triclosan exposure and physical growth at 7 years. CHEMOSPHERE 2022; 307:135970. [PMID: 35952793 DOI: 10.1016/j.chemosphere.2022.135970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/07/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Epidemiological studies suggested that triclosan (TCS) exposure was ubiquitous among children and could affect their physical growth. However, most studies relied on TCS exposure at single time point, and the impacts of multiple time points TCS exposure were unclear. OBJECTIVES To estimate the associations between repeated TCS measurements in childhood (at ages 1, 2, 5, and 7 years) and physical growth at 7 years. METHODS This study included 206 children from Laizhou Wan Birth Cohort (LWBC), China. Urinary TCS concentrations were detected at age of 1, 2, 5, and 7 years, and physical growth including height, weight, waist circumference, and fat percentage was measured at 7 years. Multiple informant models were applied to examine the relationships of repeated TCS measurements in childhood with physical growth, and stratified analysis by gender was performed. RESULTS The detection rates of TCS at age of 1, 2, 5, and 7 years were above 60%, with median declining from 0.89 to 0.33 μg/g creatinine. We found TCS at 5 years was positively associated with waist-to-height ratio, and TCS at 7 years was positively associated with physical growth, including weight z-score, BMI z-score, waist circumference, waist-to-height ratio, and fat percentage. Moreover, the above associations for weight z-score, BMI z-score, and fat percentage significantly varied by the period of exposure (pint ˂ 0.05). After stratified by gender, positive associations were only found among boys. CONCLUSIONS In our study, TCS levels decreased as children's age increased. TCS exposures at age of 5 and 7 years were positively associated with physical growth at 7 years, and these associations were only significant in boys. Given the relatively small sample size, our findings should be interpreted with caution until confirmed by further investigation.
Collapse
Affiliation(s)
- Minyan Chen
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yi Hu
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Cheng Lv
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Rong Shi
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yan Zhang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Weifeng Tang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xiaodan Yu
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Pudong, Shanghai 200127, China
| | - Ying Tian
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Yu Gao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
9
|
Hu Y, Ding G, Lv C, Zhang Q, Zhang Y, Yuan T, Ao J, Gao Y, Xia Y, Yu X, Tian Y. Association between triclosan exposure and obesity measures among 7-year-old children in northern China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113610. [PMID: 35569301 DOI: 10.1016/j.ecoenv.2022.113610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/25/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Triclosan (TCS) is a widely used synthetic antibacterial compound with ubiquitous human exposure. Animal studies have suggested the obesogenic effect of TCS exposure, but knowledge regarding its impacts on childhood obesity was limited. OBJECTIVE To investigate the associations of TCS exposure with childhood obesity in northern China. METHODS This study included 423 children who participated in the 7-year-old follow-up visits of Laizhou Wan Birth Cohort in Shandong, northern China. Children's TCS exposure were determined in spot urine samples via high performance liquid chromatography-tandem mass. Their height, weight, waist circumference, body fat percentage, body mass index (BMI), and waist-to-height ratio (WHtR) were measured or calculated. BMI z-score ≥ 85th percentile was defined as overweight/obesity, and WHtR ≥ 0.5 was considered to be abdominal obesity. Multivariable linear regressions, generalized linear models (GLMs), and multivariable logistic regressions were performed to examine the associations between TCS exposure and obesity measures in children. RESULTS Linear regressions showed that TCS concentrations, when treated as continuous variables, were positively associated with BMI z-score (β = 0.12, 95% CI: 0.01, 0.24) and body fat percentage (β = 0.82, 95% CI: 0.13, 1.52). When TCS concentrations were categorized as a four-level ordinal variable, the results of GLMs were similar those of continuous variables and both of the positive trends were significant (p-trend = 0.049 for BMI z-score; p-trend = 0.023 for body fat percentage). Moreover, the higher TCS levels versus reference group were associated with an approximate 2-3 fold increased risk of abdominal obesity (p-trend = 0.044). CONCLUSION Exposure to TCS was positively associated with obesity measures among 7-year-old children in northern, China. Given to the cross-sectional study design, a large prospective study is warranted to confirm our findings.
