1
|
García-Vielma C, Cortés-Gutiérrez EI, Carranza-Torres IE, Guzmán-Delgado NE, Dávila-Rodríguez MI, Cerda-Flores RM, Carranza-Rosales P. An ex vivo model to evaluate DNA damage by comet assay in breast-cancer tissue. Toxicol Mech Methods 2025:1-8. [PMID: 40387106 DOI: 10.1080/15376516.2025.2503872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 05/02/2025] [Accepted: 05/03/2025] [Indexed: 05/20/2025]
Abstract
Single cell gel electrophoresis (comet assay) is a research tool known for its use in the assessment of DNA damage in which peripheral blood lymphocytes are used as a cellular model. The objective of this study was to adapt the comet assay to fresh normal and tumor breast tissue explants to assess DNA damage. Representative samples were obtained from nine patients with infiltrating ductal adenocarcinoma during the time of surgical intervention for the resection of the tumor. One hundred micrometer thick explants were prepared from normal and tumor breast tissue using a tissue slicer. Explants were harvested into six-well microplates with 4 mL of sterile serum-free Dulbecco's modified Eagle's medium/Ham's F12 medium at 4 °C for immediate processing of the comet assay. The results indicated that the comet assay can be used to analyze DNA damage in tumors and healthy breast tissue in an ex vivo model that allows visualization of the level of DNA damage. Compared to non-tumor cells, DNA damage in breast cancer was significantly increased (p < 0.05); furthermore, DNA damage was higher in samples treated with H2O2 (positive control) and confirmed that cells in the explants can interact with the chemicals tested, as well as the functionality of the technique. The comet assay using fresh tissue explants represents an alternative tool with potential to identify DNA damage in tumor tissue and to study new drugs to personalize the use of DNA-damaging therapies.
Collapse
Affiliation(s)
- Catalina García-Vielma
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, Mexico
| | | | | | - Nancy Elena Guzmán-Delgado
- División de Investigación en Salud, Unidad Médica de Alta Especialidad, "Dr. Alfonso J. Treviño" del Centro Médico Nacional del Noreste, Instituto Mexicano del Seguro Social, Monterrey, Mexico
| | | | | | - Pilar Carranza-Rosales
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, Mexico
| |
Collapse
|
2
|
Yang YS, Chen HY, Lin IC, Lin MH, Wang WY, Kuo SC, Chen WT, Cheng YH, Sun JR. Imipenem reduces the efficacy of vancomycin against Elizabethkingia species. J Antimicrob Chemother 2024; 79:2048-2052. [PMID: 38906827 DOI: 10.1093/jac/dkae210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/06/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Elizabethkingia spp. are emerging as nosocomial pathogens causing various infections. These pathogens express resistance to a broad range of antibiotics, thus requiring antimicrobial combinations for coverage. However, possible antagonistic interactions between antibiotics have not been thoroughly explored. This study aimed to evaluate the effectiveness of antimicrobial combinations against Elizabethkingia infections, focusing on their impact on pathogenicity, including biofilm production and cell adhesion. METHODS Double-disc diffusion, time-kill, and chequerboard assays were used for evaluating the combination effects of antibiotics against Elizabethkingia spp. We further examined the antagonistic effects of antibiotic combinations on biofilm formation and adherence to A549 human respiratory epithelial cells. Further validation of the antibiotic interactions and their implications was performed using ex vivo hamster precision-cut lung sections (PCLSs) to mimic in vivo conditions. RESULTS Antagonistic effects were observed between cefoxitin, imipenem and amoxicillin/clavulanic acid in combination with vancomycin. The antagonism of imipenem toward vancomycin was specific to its effects on the genus Elizabethkingia. Imipenem further hampered the bactericidal effect of vancomycin and impaired its inhibition of biofilm formation and the adhesion of Elizabethkingia meningoseptica ATCC 13253 to human cells. In the ex vivo PCLS model, vancomycin exhibited dose-dependent bactericidal effects; however, the addition of imipenem also reduced the effect of vancomycin. CONCLUSIONS Imipenem reduced the bactericidal efficacy of vancomycin against Elizabethkingia spp. and compromised its capacity to inhibit biofilm formation, thereby enhancing bacterial adhesion. Clinicians should be aware of the potential issues with the use of these antibiotic combinations when treating Elizabethkingia infections.
