1
|
Drauch V, Palmieri N, Spergser J, Hummel K, Brandstetter M, Kornschober C, Hess M, Hess C. Comprehensive phenotyping combined with multi-omics of Salmonella Infantis and its H 2S negative variant - Resolving adaption mechanisms to environmental changes. Food Microbiol 2025; 129:104744. [PMID: 40086984 DOI: 10.1016/j.fm.2025.104744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/27/2025] [Accepted: 02/06/2025] [Indexed: 03/16/2025]
Abstract
The zoonotic pathogen S. Infantis is of emerging importance, making detection in poultry critical. Phenotypic changes, which are significant for standardized control programs via EN/ISO 6579-1:2017, could lead to pathogens remaining undetected, increasing the risk of food-borne outbreaks. This study investigates an S. Infantis strain with both normal growth (NCP) and atypical H₂S-negative colony variant (ACV) from an Austrian broiler farm. NCP and ACV underwent comprehensive analyses, including stability tests, electron microscopy, whole-genome sequencing, transcriptomics, and proteomics. Our findings demonstrate a stable atypical colony variant exhibiting acquired resistance against cefoxitin in ACV. Genomic analysis identified 9 single nucleotide polymorphisms (SNPs) and two deletions, affecting genes involved in porphyrin and sulfur metabolism. Key factors were a mutation disrupting cysG, which is essential for siroheme biosynthesis and a vital cofactor in sulfur metabolism, and a stop codon in menD (2-oxoglutarate decarboxylase), crucial for small colony variant appearance. Consequently, we hypothesize that these mutations lead to a deficiency in siroheme, as well as anaerobic sulfur respiration altogether resulting in the H₂S-negative phenotype. Functional network analysis highlighted compensatory upregulation of alternative metabolic pathways, including nitrate metabolism, propanoate metabolism and mixed-acid fermentation, which may aid ACV's persistence and adaptation under anaerobic conditions. Reduced flagellin expression suggests a mechanism for immune evasion. These genetic and metabolic adaptations likely respond to environmental stressors, such as oxidative stress from disinfectants or antimicrobial pressure, leading to the emergence of the H₂S-negative phenotype. Consequently, this study provides insights into the genetic and biochemical adaptations of an atypical S. Infantis variant.
Collapse
Affiliation(s)
- Victoria Drauch
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria.
| | - Nicola Palmieri
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Joachim Spergser
- Institute of Microbiology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Karin Hummel
- VetCore Facility, Mass Spectrometry, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | | | - Christian Kornschober
- National Reference Centre for Salmonella, AGES, Beethovenstrasse 6, 8010, Graz, Austria
| | - Michael Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Claudia Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| |
Collapse
|
2
|
Wang CZ, Zhang YJ, Chu YF, Zhong LG, Xu JP, Liang LY, Long TF, Fang LX, Sun J, Liao XP, Zhou YF. Tobramycin-resistant small colony variant mutant of Salmonella enterica serovar Typhimurium shows collateral sensitivity to nitrofurantoin. Virulence 2024; 15:2356692. [PMID: 38797966 PMCID: PMC11135859 DOI: 10.1080/21505594.2024.2356692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
The increasing antibiotic resistance poses a significant global health challenge, threatening our ability to combat infectious diseases. The phenomenon of collateral sensitivity, whereby resistance to one antibiotic is accompanied by increased sensitivity to another, offers potential avenues for novel therapeutic interventions against infections unresponsive to classical treatments. In this study, we elucidate the emergence of tobramycin (TOB)-resistant small colony variants (SCVs) due to mutations in the hemL gene, which render S. Typhimurium more susceptible to nitrofurantoin (NIT). Mechanistic studies demonstrate that the collateral sensitivity in TOB-resistant S. Typhimurium SCVs primarily stems from disruptions in haem biosynthesis. This leads to dysfunction in the electron transport chain (ETC) and redox imbalance, ultimately inducing lethal accumulation of reactive oxygen species (ROS). Additionally, the upregulation of nfsA/B expressions facilitates the conversion of NIT prodrug into its active form, promoting ROS-mediated bacterial killing and contributing to this collateral sensitivity pattern. Importantly, alternative NIT therapy demonstrates a significant reduction of bacterial load by more than 2.24-log10 cfu/g in the murine thigh infection and colitis models. Our findings corroborate the collateral sensitivity of S. Typhimurium to nitrofurans as a consequence of evolving resistance to aminoglycosides. This provides a promising approach for treating infections due to aminoglycoside-resistant strains.