Collapse
Affiliation(s)
- Yi Hu
- MOE and Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Center for Medical Bioinformatics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China
| | - Guodong Ding
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China
| | - Cheng Lv
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qianlong Zhang
- MOE and Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yan Zhang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tao Yuan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junjie Ao
- MOE and Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yu Gao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiaodan Yu
- MOE and Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Ying Tian
- MOE and Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
10
|
Sinicropi MS, Iacopetta D, Ceramella J, Catalano A, Mariconda A, Pellegrino M, Saturnino C, Longo P, Aquaro S. Triclosan: A Small Molecule with Controversial Roles. Antibiotics (Basel) 2022; 11:735. [PMID: 35740142 PMCID: PMC9220381 DOI: 10.3390/antibiotics11060735] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 12/23/2022] Open
Abstract
Triclosan (TCS), a broad-spectrum antimicrobial agent, has been widely used in personal care products, medical products, plastic cutting boards, and food storage containers. Colgate Total® toothpaste, containing 10 mM TCS, is effective in controlling biofilm formation and maintaining gingival health. Given its broad usage, TCS is present ubiquitously in the environment. Given its strong lipophilicity and accumulation ability in organisms, it is potentially harmful to biohealth. Several reports suggest the toxicity of this compound, which is inserted in the class of endocrine disrupting chemicals (EDCs). In September 2016, TCS was banned by the U.S. Food and Drug Administration (FDA) and the European Union in soap products. Despite these problems, its application in personal care products within certain limits is still allowed. Today, it is still unclear whether TCS is truly toxic to mammals and the adverse effects of continuous, long-term, and low concentration exposure remain unknown. Indeed, some recent reports suggest the use of TCS as a repositioned drug for cancer treatment and cutaneous leishmaniasis. In this scenario it is necessary to investigate the advantages and disadvantages of TCS, to understand whether its use is advisable or not. This review intends to highlight the pros and cons that are associated with the use of TCS in humans.
Collapse
Affiliation(s)
- Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.S.S.); (D.I.); (J.C.); (M.P.); (S.A.)
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.S.S.); (D.I.); (J.C.); (M.P.); (S.A.)
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.S.S.); (D.I.); (J.C.); (M.P.); (S.A.)
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Annaluisa Mariconda
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (A.M.); (C.S.)
| | - Michele Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.S.S.); (D.I.); (J.C.); (M.P.); (S.A.)
| | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (A.M.); (C.S.)
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy;
| | - Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.S.S.); (D.I.); (J.C.); (M.P.); (S.A.)
| |
Collapse
|
11
|
Nasab H, Rajabi S, Mirzaee M, Hashemi M. Association of urinary triclosan, methyl triclosan, triclocarban, and 2,4-dichlorophenol levels with anthropometric and demographic parameters in children and adolescents in 2020 (case study: Kerman, Iran). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:30754-30763. [PMID: 34993832 PMCID: PMC8739350 DOI: 10.1007/s11356-021-18466-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/29/2021] [Indexed: 05/28/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) can be a major risk factor for noncommunicable illnesses, especially when children are exposed to them. The purpose of this study was to assess the urine concentrations of triclosan (TCS), methyl triclosan (MTCS), triclocarban (TCC), and 2,4-dichlorophenol (2,4-DCP) and its association with anthropometric and demographic parameters in children and adolescents aged 6-18 living in Kerman, Iran, in 2020. A GC/MS instrument was used to measure the concentrations of the analytes. TCS, MTCS, TCC, and 2,4-DCP geometric mean concentrations (µg/L) were 4.32 ± 2.08, 1.73 ± 0.88, 4.66 ± 10.25, and 0.19 ± 0.14, respectively. TCS, MTCS, TCC, and 2,4-DCP were shown to have a positive and significant association with BMI z-score and BMI (p-value < 0.01). TCS and MTCS have a positive, strong, and substantial association (p-value < 0.01, r = 0.74). There was no significant association between the waist circumference (WC) and the analytes studied. In addition, there was a close association between analyte concentration and demographic parameters (smoking, education, income, etc.) overall. In Kerman, Iran, the current study was the first to look into the association between TCS, MTCS, TCC, and 2,4-DCP analytes and anthropometric and demographic data. The levels of urinary TCS, MTCS, TCC, 2,4-DCP, and anthropometric parameters in children and adolescents are shown to have a significant association in this study. However, because the current study is cross-sectional and it is uncertain if a single experiment accurately reflects long-term exposure to these analytes, more research is needed to determine the impact of these analyses on the health of children and adolescents.