Collapse
Affiliation(s)
- Ya-Sung Yang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsing-Yu Chen
- Department of Medical Techniques, Taipei City Hospital Ren-Ai Branch, Taipei, Taiwan
| | - I Chieh Lin
- National Defense Medical Center, Institute of Preventive Medicine, Taipei, Taiwan
| | - Meng-He Lin
- National Defense Medical Center, Institute of Preventive Medicine, Taipei, Taiwan
| | - Wei-Yao Wang
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shu-Chen Kuo
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - Wen-Ting Chen
- National Defense Medical Center, Institute of Preventive Medicine, Taipei, Taiwan
| | - Yun-Hsiang Cheng
- National Defense Medical Center, Institute of Preventive Medicine, Taipei, Taiwan
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Jun-Ren Sun
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- National Defense Medical Center, Institute of Preventive Medicine, Taipei, Taiwan
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
3
|
Koziol-White C, Gebski E, Cao G, Panettieri RA. Precision cut lung slices: an integrated ex vivo model for studying lung physiology, pharmacology, disease pathogenesis and drug discovery. Respir Res 2024; 25:231. [PMID: 38824592 PMCID: PMC11144351 DOI: 10.1186/s12931-024-02855-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/18/2024] [Indexed: 06/03/2024] Open
Abstract
Precision Cut Lung Slices (PCLS) have emerged as a sophisticated and physiologically relevant ex vivo model for studying the intricacies of lung diseases, including fibrosis, injury, repair, and host defense mechanisms. This innovative methodology presents a unique opportunity to bridge the gap between traditional in vitro cell cultures and in vivo animal models, offering researchers a more accurate representation of the intricate microenvironment of the lung. PCLS require the precise sectioning of lung tissue to maintain its structural and functional integrity. These thin slices serve as invaluable tools for various research endeavors, particularly in the realm of airway diseases. By providing a controlled microenvironment, precision-cut lung slices empower researchers to dissect and comprehend the multifaceted interactions and responses within lung tissue, thereby advancing our understanding of pulmonary pathophysiology.
Collapse
Affiliation(s)
- Cynthia Koziol-White
- Rutgers Institute for Translational Medicine and Science, The State University of NJ, 08901, Rutgers, New Brunswick, NJ, USA.
| | - Eric Gebski
- Rutgers Institute for Translational Medicine and Science, The State University of NJ, 08901, Rutgers, New Brunswick, NJ, USA
| | - Gaoyaun Cao
- Rutgers Institute for Translational Medicine and Science, The State University of NJ, 08901, Rutgers, New Brunswick, NJ, USA
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, The State University of NJ, 08901, Rutgers, New Brunswick, NJ, USA
| |
Collapse
|
4
|
Saglam-Metiner P, Yildiz-Ozturk E, Tetik-Vardarli A, Cicek C, Goksel O, Goksel T, Tezcanli B, Yesil-Celiktas O. Organotypic lung tissue culture as a preclinical model to study host- influenza A viral infection: A case for repurposing of nafamostat mesylate. Tissue Cell 2024; 87:102319. [PMID: 38359705 DOI: 10.1016/j.tice.2024.102319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/11/2024] [Accepted: 01/29/2024] [Indexed: 02/17/2024]
Abstract
Reliable and effective models for recapitulation of host-pathogen interactions are imperative for the discovery of potential therapeutics. Ex vivo models can fulfill these requirements as the multicellular native environment in the tissue is preserved and be utilized for toxicology, vaccine, infection and drug efficacy studies due to the presence of immune cells. Drug repurposing involves the identification of new applications for already approved drugs that are not related to the prime medical indication and emerged as a strategy to cope with slow pace of drug discovery due to high costs and necessary phases to reach the patients. Within the scope of the study, broad-spectrum serine protease inhibitor nafamostat mesylate was repurposed to inhibit influenza A infection and evaluated by a translational ex vivo organotypic model, in which human organ-level responses can be achieved in preclinical safety studies of potential antiviral agents, along with in in vitro lung airway culture. The safe doses were determined as 10 µM for in vitro, whereas 22 µM for ex vivo to be applied for evaluation of host-pathogen interactions, which reduced virus infectivity, increased cell/tissue viability, and protected total protein content by reducing cell death with the inflammatory response. When the gene expression levels of specific pro-inflammatory, anti-inflammatory and cell surface markers involved in antiviral responses were examined, the significant inflammatory response represented by highly elevated mRNA gene expression levels of cytokines and chemokines combined with CDH5 downregulated by 5.1-fold supported the antiviral efficacy of NM and usability of ex vivo model as a preclinical infection model.