Collapse
Affiliation(s)
- Chang-Zhen Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Yue-Jun Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Yue-Fei Chu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Long-Gen Zhong
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Jin-Peng Xu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Liu-Yan Liang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Teng-Fei Long
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Liang-Xing Fang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Jian Sun
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Xiao-Ping Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Yu-Feng Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| |
Collapse
|
3
|
Doğan E, Sydow K, Heiden SE, Eger E, Wassilew G, Proctor RA, Bohnert JA, Idelevich EA, Schaufler K, Becker K. Klebsiella pneumoniae exhibiting a phenotypic hyper-splitting phenomenon including the formation of small colony variants. Front Cell Infect Microbiol 2024; 14:1372704. [PMID: 38601740 PMCID: PMC11004228 DOI: 10.3389/fcimb.2024.1372704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/07/2024] [Indexed: 04/12/2024] Open
Abstract
In this study, we characterized a Klebsiella pneumoniae strain in a patient with shrapnel hip injury, which resulted in multiple phenotypic changes, including the formation of a small colony variant (SCV) phenotype. Although already described since the 1960s, there is little knowledge about SCV phenotypes in Enterobacteriaceae. The formation of SCVs has been recognized as a bacterial strategy to evade host immune responses and compromise the efficacy of antimicrobial therapies, leading to persistent and recurrent courses of infections. In this case, 14 isolates with different resisto- and morpho-types were distinguished from the patient's urine and tissue samples. Whole genome sequencing revealed that all isolates were clonally identical belonging to the K. pneumoniae high-risk sequence type 147. Subculturing the SCV colonies consistently resulted in the reappearance of the initial SCV phenotype and three stable normal-sized phenotypes with distinct morphological characteristics. Additionally, an increase in resistance was observed over time in isolates that shared the same colony appearance. Our findings highlight the complexity of bacterial behavior by revealing a case of phenotypic "hyper-splitting" in a K. pneumoniae SCV and its potential clinical significance.
Collapse
Affiliation(s)
- Eyüp Doğan
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Katharina Sydow
- Department of Epidemiology and Ecology of Antimicrobial Resistance, Helmholtz Institute for One Health, Helmholtz Centre for Infection Research Helmholtz Center for Infection Research (HZI), Greifswald, Germany
| | - Stefan E. Heiden
- Department of Epidemiology and Ecology of Antimicrobial Resistance, Helmholtz Institute for One Health, Helmholtz Centre for Infection Research Helmholtz Center for Infection Research (HZI), Greifswald, Germany
| | - Elias Eger
- Department of Epidemiology and Ecology of Antimicrobial Resistance, Helmholtz Institute for One Health, Helmholtz Centre for Infection Research Helmholtz Center for Infection Research (HZI), Greifswald, Germany
| | - Georgi Wassilew
- Center for Orthopedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Richard A. Proctor
- Departments of Medical Microbiology/Immunology and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Jürgen A. Bohnert
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Evgeny A. Idelevich
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Katharina Schaufler
- Department of Epidemiology and Ecology of Antimicrobial Resistance, Helmholtz Institute for One Health, Helmholtz Centre for Infection Research Helmholtz Center for Infection Research (HZI), Greifswald, Germany
- University Medicine Greifswald, Greifswald, Germany
| | - Karsten Becker
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
4
|
Park HE, Kim KM, Trinh MP, Yoo JW, Shin SJ, Shin MK. Bigger problems from smaller colonies: emergence of antibiotic-tolerant small colony variants of Mycobacterium avium complex in MAC-pulmonary disease patients. Ann Clin Microbiol Antimicrob 2024; 23:25. [PMID: 38500139 PMCID: PMC10949641 DOI: 10.1186/s12941-024-00683-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/03/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Mycobacterium avium complex (MAC) is a group of slow-growing mycobacteria that includes Mycobacterium avium and Mycobacterium intracellulare. MAC pulmonary disease (MAC-PD) poses a threat to immunocompromised individuals and those with structural pulmonary diseases worldwide. The standard treatment regimen for MAC-PD includes a macrolide in combination with rifampicin and ethambutol. However, the treatment failure and disease recurrence rates after successful treatment remain high. RESULTS In the present study, we investigated the unique characteristics of small colony variants (SCVs) isolated from patients with MAC-PD. Furthermore, revertant (RVT) phenotype, emerged from the SCVs after prolonged incubation on 7H10 agar. We observed that SCVs exhibited slower growth rates than wild-type (WT) strains but had higher minimum inhibitory concentrations (MICs) against multiple antibiotics. However, some antibiotics showed low MICs for the WT, SCVs, and RVT phenotypes. Additionally, the genotypes were identical among SCVs, WT, and RVT. Based on the MIC data, we conducted time-kill kinetic experiments using various antibiotic combinations. The response to antibiotics varied among the phenotypes, with RVT being the most susceptible, WT showing intermediate susceptibility, and SCVs displaying the lowest susceptibility. CONCLUSIONS In conclusion, the emergence of the SCVs phenotype represents a survival strategy adopted by MAC to adapt to hostile environments and persist during infection within the host. Additionally, combining the current drugs in the treatment regimen with additional drugs that promote the conversion of SCVs to RVT may offer a promising strategy to improve the clinical outcomes of patients with refractory MAC-PD.