Collapse
Affiliation(s)
- Habibeh Nasab
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Rajabi
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Moghaddameh Mirzaee
- Modeling in Health Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Hashemi
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
12
|
Han M, Wang Y, Tang C, Fang H, Yang D, Wu J, Wang H, Chen Y, Jiang Q. Association of triclosan and triclocarban in urine with obesity risk in Chinese school children. ENVIRONMENT INTERNATIONAL 2021; 157:106846. [PMID: 34455189 DOI: 10.1016/j.envint.2021.106846] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/12/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Laboratory studies have suggested that triclosan and triclocarban can influence energy metabolism by multiple mechanisms and are potential obesogens, but the effect on obesity risk has not been well investigated in human. OBJECTIVE To examine the associations of triclosan and triclocarban in urine with childhood obesity. METHODS We investigated 458 school children aged 7-11 years who entered a dynamic cohort of children established in Shanghai in 2019 and 2020. Triclosan and triclocarban were determined in first morning urine by liquid chromatography coupled to mass spectrometry. Body mass index (BMI) and waist circumference (WC) were used to identify general overweight/obesity and central obesity, respectively. Logistic regression and linear models of generalized estimating equations (GEE) were used to investigate the association between urinary triclosan and triclocarban with obesity prevalence. RESULTS After adjusting for potential confounders, children with detectable triclocarban in urine had a higher proportion of general overweight/obesity (odds ratio (OR): 1.84; 95% confidential interval (95% CI): 1.19, 2.85) or central obesity (OR: 1.71; 95% CI: 1.03, 2.84). Compared to the low tertile, children in the median tertile of triclosan showed a higher proportion of central obesity (OR: 1.78; 95 %CI: 0.98, 3.24) and children in the high tertile of triclocarban had a higher proportion of general overweight/obesity (OR: 2.25; 95 %CI: 1.31, 3.88) and central obesity (OR: 2.08; 95 %CI: 1.12, 3.87). When the tertiles of triclocarban in urine were treated as a continuous variable, a positive exposure-response relationship was found with general overweight/obesity (OR: 1.50; 95 %CI: 1.15, 1.96) and central obesity (OR: 1.44; 95 %CI: 1.06, 1.95). Multiple linear regression showed a positive exposure-response relationship between triclocarban and BMI (β: 0.45; 95 %CI: 0.11, 0.80) values. CONCLUSION Exposure to triclosan and triclocarban was associated with increased risk of childhood obesity. Given the cross-sectional design, more studies are needed to interrogate these findings.
Collapse
Affiliation(s)
- Minghui Han
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai 200032, China
| | - Yuanping Wang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai 200032, China
| | - Chuanxi Tang
- Changning District Center for Disease Control and Prevention, Changning District, Shanghai 200051, China
| | - Hongji Fang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai 200032, China
| | - Dongjian Yang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai 200032, China
| | - Jingui Wu
- Changning District Center for Disease Control and Prevention, Changning District, Shanghai 200051, China
| | - Hexing Wang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai 200032, China.
| | - Yue Chen
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1G 5Z3, Canada
| | - Qingwu Jiang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai 200032, China
| |
Collapse
|
13
|
Liu J, Chen D, Huang Y, Bigambo FM, Chen T, Wang X. Effect of Maternal Triclosan Exposure on Neonatal Birth Weight and Children Triclosan Exposure on Children's BMI: A Meta-Analysis. Front Public Health 2021; 9:648196. [PMID: 34307271 PMCID: PMC8298024 DOI: 10.3389/fpubh.2021.648196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/11/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Triclosan (TCS) is an environmental chemical with endocrine disrupting effects and can enter the body through the skin or oral mucosa. Human data about the effect of TCS exposure during pregnancy on neonatal birth weight and TCS exposure during childhood on children's growth are scarce. Objectives: To investigate the association between maternal urinary TCS level and neonatal birth weight, as well as children's urinary TCS level and children's body mass index (BMI). Methods: A systematic literature search was conducted using PubMed, Cochrane Library, and Web of Science. Finally, seven epidemiological articles with 5,006 participants from September 25, 2014 to August 10, 2018 were included in the meta-analysis to identify the relationship between maternal exposure to TCS and neonatal birth weight. On the other hand, three epidemiological articles with 5,213 participants from July 22, 2014 to September 1, 2017 were included in another meta-analysis to identify the relationship between children's exposure to TCS and children's BMI. We used Stata 16.0 to test the heterogeneity among the studies and calculating the combined effect value 95% confidence interval (CI) of the selected corresponding models. Results: TCS exposure during pregnancy was not significant associated with neonatal birth weight. The results of forest plots were as follows: ES (Estimate) = 0.41 (95% CI: −11.97–12.78). Children's urinary TCS level was also irrelevant associated with children's BMI: ES = 0.03 (95% CI: −0.54–0.60). Conclusions: This meta-analysis demonstrated that there was no significant association between maternal TCS level and neonatal birth weight, also there has no relationship between children's urinary TCS level and children's BMI.