Collapse
Affiliation(s)
- Pelin Saglam-Metiner
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey; Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir 35100, Turkey
| | - Ece Yildiz-Ozturk
- Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir 35100, Turkey; Department of Food Processing, Food Technology Programme, Yasar University, 35100 Izmir, Turkey
| | - Aslı Tetik-Vardarli
- Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir 35100, Turkey; Department of Medical Biology, Faculty of Medicine, Ege University, Izmir 35100, Turkey
| | - Candan Cicek
- Department of Medical Microbiology, Faculty of Medicine, Ege University, Izmir 35100, Turkey
| | - Ozlem Goksel
- Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir 35100, Turkey; Department of Pulmonary Medicine, Division of Allergy and Immunology, Faculty of Medicine, Ege University, Izmir 35100, Turkey
| | - Tuncay Goksel
- Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir 35100, Turkey; Department of Pulmonary Medicine, Division of Allergy and Immunology, Faculty of Medicine, Ege University, Izmir 35100, Turkey
| | | | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey; Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir 35100, Turkey.
| |
Collapse
|
5
|
Kassegne L, Veziris N, Fraisse P. [A pharmacologic approach to treatment of Mycobacterium abscessus pulmonary disease]. Rev Mal Respir 2024; 41:29-42. [PMID: 38016833 DOI: 10.1016/j.rmr.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 10/22/2023] [Indexed: 11/30/2023]
Abstract
Mycobacterium abscessus is a fast-growing non-tuberculous mycobacteria complex causing pulmonary infections, comprising the subspecies abscessus, massiliense and bolletii. Differences are based predominantly on natural inducible macrolide resistance, active in most Mycobacterium abscessus spp abscessus species and in Mycobacterium abscessus spp bolletii but inactive in Mycobacterium abscessus spp massiliense. Therapy consists in long-term treatment, combining multiple antibiotics. Prognosis is poor, as only 40% of patients experience cure. Pharmacodynamic and pharmacokinetic data on M. abscessus have recently been published, showing that therapy ineffectiveness might be explained by intrinsic bacterial resistance (macrolides…) and by the unfavorable pharmacokinetics of the recommended antibiotics. Other molecules and inhaled antibiotics are promising.
Collapse
Affiliation(s)
- L Kassegne
- Service de pneumologie, pôle de pathologie thoracique, nouvel hôpital civil, Strasbourg, France; Groupe pour l'enseignement et la recherche en pneumo-infectiologie de la SPLF, 66, boulevard Saint-Michel, 75006 Paris, France.