Collapse
Affiliation(s)
- Hyun-Eui Park
- Department of Microbiology and Convergence of Medical Science, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Kyu-Min Kim
- Department of Microbiology and Convergence of Medical Science, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Minh Phuong Trinh
- Department of Microbiology and Convergence of Medical Science, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Jung-Wan Yoo
- Department of Internal Medicine, Gyeongsang National University Hospital, Jinju, 52727, Republic of Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Program for Leading Universities and Students (PLUS) Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Min-Kyoung Shin
- Department of Microbiology and Convergence of Medical Science, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea.
| |
Collapse
|
5
|
Ghoshal M, Bechtel TD, Gibbons JG, McLandsborough L. Transcriptomic analysis using RNA sequencing and phenotypic analysis of Salmonella enterica after acid exposure for different time durations using adaptive laboratory evolution. Front Microbiol 2024; 15:1348063. [PMID: 38476938 PMCID: PMC10929716 DOI: 10.3389/fmicb.2024.1348063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024] Open
Abstract
Introduction This study is the final part of a two-part series that delves into the molecular mechanisms driving adaptive laboratory evolution (ALE) of Salmonella enterica in acid stress. The phenotypic and transcriptomic alterations in the acid-evolved lineages (EL) of Salmonella enterica serovar Enteritidis after 70 days of acid stress exposure were analyzed. Materials and methods The stability of phenotypic changes observed after 70 days in acetic acid was explored after stress removal using a newly developed evolutionary lineage EL5. Additionally, the impact of short-term acid stress on the previously adapted lineage EL4 was also examined. Results The results indicate that the elevated antibiotic minimum inhibitory concentration (MIC) observed after exposure to acetic acid for 70 days was lost when acid stress was removed. This phenomenon was observed against human antibiotics such as meropenem, ciprofloxacin, gentamicin, and streptomycin. The MIC of meropenem in EL4 on day 70 was 0.094 mM, which dropped to 0.032 mM when removed from acetic acid stress after day 70. However, after stress reintroduction, the MIC swiftly elevated, and within 4 days, it returned to 0.094 mM. After 20 more days of adaptation in acetic acid, the meropenem MIC increased to 0.125 mM. The other human antibiotics that were tested exhibited a similar trend. The MIC of acetic acid in EL4 on day 70 was observed to be 35 mM, which remained constant even after the removal of acetic acid stress. Readaptation of EL4 in acetic acid for 20 more days caused the acetic acid MIC to increase to 37 mM. Bacterial whole genome sequencing of EL5 revealed base substitutions in several genes involved in pathogenesis, such as the phoQ and wzc genes. Transcriptomic analysis of EL5 revealed upregulation of virulence, drug resistance, toxin-antitoxin, and iron metabolism genes. Unstable Salmonella small colony variants (SSCV) of S. Enteritidis were also observed in EL5 as compared to the wild-type unevolved S. Enteritidis. Discussion This study presents a comprehensive understanding of the evolution of the phenotypic, genomic, and transcriptomic changes in S. Enteritidis due to prolonged acid exposure through ALE.
Collapse
Affiliation(s)
- Mrinalini Ghoshal
- Department of Microbiology, University of Massachusetts, Amherst, MA, United States
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Tyler D. Bechtel
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - John G. Gibbons
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Lynne McLandsborough
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
6
|
Xu M, Lyu Y, Cheng K, Zhang B, Cai Z, Chen G, Zhou J. Interactions between quorum sensing/quorum quenching and virulence genes may affect coral health by regulating symbiotic bacterial community. ENVIRONMENTAL RESEARCH 2023; 238:117221. [PMID: 37775014 DOI: 10.1016/j.envres.2023.117221] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 10/01/2023]
Abstract
Quorum sensing (QS) and quorum quenching (QQ) are two antagonistic processes that may regulate the composition, function and structure of bacterial community. In coral holobiont, autoinducers signaling mediate the communication pathways between interspecies and intraspecies bacteria, which regulate the expression of the virulence factors that can damage host health. However, under environmental stressors, the interaction between the QS/QQ gene and virulence factors and their role in the bacterial communities and coral bleaching is still not fully clear. To address this question, here, metagenomics method was used to examine the profile of QS/QQ and virulence genes from a deeply sequenced microbial database, obtained from three bleached and non-bleached corals species. The prediction of bacterial genes of bleached samples involved in functional metabolic pathways were remarkably decreased, and the bacterial community structure on bleached samples was significantly different compared to non-bleached samples. The distribution and significant difference in QS/QQ and virulence genes were also carried out. We found that Proteobacteria was dominant bacteria among all samples, and AI-1 system is widespread within this group of bacteria. The identified specific genes consistently exhibited a trend of increased pathogenicity in bleached corals relative to non-bleached corals. The abundance of pathogenicity-associated QS genes, including bapA, pfoA and dgcB genes, were significantly increased in bleached corals and can encode the protein of biofilm formation and the membrane damaging toxins promoting pathogenic adhesion and infection. Similarly, the virulence genes, such as superoxide dismutase (Mn-SOD gene), metalloproteinase (yme1, yydH and zmpB), glycosidases (malE, malF, malG, and malK) and LodAB (lodB) genes significantly increased. Conversely, QQ genes that inhibit QS activity and virulence factors to defense the pathogens, including blpA, lsrK, amiE, aprE and gmuG showed a significant decrease in bleached groups. Furthermore, the significant correlations were found among virulence, QS/QQ genes, and coral associated bacterial community, and the virulence genes interact with key QS/QQ genes, directly or indirectly influence symbiotic bacterial communities homeostasis, thereby impacting coral health. It suggested that the functional and structural divergence in the symbiont bacteria may be partially attribute to the interplay, involving interactions among the host, bacterial communication signal systems, and bacterial virulence factors. In conclusion, these data helped to reveal the characteristic behavior of coral symbiotic bacteria, and facilitated a better understanding of bleaching mechanism from a chemical ecological perspective.