Collapse
Affiliation(s)
- Jiani Liu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Danrong Chen
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yanqiu Huang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Francis Manyori Bigambo
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ting Chen
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xu Wang
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Chan M, Mita C, Bellavia A, Parker M, James-Todd T. Racial/Ethnic Disparities in Pregnancy and Prenatal Exposure to Endocrine-Disrupting Chemicals Commonly Used in Personal Care Products. Curr Environ Health Rep 2021; 8:98-112. [PMID: 34046860 PMCID: PMC8208930 DOI: 10.1007/s40572-021-00317-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2021] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Endocrine-disrupting chemical (EDC) exposure during pregnancy is linked to adverse maternal and child health outcomes that are racially/ethnically disparate. Personal care products (PCP) are one source of EDCs where differences in racial/ethnic patterns of use exist. We assessed the literature for racial/ethnic disparities in pregnancy and prenatal PCP chemical exposures. RECENT FINDINGS Only 3 studies explicitly examined racial/ethnic disparities in pregnancy and prenatal exposure to PCP-associated EDCs. Fifty-three articles from 12 cohorts presented EDC concentrations stratified by race/ethnicity or among homogenous US minority populations. Studies reported on phthalates and phenols. Higher phthalate metabolites and paraben concentrations were observed for pregnant non-Hispanic Black and Hispanic women. Higher concentrations of benzophenone-3 were observed in non-Hispanic White women; results were inconsistent for triclosan. This review highlights need for future research examining pregnancy and prenatal PCP-associated EDCs disparities to understand and reduce racial/ethnic disparities in maternal and child health.
Collapse
Affiliation(s)
- Marissa Chan
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Ave., Bldg. 1, 14th Floor, Boston, MA, 02115, USA
| | - Carol Mita
- Countway Library, Harvard Medical School, Boston, MA, 02115, USA
| | - Andrea Bellavia
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Ave., Bldg. 1, 14th Floor, Boston, MA, 02115, USA
| | - Michaiah Parker
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Ave., Bldg. 1, 14th Floor, Boston, MA, 02115, USA
| | - Tamarra James-Todd
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Ave., Bldg. 1, 14th Floor, Boston, MA, 02115, USA.
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, 02115, USA.
- Division of Women's Health, Department of Medicine, Connors Center for Women's Health and Gender Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02120, USA.
| |
Collapse
|
15
|
Prenatal Exposure to Mixtures of Phthalates, Parabens, and Other Phenols and Obesity in Five-Year-Olds in the CHAMACOS Cohort. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041796. [PMID: 33673219 PMCID: PMC7918439 DOI: 10.3390/ijerph18041796] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023]
Abstract
Exposures to phthalates, parabens, and other phenols are often correlated due to their ubiquitous use in personal care products and plastics. Examining these compounds as a complex mixture may clarify inconsistent relationships between individual chemicals and childhood adiposity. Using data from the Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS) study, a longitudinal cohort of children in Salinas Valley, California (n = 309), we examined biomarkers of 11 phthalate metabolites and 9 phenols, including several parabens and bisphenol A, measured in maternal urine at two time points during pregnancy. We measured child height and weight at age five to calculate the body mass index (BMI) z-scores and overweight/obesity status. The association between prenatal urinary concentrations of biomarkers with the childhood BMI z-score and overweight/obesity status was analyzed using single-pollutant models and two mixture methods: Bayesian hierarchical modeling (BMH) and Bayesian kernel machine regression (BKMR). Urinary concentrations of monoethyl phthalate, monocarboxy-isononly phthalate (metabolites of diethyl phthalate and di-isodecyl phthalate, respectively), and propylparaben were consistently associated with an increased BMI z-score and overweight/obesity status across all modeling approaches. Higher prenatal exposures to the cumulative biomarker mixture also trended with greater childhood adiposity. These results, robust across two methods that control for co-pollutant confounding, suggest that prenatal exposure to certain phthalates and parabens may increase the risk for obesity in early childhood.