| | - N Veziris
- Département de bactériologie, Inserm U1135, Centre d'immunologie et des maladies infectieuses (CIMI-Paris), Centre national de référence des mycobactéries et de la résistance des mycobactéries aux antituberculeux, Groupe hospitalier AP-HP, Sorbonne université, site Saint-Antoine, Paris, France; Groupe pour l'enseignement et la recherche en pneumo-infectiologie de la SPLF, 66, boulevard Saint-Michel, 75006 Paris, France
| | - P Fraisse
- Service de pneumologie, pôle de pathologie thoracique, nouvel hôpital civil, Strasbourg, France; Groupe pour l'enseignement et la recherche en pneumo-infectiologie de la SPLF, 66, boulevard Saint-Michel, 75006 Paris, France
| |
Collapse
|
6
|
Jolly A, Fernández B, Mundo SL, Elguezabal N. Modeling Paratuberculosis in Laboratory Animals, Cells, or Tissues: A Focus on Their Applications for Pathogenesis, Diagnosis, Vaccines, and Therapy Studies. Animals (Basel) 2023; 13:3553. [PMID: 38003170 PMCID: PMC10668694 DOI: 10.3390/ani13223553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Paratuberculosis is a chronic granulomatous enteritis caused by Mycobacterium avium subsp. Paratuberculosis that affects a wide variety of domestic and wild animals. It is considered one of the diseases with the highest economic impact on the ruminant industry. Despite many efforts and intensive research, paratuberculosis control still remains controversial, and the existing diagnostic and immunoprophylactic tools have great limitations. Thus, models play a crucial role in understanding the pathogenesis of infection and disease, and in testing novel vaccine candidates. Ruminant animal models can be restricted by several reasons, related to space requirements, the cost of the animals, and the maintenance of the facilities. Therefore, we review the potential and limitations of the different experimental approaches currently used in paratuberculosis research, focusing on laboratory animals and cell-based models. The aim of this review is to offer a vision of the models that have been used, and what has been achieved or discovered with each one, so that the reader can choose the best model to answer their scientific questions and prove their hypotheses. Also, we bring forward new approaches that we consider worth exploring in the near future.
Collapse
Affiliation(s)
- Ana Jolly
- Cátedra de Inmunología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Av. Chorroarín 280, Buenos Aires C1427CWO, Argentina; (B.F.); (S.L.M.)
| | - Bárbara Fernández
- Cátedra de Inmunología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Av. Chorroarín 280, Buenos Aires C1427CWO, Argentina; (B.F.); (S.L.M.)
- Instituto de Investigaciones en Producción Animal (INPA), CONICET-Universidad de Buenos Aires, Av. Chorroarín 280, Buenos Aires C1427CWO, Argentina
- Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Av. Chorroarín 280, Buenos Aires C1427CWO, Argentina
| | - Silvia Leonor Mundo
- Cátedra de Inmunología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Av. Chorroarín 280, Buenos Aires C1427CWO, Argentina; (B.F.); (S.L.M.)
- Instituto de Investigaciones en Producción Animal (INPA), CONICET-Universidad de Buenos Aires, Av. Chorroarín 280, Buenos Aires C1427CWO, Argentina
- Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Av. Chorroarín 280, Buenos Aires C1427CWO, Argentina
| | - Natalia Elguezabal
- Departamento de Sanidad Animal, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario-Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| |
Collapse
|
7
|
Sullivan MR, McGowen K, Liu Q, Akusobi C, Young DC, Mayfield JA, Raman S, Wolf ID, Moody DB, Aldrich CC, Muir A, Rubin EJ. Biotin-dependent cell envelope remodelling is required for Mycobacterium abscessus survival in lung infection. Nat Microbiol 2023; 8:481-497. [PMID: 36658396 PMCID: PMC9992005 DOI: 10.1038/s41564-022-01307-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/14/2022] [Indexed: 01/21/2023]
Abstract
Mycobacterium abscessus is an emerging pathogen causing lung infection predominantly in patients with underlying structural abnormalities or lung disease and is resistant to most frontline antibiotics. As the pathogenic mechanisms of M. abscessus in the context of the lung are not well-understood, we developed an infection model using air-liquid interface culture and performed a transposon mutagenesis and sequencing screen to identify genes differentially required for bacterial survival in the lung. Biotin cofactor synthesis was required for M. abscessus growth due to increased intracellular biotin demand, while pharmacological inhibition of biotin synthesis prevented bacterial proliferation. Biotin was required for fatty acid remodelling, which increased cell envelope fluidity and promoted M. abscessus survival in the alkaline lung environment. Together, these results indicate that biotin-dependent fatty acid remodelling plays a critical role in pathogenic adaptation to the lung niche, suggesting that biotin synthesis and fatty acid metabolism might provide therapeutic targets for treatment of M. abscessus infection.