Collapse
Affiliation(s)
- Meiting Xu
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, 264209, Shandong Province, PR China
| | - Yihua Lyu
- Nansha Islands Coral Reef Ecosystem National Observation and Research Station, Guangzhou, 510300, PR China
| | - Keke Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Boya Zhang
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Guofu Chen
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, 264209, Shandong Province, PR China.
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China.
| |
Collapse
|
7
|
Alreshidi M, Dunstan H, MacDonald M, Saeed M, Elkahoui S, Roberts T. Significant Changes in Cytoplasmic Amino Acid Composition Occur in the Transition between Mid-Exponential and Stationary Phases of Growth of Staphylococcus aureus: An Example of Adaptive Homeostasis in Response to Nutrient Limitations. Microorganisms 2023; 11:microorganisms11010147. [PMID: 36677439 PMCID: PMC9860745 DOI: 10.3390/microorganisms11010147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
The bacterial pathogen Staphylococcus aureus causes a wide range of infections that result in high morbidity and mortality rates worldwide. S. aureus is known for its capacity to survive harsh environments between hosts and certain strains are very efficient as opportunistic pathogens. It is important to understand their capacities for metabolic adaptation in response to changing environmental conditions. This investigation aimed to explore the alterations in the amino acid compositions of the cytoplasm as nutrients became limiting during the growth of S. aureus. Cells were grown under optimal growth conditions and harvested at the mid-exponential and stationary phases of growth and then extracted for the analyses of amino acids in the cytoplasm. The analyses revealed that the stationary phase cells had a significantly higher concentration of total cytoplasmic amino acids compared with cells at the mid-exponential phase and displayed substantial alterations in amino acid composition. Aspartic acid was the major amino acid in the stationary phase cells, whereas glutamic acid was the most abundant in the mid-exponential cells. The glutamic acid was reduced by 47% of its original value when the growth was extended to the stationary phase. Interestingly, certain amino acids were either absent or present depending on the phase of growth. These outcomes are in line with the premise that bacterial cells of S. aureus transition into a different form of metabolic homeostasis in the shift between the exponential and stationary phases of growth, as nutrients become depleted and waste products accumulate in the external medium. The ability of S. aureus to continually and promptly adapt to differences within growth phases may represent an essential strategy assisting its virulence as a successful opportunistic pathogen to establish infections. An understanding of the switch mechanisms controlling these obvious alterations in amino acids through the growth/life cycle of this virulent pathogen may provide novel clinical strategies to battle infection.