Collapse
|
16
|
Ribeiro CM, Beserra BTS, Silva NG, Lima CL, Rocha PRS, Coelho MS, Neves FDAR, Amato AA. Exposure to endocrine-disrupting chemicals and anthropometric measures of obesity: a systematic review and meta-analysis. BMJ Open 2020; 10:e033509. [PMID: 32565448 PMCID: PMC7311014 DOI: 10.1136/bmjopen-2019-033509] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Endocrine-disrupting chemicals (EDCs) are viewed as a major potential link between the environment and obesity development. We did a systematic review and meta-analysis to examine the association between exposure to EDCs and obesity. DATA SOURCES, DESIGN AND ELIGIBILITY CRITERIA PubMed, Scopus and Web of Science were searched from inception to 6 June 2018 for studies primarily addressing the association between exposure to EDCs after the age of 2 years and anthropometric measures of obesity or body fat. The Newcastle-Ottawa scale was used to assess the risk of bias. DATA EXTRACTION AND SYNTHESIS Two independent reviewers screened and conducted data extraction and synthesis. A third reviewer resolved disagreements. RESULTS A total of 73 studies investigating bisphenol A (32 286 individuals), organochlorine compounds (34 567 individuals), phthalates (21 401 individuals), polybrominated biphenyls (2937 individuals), polycyclic aromatic hydrocarbons (5174 individuals), parabens (4097 individuals), benzoic acid (3671 individuals) and polyfluoroalkyl substances (349 individuals) met our inclusion criteria. Most had a cross-sectional design and low or medium risk of bias. In qualitative analysis, bisphenol A and phthalates were consistently associated with general and abdominal obesity, in children and adults, and some studies suggested this association was age-dependent and gender-dependent. Meta-analysis indicated a significant association between exposure to bisphenol A and overweight (OR 1.254, 95% CI 1.005 to 1.564), obesity (OR 1.503, 95% CI 1.273 to 1.774) and increased waist circumference (OR 1.503, 95% CI 1.267 to 1.783) in adults, and between exposure to 2,5-dichlorophenol and obesity in children (OR 1.8, 95% CI 1.1018 to 3.184). CONCLUSION Most observational studies supported a positive association between obesity and exposure to EDCs. Although causality cannot be determined from these data, they underscore the need to limit human exposure to EDCs in light of the evidence from animal and cell-based studies indicating the effects of these chemicals on adiposity. PROSPERO REGISTRATION NUMBER CRD42018074548.
Collapse
Affiliation(s)
- Carolina Martins Ribeiro
- Laboratory of Molecular Pharmacology, Department of Pharmaceutical Sciences, University of Brasilia, Brasilia, Brazil
| | - Bruna Teles Soares Beserra
- Laboratory of Molecular Pharmacology, Department of Pharmaceutical Sciences, University of Brasilia, Brasilia, Brazil
| | - Nadyellem Graciano Silva
- Laboratory of Molecular Pharmacology, Department of Pharmaceutical Sciences, University of Brasilia, Brasilia, Brazil
| | - Caroline Lourenço Lima
- Laboratory of Molecular Pharmacology, Department of Pharmaceutical Sciences, University of Brasilia, Brasilia, Brazil
| | - Priscilla Roberta Silva Rocha
- Laboratory of Molecular Pharmacology, Department of Pharmaceutical Sciences, University of Brasilia, Brasilia, Brazil
| | - Michella Soares Coelho
- Laboratory of Molecular Pharmacology, Department of Pharmaceutical Sciences, University of Brasilia, Brasilia, Brazil
| | | | - Angélica Amorim Amato
- Laboratory of Molecular Pharmacology, Department of Pharmaceutical Sciences, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
17
|
Endocrine Disruptors in Food: Impact on Gut Microbiota and Metabolic Diseases. Nutrients 2020; 12:nu12041158. [PMID: 32326280 PMCID: PMC7231259 DOI: 10.3390/nu12041158] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/02/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Endocrine disruptors (EDCs) have been associated with the increased incidence of metabolic disorders. In this work, we conducted a systematic review of the literature in order to identify the current knowledge of the interactions between EDCs in food, the gut microbiota, and metabolic disorders in order to shed light on this complex triad. Exposure to EDCs induces a series of changes including microbial dysbiosis and the induction of xenobiotic pathways and associated genes, enzymes, and metabolites involved in EDC metabolism. The products and by-products released following the microbial metabolism of EDCs can be taken up by the host; therefore, changes in the composition of the microbiota and in the production of microbial metabolites could have a major impact on host metabolism and the development of diseases. The remediation of EDC-induced changes in the gut microbiota might represent an alternative course for the treatment and prevention of metabolic diseases.