Collapse
Affiliation(s)
- Mark R Sullivan
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kerry McGowen
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Qiang Liu
- Department of Medicinal Chemistry, University of Minnesota College of Pharmacy, Minneapolis, MN, USA
| | - Chidiebere Akusobi
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - David C Young
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jacob A Mayfield
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sahadevan Raman
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ian D Wolf
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - D Branch Moody
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota College of Pharmacy, Minneapolis, MN, USA
| | - Alexander Muir
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Eric J Rubin
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
8
|
Liu Y, Wu P, Wang Y, Liu Y, Yang H, Zhou G, Wu X, Wen Q. Application of Precision-Cut Lung Slices as an In Vitro Model for Research of Inflammatory Respiratory Diseases. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120767. [PMID: 36550973 PMCID: PMC9774555 DOI: 10.3390/bioengineering9120767] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
The leading cause of many respiratory diseases is an ongoing and progressive inflammatory response. Traditionally, inflammatory lung diseases were studied primarily through animal models, cell cultures, and organoids. These technologies have certain limitations, despite their great contributions to the study of respiratory diseases. Precision-cut lung slices (PCLS) are thin, uniform tissue slices made from human or animal lung tissue and are widely used extensively both nationally and internationally as an in vitro organotypic model. Human lung slices bridge the gap between in vivo and in vitro models, and they can replicate the living lung environment well while preserving the lungs' basic structures, such as their primitive cells and trachea. However, there is no perfect model that can completely replace the structure of the human lung, and there is still a long way to go in the research of lung slice technology. This review details and analyzes the strengths and weaknesses of precision lung slices as an in vitro model for exploring respiratory diseases associated with inflammation, as well as recent advances in this field.
Collapse
Affiliation(s)
- Yan Liu
- Anesthesiology Department, Dalian Medical University, Dalian 116041, China
| | - Ping Wu
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116014, China
| | - Yin Wang
- Anesthesiology Department, Dalian Medical University, Dalian 116041, China
| | - Yansong Liu
- Anesthesiology Department, Dalian Medical University, Dalian 116041, China
| | - Hongfang Yang
- Department of Anesthesiology, Dalian University Affiliated Xinhua Hospital, Dalian 116021, China
| | | | - Xiaoqi Wu
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116014, China
| | - Qingping Wen
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116014, China
- Correspondence: ; Tel.: +86-180-9887-7988
| |
Collapse
|
9
|
Abstract
Viral infections are common causes of asthma exacerbations. To model these processes ex vivo, human precision-cut lung slices (PCLSs) can be used. Here we describe the infection of human PCLSs with the human influenza virus. We then provide methods to quantify the virus and reveal its localization within infected PCLSs and study consequences of infection, including cell death and production of cytokines, chemokine, and mucus. We also describe the stimulation of PCLSs with immune mediators such as pro-inflammatory tumor necrosis factor α (TNF-α). These models are useful to investigate mechanisms of virally induced asthma exacerbations and study modes of action and efficacy of antiviral and/or anti-inflammatory drugs.
Collapse
Affiliation(s)
- Katherina Sewald
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany.
| | - Olga Danov
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| |
Collapse
|
10
|
Viana F, O'Kane CM, Schroeder GN. Precision-cut lung slices: A powerful ex vivo model to investigate respiratory infectious diseases. Mol Microbiol 2021; 117:578-588. [PMID: 34570407 PMCID: PMC9298270 DOI: 10.1111/mmi.14817] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 11/30/2022]
Abstract
Respiratory infections are a leading cause of mortality worldwide. Most of the research on the underlying disease mechanisms is based on cell culture, organoid, or surrogate animal models. Although these provide important insights, they have limitations. Cell culture models fail to recapitulate cellular interactions in the lung and animal models often do not permit high‐throughput analysis of drugs or pathogen isolates; hence, there is a need for improved, scalable models. Precision‐cut lung slices (PCLS), small, uniform tissue slices generated from animal or human lungs are increasingly recognized and employed as an ex vivo organotypic model. PCLS retain remarkable cellular complexity and the architecture of the lung, providing a platform to investigate respiratory pathogens in a near‐native environment. Here, we review the generation and features of PCLS, their use to investigate the pathogenesis of viral and bacterial pathogens, and highlight their potential to advance respiratory infection research in the future.
Collapse
Affiliation(s)
- Flávia Viana
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Cecilia M O'Kane
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Gunnar N Schroeder
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| |
Collapse
|