Collapse
Affiliation(s)
- Mousa Alreshidi
- Department of Biology, College of Science, University of Ha’il, Ha’il 2440, Saudi Arabia
- Molecular Diagnostic and Personalized Therapeutics Unit, University of Ha’il, Ha’il 2440, Saudi Arabia
- Correspondence: ; Tel.: +966-505498890
| | - Hugh Dunstan
- InnovAAte Pty Ltd., 45 Hunter Street, Newcastle, NSW 2300, Australia
| | - Margaret MacDonald
- Pathogenic Microbiology Laboratory, Faculty of Science, School of Environmental and Life Sciences, University Drive, Newcastle, NSW 2308, Australia
| | - Mohd Saeed
- Department of Biology, College of Science, University of Ha’il, Ha’il 2440, Saudi Arabia
- Molecular Diagnostic and Personalized Therapeutics Unit, University of Ha’il, Ha’il 2440, Saudi Arabia
| | - Salem Elkahoui
- Department of Biology, College of Science, University of Ha’il, Ha’il 2440, Saudi Arabia
- Molecular Diagnostic and Personalized Therapeutics Unit, University of Ha’il, Ha’il 2440, Saudi Arabia
| | - Tim Roberts
- Pathogenic Microbiology Laboratory, Faculty of Science, School of Environmental and Life Sciences, University Drive, Newcastle, NSW 2308, Australia
| |
Collapse
|
8
|
Ridyard KE, Overhage J. The Potential of Human Peptide LL-37 as an Antimicrobial and Anti-Biofilm Agent. Antibiotics (Basel) 2021; 10:antibiotics10060650. [PMID: 34072318 PMCID: PMC8227053 DOI: 10.3390/antibiotics10060650] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
The rise in antimicrobial resistant bacteria threatens the current methods utilized to treat bacterial infections. The development of novel therapeutic agents is crucial in avoiding a post-antibiotic era and the associated deaths from antibiotic resistant pathogens. The human antimicrobial peptide LL-37 has been considered as a potential alternative to conventional antibiotics as it displays broad spectrum antibacterial and anti-biofilm activities as well as immunomodulatory functions. While LL-37 has shown promising results, it has yet to receive regulatory approval as a peptide antibiotic. Despite the strong antimicrobial properties, LL-37 has several limitations including high cost, lower activity in physiological environments, susceptibility to proteolytic degradation, and high toxicity to human cells. This review will discuss the challenges associated with making LL-37 into a viable antibiotic treatment option, with a focus on antimicrobial resistance and cross-resistance as well as adaptive responses to sub-inhibitory concentrations of the peptide. The possible methods to overcome these challenges, including immobilization techniques, LL-37 delivery systems, the development of LL-37 derivatives, and synergistic combinations will also be considered. Herein, we describe how combination therapy and structural modifications to the sequence, helicity, hydrophobicity, charge, and configuration of LL-37 could optimize the antimicrobial and anti-biofilm activities of LL-37 for future clinical use.
Collapse
|
9
|
Kwak GY, Goo E, Jeong H, Hwang I. Adverse effects of adaptive mutation to survive static culture conditions on successful fitness of the rice pathogen Burkholderia glumae in a host. PLoS One 2020; 15:e0238151. [PMID: 32833990 PMCID: PMC7444824 DOI: 10.1371/journal.pone.0238151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/10/2020] [Indexed: 11/18/2022] Open
Abstract
Bacteria often possess relatively flexible genome structures and adaptive genetic variants that allow survival in unfavorable growth conditions. Bacterial survival tactics in disadvantageous microenvironments include mutations that are beneficial against threats in their niche. Here, we report that the aerobic rice bacterial pathogen Burkholderia glumae BGR1 changes a specific gene for improved survival in static culture conditions. Static culture triggered formation of colony variants with deletions or point mutations in the gene bspP (BGLU_RS28885), which putatively encodes a protein that contains PDC2, PAS-9, SpoIIE, and HATPase domains. The null mutant of bspP survived longer in static culture conditions and produced a higher level of bis-(3'-5')-cyclic dimeric guanosine monophosphate than the wild type. Expression of the bacterial cellulose synthase regulator (bcsB) gene was upregulated in the mutant, consistent with the observation that the mutant formed pellicles faster than the wild type. Mature pellicle formation was observed in the bspP mutant before pellicle formation in wild-type BGR1. However, the population density of the bspP null mutant decreased substantially when grown in Luria-Bertani medium with vigorous agitation due to failure of oxalate-mediated detoxification of the alkaline environment. The bspP null mutant was less virulent and exhibited less effective colonization of rice plants than the wild type. All phenotypes caused by mutations in bspP were recovered to those of the wild type by genetic complementation. Thus, although wild-type B. glumae BGR1 prolonged viability by spontaneous mutation under static culture conditions, such genetic changes negatively affected colonization in rice plants. These results suggest that adaptive gene sacrifice of B. glumae to survive unfavorable growth conditions is not always desirable as it can adversely affect adaptability in the host.
Collapse
Affiliation(s)
- Gi-Young Kwak
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Eunhye Goo
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Haeyoon Jeong
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Ingyu Hwang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Bridier A, Piard JC, Briandet R, Bouchez T. Emergence of a Synergistic Diversity as a Response to Competition in Pseudomonas putida Biofilms. MICROBIAL ECOLOGY 2020; 80:47-59. [PMID: 31844910 DOI: 10.1007/s00248-019-01470-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 12/01/2019] [Indexed: 06/10/2023]
Abstract
Genetic diversification through the emergence of variants is one of the known mechanisms enabling the adaptation of bacterial communities. We focused in this work on the adaptation of the model strain Pseudomonas putida KT2440 in association with another P. putida strain (PCL1480) recently isolated from soil to investigate the potential role of bacterial interactions in the diversification process. On the basis of colony morphology, three variants of P. putida KT2440 were obtained from co-culture after 168 h of growth whereas no variant was identified from the axenic KT2440 biofilm. The variants exhibited distinct phenotypes and produced biofilms with specific architecture in comparison with the ancestor. The variants better competed with the P. putida PCL1480 strain in the dual-strain biofilms after 24 h of co-culture in comparison with the ancestor. Moreover, the synergistic interaction of KT2440 ancestor and the variants led to an improved biofilm production and to higher competitive ability versus the PCL1480 strain, highlighting the key role of diversification in the adaptation of P. putida KT2440 in the mixed community. Whole genome sequencing revealed mutations in polysaccharides biosynthesis protein, membrane transporter, or lipoprotein signal peptidase genes in variants.