Collapse
|
18
|
Gaston SA, Birnbaum LS, Jackson CL. Synthetic Chemicals and Cardiometabolic Health Across the Life Course Among Vulnerable Populations: a Review of the Literature from 2018 to 2019. Curr Environ Health Rep 2020; 7:30-47. [PMID: 32037478 PMCID: PMC7187897 DOI: 10.1007/s40572-020-00265-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE OF REVIEW Although vulnerable populations are disproportionately exposed to synthetic chemicals with endocrine disrupting properties, few recent reviews have summarized the impact of synthetic chemicals on cardiometabolic health among these groups. RECENT FINDINGS Of 37 eligible epidemiological studies among vulnerable populations published between January 2018 and April 2019 in which over half were prospective, the most investigated populations were pregnant women and children. Racial/ethnic minorities, individuals of low socioeconomic status (SES), and those occupationally exposed were studied the least. The most studied persistent organic pollutants (POPs) were per-/poly-fluoroalkyl substances (PFAS), and the most studied non-POPs were phenols. Across chemical classes, studies found certain POPs (e.g., PFAS) and non-POPs (i.e., phenols, phthalates, and parabens) to be associated with gestational diabetes and dysregulated glucose metabolism. Results for other cardiometabolic health outcomes were inconsistent but suggested certain chemicals may negatively affect cardiometabolic health. Synthetic chemicals likely adversely affect cardiometabolic health, but current findings were inconclusive. Few recent studies focused on racial/ethnic minorities, low SES, and occupationally exposed populations. To address poor cardiometabolic health and related disparities, more studies across vulnerable populations are warranted.
Collapse
Affiliation(s)
- Symielle A Gaston
- Epidemiology Branch, National Institute of Environmental Health Sciences, Department of Health and Human Services, National Institutes of Health, 111 TW Alexander Drive, MD A3-05, Research Triangle Park, NC, 27709, USA
| | - Linda S Birnbaum
- Office of the Director, National Institute of Environmental Health Sciences and the National Toxicology Program, Department of Health and Human Services, National Institutes of Health, Research Triangle Park, NC, USA
| | - Chandra L Jackson
- Epidemiology Branch, National Institute of Environmental Health Sciences, Department of Health and Human Services, National Institutes of Health, 111 TW Alexander Drive, MD A3-05, Research Triangle Park, NC, 27709, USA.
- Intramural Program, National Institute on Minority Health and Health Disparities, Department of Health and Human Services, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
19
|
Li SJ, Chen P, Peres TV, Villahoz BF, Zhang Z, Miah MR, Aschner M. Triclosan induces PC12 cells injury is accompanied by inhibition of AKT/mTOR and activation of p38 pathway. Neurotoxicology 2019; 74:221-229. [PMID: 31381933 DOI: 10.1016/j.neuro.2019.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/18/2019] [Accepted: 07/29/2019] [Indexed: 11/18/2022]
Abstract
Triclosan (TCS) has been widely used as a disinfectant and antiseptic in multiple consumer and healthcare products due to its clinical effectiveness against various bacteria, fungi and protozoa. Recently, several studies have reported the adverse effects of TCS on various nerve cells, arousing concerns about its potential neurotoxicity. The present study aimed to investigate the neurotoxicity of TCS in rat pheochromocytoma PC12 cells. After differentiation, the stabilized PC12 cells were treated with 1, 10, 50 μM TCS for 12 h. At the end of the treatment, the generation of reactive oxygen species (ROS), protein expression of apoptotic-related genes, AMPK-AKT/mTOR, as well as p38 in PC12 cells were determined. The concentrations were chosen based on the results of cell viability and lactic dehydrogenase (LDH) assays in response to TCS treatment (ranging from 0.001 to 100 μM) for varied time periods. The results showed that TCS is cytotoxic to PC12 cells, causing decreased cell viability accompanied by increased LDH release. TCS treatment at 10 and 50 μM for 12 h increased the mRNA and protein expression of the pro-apoptotic gene Bax, while Bcl-2 levels remained unchanged. Moreover, an increase in the generation of reactive oxygen species (ROS) was found in TCS-treated PC12 cells at the concentrations of 1 and 10 μM. Pretreatment with 100 μM N-acetyl cysteine (NAC- ROS scavenger) for 1 h normalized the ROS generations in TCS-treated PC12 cells. Additionally, the suppression of the phosphorylation of Akt and mTOR was observed in TCS-treated PC12 cells at 10 and 50 μM for 12 h, concomitant with the activation of p38 MAPK pathway at 50 μM TCS. However, there were no effects of TCS on the phosphorylation of AMPK in these cells. Taken together, these results suggest that TCS may cause adverse effects and oxidative stress in PC12 cells accompanied by inhibition of Akt/mTOR and activation of p38.