Collapse
Affiliation(s)
- Arnaud Bridier
- ANSES, Fougères Laboratory, AB2R, 10B rue Claude Bourgelat, 35300, Fougères, France.
- IRSTEA, UR PROSE, 1 rue Pierre-Gilles de Gennes, 92761, Antony Cedex, France.
| | - J C Piard
- Institut Micalis, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - R Briandet
- Institut Micalis, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - T Bouchez
- IRSTEA, UR PROSE, 1 rue Pierre-Gilles de Gennes, 92761, Antony Cedex, France
| |
Collapse
|
11
|
Cooper AL, Low AJ, Koziol AG, Thomas MC, Leclair D, Tamber S, Wong A, Blais BW, Carrillo CD. Systematic Evaluation of Whole Genome Sequence-Based Predictions of Salmonella Serotype and Antimicrobial Resistance. Front Microbiol 2020; 11:549. [PMID: 32318038 PMCID: PMC7147080 DOI: 10.3389/fmicb.2020.00549] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/13/2020] [Indexed: 01/21/2023] Open
Abstract
Whole-genome sequencing (WGS) is used increasingly in public-health laboratories for typing and characterizing foodborne pathogens. To evaluate the performance of existing bioinformatic tools for in silico prediction of antimicrobial resistance (AMR) and serotypes of Salmonella enterica, WGS-based genotype predictions were compared with the results of traditional phenotyping assays. A total of 111 S. enterica isolates recovered from a Canadian baseline study on broiler chicken conducted in 2012-2013 were selected based on phenotypic resistance to 15 different antibiotics and isolates were subjected to WGS. Both SeqSero2 and SISTR accurately determined S. enterica serotypes, with full matches to laboratory results for 87.4 and 89.2% of isolates, respectively, and partial matches for the remaining isolates. Antimicrobial resistance genes (ARGs) were identified using several bioinformatics tools including the Comprehensive Antibiotic Resistance Database – Resistance Gene Identifier (CARD-RGI), Center for Genomic Epidemiology (CGE) ResFinder web tool, Short Read Sequence Typing for Bacterial Pathogens (SRST2 v 0.2.0), and k-mer alignment method (KMA v 1.17). All ARG identification tools had ≥ 99% accuracy for predicting resistance to all antibiotics tested except streptomycin (accuracy 94.6%). Evaluation of ARG detection in assembled versus raw-read WGS data found minimal observable differences that were gene- and coverage- dependent. Where initial phenotypic results indicated isolates were sensitive, yet ARGs were detected, repeat AMR testing corrected discrepancies. All tools failed to find resistance-determining genes for one gentamicin- and two streptomycin-resistant isolates. Further investigation found a single nucleotide polymorphism (SNP) in the nuoF coding region of one of the isolates which may be responsible for the observed streptomycin-resistant phenotype. Overall, WGS-based predictions of AMR and serotype were highly concordant with phenotype determination regardless of computational approach used.
Collapse
Affiliation(s)
- Ashley L Cooper
- Research and Development, Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, ON, Canada.,Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Andrew J Low
- Research and Development, Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Adam G Koziol
- Research and Development, Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Matthew C Thomas
- Microbial Contaminants, Canadian Food Inspection Agency, Calgary, AB, Canada
| | - Daniel Leclair
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Ottawa, ON, Canada
| | - Sandeep Tamber
- Microbiology Research Division, Bureau of Microbial Hazards, Health Canada, Ottawa, ON, Canada
| | - Alex Wong
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Burton W Blais
- Research and Development, Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, ON, Canada.,Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Catherine D Carrillo
- Research and Development, Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, ON, Canada
| |
Collapse
|
12
|
Alreshidi MM, Dunstan RH, Macdonald MM, Gottfries J, Roberts TK. The Uptake and Release of Amino Acids by Staphylococcus aureus at Mid-Exponential and Stationary Phases and Their Corresponding Responses to Changes in Temperature, pH and Osmolality. Front Microbiol 2020; 10:3059. [PMID: 32038532 PMCID: PMC6990410 DOI: 10.3389/fmicb.2019.03059] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 12/18/2019] [Indexed: 01/21/2023] Open
Abstract
Staphylococcus aureus is an important pathogen that is associated with nosocomial infections, as well as food poisoning. This bacterium is resistant to antimicrobial agents and can survive in a wide range of environmental conditions. The aim of this study was to measure the uptake and release of amino acids by S. aureus at mid-exponential and stationary phases of growth following exposure to a combination of conditions including variations in temperature, pH and NaCl. Bacterial cells were grown up to mid-exponential and stationary phases in tryptic soy broth (TSB), where the supernatants were collected for analyses of amino acids to determine the uptake and release characteristics. The uptake/release of amino acids was estimated by subtracting the initial levels of the free amino acids in the media from those measured at mid-exponential and stationary phases of growth. When cells were grown at ideal conditions, the analyses revealed that significant uptake of amino acids had occurred by stationary phase compared with the mid-exponential phase. A substantial release of valine and tyrosine into the external media was observed by cells at stationary phase. At both phases, the uptake and release patterns were significantly different between cells grown under ideal control conditions, when compared with those grown under various combinations of sub-optimal environmental conditions. The analyses of the supernatants harvested from controls and treatment groups at exponential phase indicated that the total uptake of amino acids was reduced approximately five times by cells grown with addition of 2.5% NaCl or with pH6 at 35°C, and 2-fold by cells grown at pH8 at 35°C. However, the final quantities of amino acids taken up by cells grown to stationary phase did not significantly alter between control and treated samples. Valine was found to be the most abundant amino acid that was significantly released into the media at stationary phase by both control and treated samples. It was evident that diverse environmental conditions resulted in differential patterns of amino acid uptake and release during adaptation to designated conditions.
Collapse
Affiliation(s)
- Mousa M Alreshidi
- Department of Biology, College of Sciences, University of Ha'il, Ha'il, Saudi Arabia
| | - R Hugh Dunstan
- Metabolic Research Group, Faculty of Science, School of Environmental and Life Sciences, University Drive, Callaghan, NSW, Australia
| | - Margaret M Macdonald
- Metabolic Research Group, Faculty of Science, School of Environmental and Life Sciences, University Drive, Callaghan, NSW, Australia
| | - Johan Gottfries
- Department of Chemistry, University of Gothenburg, Gothenburg, Sweden
| | - Tim K Roberts
- Metabolic Research Group, Faculty of Science, School of Environmental and Life Sciences, University Drive, Callaghan, NSW, Australia
| |
Collapse
|
13
|
Salmonella enterica persister cells form unstable small colony variants after in vitro exposure to ciprofloxacin. Sci Rep 2019; 9:7232. [PMID: 31076596 PMCID: PMC6510897 DOI: 10.1038/s41598-019-43631-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/27/2019] [Indexed: 01/12/2023] Open
Abstract
Persistence phenotype and small colony variants (SCVs) can be part of a bacterial bet-hedging strategy for survival under environmental stresses, such as antimicrobial exposure. These phenotypes are of particular concern in persistent and relapsing infections, since cells resume to normal growth after cessation of the stressful condition. In this context, we found persisters and unstable SCVs as phenotypic variants of Salmonella enterica that were able to survive ciprofloxacin exposure. A high heterogeneity in persister levels was observed among S. enterica isolates grown under planktonic and biofilm conditions and exposed to ciprofloxacin or ceftazidime, which may indicate persistence as a non-multidrug-tolerant phenotype. Nevertheless, a comparable variability was not found in the formation of SCVs among the isolates. Indeed, similar proportions of SCV in relation to normal colony phenotype (NCP) were maintained even after three successive cycles of ciprofloxacin exposure testing colonies from both origins (SCV or NCP). Additionally, we found filamentous and dividing cells in the same scanning electron microscopy images from both SCV and NCP. These findings lead us to hypothesize that besides variability among isolates, a single isolate may generate distinct populations of persisters, where cells growing under distinct conditions may adopt different and perhaps complementary survival strategies.
Collapse
|
14
|
Proctor R. Respiration and Small Colony Variants of Staphylococcus aureus. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0069-2019. [PMID: 31198131 PMCID: PMC11257146 DOI: 10.1128/microbiolspec.gpp3-0069-2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Indexed: 12/16/2022] Open
Abstract
Respiratory mutants, both naturally occurring and genetically constructed, have taught us about the importance of metabolism in influencing virulence factor production, persistence, and antibiotic resistance. As we learn more about small colony variants, we find that Staphylococcus aureus has many pathways to produce small colony variants, although the respiratory variants are the best described clinically and in the laboratory.