Collapse
Affiliation(s)
- Shao-Jun Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Pan Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY10461,United States
| | - Tanara Vieira Peres
- Department of Biochemistry, Federal University of Santa Catarina, Florianopolis, SC, 88040900, Brazil
| | - Beatriz Ferrer Villahoz
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY10461,United States
| | - Ziyan Zhang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY10461,United States
| | - Mahfuzur R Miah
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY10461,United States; Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY10461,United States; Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, United States.
| |
Collapse
|
20
|
Yang C, Lee HK, Kong APS, Lim LL, Cai Z, Chung AC. Early-life exposure to endocrine disrupting chemicals associates with childhood obesity. Ann Pediatr Endocrinol Metab 2018; 23:182-195. [PMID: 30599479 PMCID: PMC6312913 DOI: 10.6065/apem.2018.23.4.182] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 12/14/2018] [Accepted: 12/18/2018] [Indexed: 01/09/2023] Open
Abstract
Increasing prevalence of childhood obesity poses threats to the global health burden. Because this rising prevalence cannot be fully explained by traditional risk factors such as unhealthy diet and physical inactivity, early-life exposure to endocrine disrupting chemicals (EDCs) is recognized as emerging novel risk factors for childhood obesity. EDCs can disrupt the hormone-mediated metabolic pathways, affect children's growth and mediate the development of childhood obesity. Many organic pollutants are recently classified to be EDCs. In this review, we summarized the epidemiological and laboratory evidence related to EDCs and childhood obesity, and discussed the possible mechanisms underpinning childhood obesity and early-life exposure to non-persistent organic pollutants (phthalates, bisphenol A, triclosan) and persistent organic pollutants (dichlorodiphenyltrichloroethane, polychlorinated biphenyls, polybrominated diphenyl ethers, per- and polyfluoroalkyl substances). Understanding the relationship between EDCs and childhood obesity helps to raise public awareness and formulate public health policy to protect the youth from exposure to the harmful effects of EDCs.
Collapse
Affiliation(s)
- Chunxue Yang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Hin Kiu Lee
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
- HKBU Institute for Research and Continuing Education, Shenzhen, China
| | - Alice Pik Shan Kong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Lee Ling Lim
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Asia Diabetes Foundation, Hong Kong SAR, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
- HKBU Institute for Research and Continuing Education, Shenzhen, China
| | - Arthur C.K. Chung
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
- HKBU Institute for Research and Continuing Education, Shenzhen, China
| |
Collapse
|
21
|
Abstract
Endocrine disruption has been gathering increasing attention in the past 25 years as a possible new threat for health and safety. Exposure to endocrine disruptor has been progressively linked with a growing number of increasing disease in the human population. The mechanics through which endocrine disruptors act are not yet completely clear, however a number of pathways have been identified. A key concern is the cumulative and synergic effects that endocrine disruptors could have when mixed in consumer products. We reviewed the available literature to identify known or potential endocrine disruptors, as well as endocrine active substances that could contribute to cumulative effects, in topical consumer products. The number of endocrine actives used daily in consumer products is staggering and even though most if not all are used in concentrations that are considered to be safe, we believe that the possibility of combined effects in mixtures and non-monotonic dose/response is enough to require further precautions. A combined in vitro approach based on existing, validated OECD test methods is suggested to screen consumer products and mixtures for potential interaction with estrogen and androgen hormone receptors, in order to identify products that could have cumulative effects or support their safety concerning direct endocrine disruption capabilities.
Collapse
|