Collapse
Affiliation(s)
- Richard Proctor
- Department of Medical Microbiology and Immunology University of Wisconsin School of Medicine and Public Health Madison, WI 53705
| |
Collapse
|
15
|
glnA Truncation in Salmonella enterica Results in a Small Colony Variant Phenotype, Attenuated Host Cell Entry, and Reduced Expression of Flagellin and SPI-1-Associated Effector Genes. Appl Environ Microbiol 2018; 84:AEM.01838-17. [PMID: 29150501 DOI: 10.1128/aem.01838-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/25/2017] [Indexed: 11/20/2022] Open
Abstract
Many pathogenic bacteria use sophisticated survival strategies to overcome harsh environmental conditions. One strategy is the formation of slow-growing subpopulations termed small colony variants (SCVs). Here we characterize an SCV that spontaneously emerged from an axenic Salmonella enterica serovar Typhimurium water culture. We found that the SCV harbored a frameshift mutation in the glutamine synthetase gene glnA, leading to an ∼90% truncation of the corresponding protein. Glutamine synthetase, a central enzyme in nitrogen assimilation, converts glutamate and ammonia to glutamine. Glutamine is an important nitrogen donor that is required for the synthesis of cellular compounds. The internal glutamine pool serves as an indicator of nitrogen availability in Salmonella In our study, the SCV and a constructed glnA knockout mutant showed reduced growth rates, compared to the wild type. Moreover, the SCV and the glnA mutant displayed attenuated entry into host cells and severely reduced levels of exoproteins, including flagellin and several Salmonella pathogenicity island 1 (SPI-1)-dependent secreted virulence factors. We found that these proteins were also depleted in cell lysates, indicating their diminished synthesis. Accordingly, the SCV and the glnA mutant had severely decreased expression of flagellin genes, several SPI-1 effector genes, and a class 2 motility gene (flgB). However, the expression of a class 1 motility gene (flhD) was not affected. Supplementation with glutamine or genetic reversion of the glnA truncation restored growth, cell entry, gene expression, and protein abundance. In summary, our data show that glnA is essential for the growth of S. enterica and controls important motility- and virulence-related traits in response to glutamine availability.IMPORTANCE Salmonella enterica serovar Typhimurium is a significant pathogen causing foodborne infections. Here we describe an S Typhimurium small colony variant (SCV) that spontaneously emerged from a long-term starvation experiment in water. It is important to study SCVs because (i) SCVs may arise spontaneously upon exposure to stresses, including environmental and host defense stresses, (ii) SCVs are slow growing and difficult to eradicate, and (iii) only a few descriptions of S. enterica SCVs are available. We clarify the genetic basis of the SCV described here as a frameshift mutation in the glutamine synthetase gene glnA, leading to glutamine auxotrophy. In Salmonella, internal glutamine limitation serves as a sign of external nitrogen deficiency and is thought to regulate cell growth. In addition to exhibiting impaired growth, the SCV showed reduced host cell entry and reduced expression of SPI-1 virulence and flagellin genes.
Collapse
|
16
|
Liu J, Zhang J, Guo L, Zhao W, Hu X, Wei X. Inactivation of a putative efflux pump (LmrB) in Streptococcus mutans results in altered biofilm structure and increased exopolysaccharide synthesis: implications for biofilm resistance. BIOFOULING 2017; 33:481-493. [PMID: 28587519 DOI: 10.1080/08927014.2017.1323206] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/17/2017] [Indexed: 06/07/2023]
Abstract
Efflux pumps are a mechanism associated with biofilm formation and resistance. There is limited information regarding efflux pumps in Streptococcus mutans, a major pathogen in dental caries. The aim of this study was to investigate potential roles of a putative efflux pump (LmrB) in S. mutans biofilm formation and susceptibility. Upon lmrB inactivation and antimicrobial exposure, the biofilm structure and expression of other efflux pumps were examined using confocal laser scanning microscopy (CLSM) and qRT-PCR. lmrB inactivation resulted in biofilm structural changes, increased EPS formation and EPS-related gene transcription (p < 0.05), but no improvement in susceptibility was observed. The expression of most efflux pump genes increased upon lmrB inactivation when exposed to antimicrobials (p < 0.05), suggesting a feedback mechanism that activated the transcription of other efflux pumps to compensate for the loss of lmrB. These observations imply that sole inactivation of lmrB is not an effective solution to control biofilms.
Collapse
Affiliation(s)
- Jia Liu
- a Guanghua School of Stomatology, Hospital of Stomatology , Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology , Guangzhou , PR China
| | - Jianying Zhang
- b Department of Operative Dentistry and Endodontics, Xiangya Stomatological Hospital , Central South University , Changsha , PR China
| | - Lihong Guo
- a Guanghua School of Stomatology, Hospital of Stomatology , Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology , Guangzhou , PR China
| | - Wei Zhao
- a Guanghua School of Stomatology, Hospital of Stomatology , Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology , Guangzhou , PR China
| | - Xiaoli Hu
- a Guanghua School of Stomatology, Hospital of Stomatology , Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology , Guangzhou , PR China
| | - Xi Wei
- a Guanghua School of Stomatology, Hospital of Stomatology , Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology , Guangzhou , PR China
| |
Collapse
|