1
|
Hong A, Cao M, Li D, Wang Y, Zhang G, Fang F, Zhao L, Wang Q, Lin T, Wang Y. Lnc-PKNOX1-1 inhibits tumor progression in cutaneous malignant melanoma by regulating NF-κB/IL-8 axis. Carcinogenesis 2023; 44:871-883. [PMID: 37843471 PMCID: PMC10818096 DOI: 10.1093/carcin/bgad073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/28/2023] [Accepted: 10/15/2023] [Indexed: 10/17/2023] Open
Abstract
Cutaneous malignant melanoma is one of the most lethal cutaneous malignancies. Accumulating evidence has demonstrated the potential influence of long non-coding RNAs (lncRNAs) in biological behaviors of melanoma. Herein, we reported a novel lncRNA, lnc-PKNOX1-1 and systematically studied its functions and possible molecular mechanisms in melanoma. Reverse transcription-quantitative PCR assay showed that lnc-PKNOX1-1 was significantly decreased in melanoma cells and tissues. Low lnc-PKNOX1-1 expression was significantly correlated with invasive pathological type and Breslow thickness of melanoma. In vitro and in vivo experiments showed lnc-PKNOX1-1 dramatically inhibited melanoma cell proliferation, migration and invasion. Mechanically, protein microarray analysis suggested that interleukin-8 (IL-8) was negatively regulated by lnc-PKNOX1-1 in melanoma, which was confirmed by western blot and ELISA. Western blot analysis also showed that lnc-PKNOX1-1 could promote p65 phosphorylation at Ser536 in melanoma. Subsequent rescue assays proved IL-8 overexpression could partly reverse the tumor-suppressing function of lnc-PKNOX1-1 overexpression in melanoma cells, indicating that lnc-PKNOX1-1 suppressed the development of melanoma by regulating IL-8. Taken together, our study demonstrated the tumor-suppressing ability of lnc-PKNOX1-1 in melanoma, suggesting its potential as a novel diagnostic biomarker and therapeutic target for melanoma.
Collapse
Affiliation(s)
- Anlan Hong
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Meng Cao
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Dongqing Li
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Yixin Wang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Guoqiang Zhang
- Department of Dermatology, the First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Fang Fang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Liang Zhao
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Qiang Wang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Tong Lin
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Yan Wang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| |
Collapse
|
2
|
Zhou S, Van Bortle K. The Pol III transcriptome: Basic features, recurrent patterns, and emerging roles in cancer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1782. [PMID: 36754845 PMCID: PMC10498592 DOI: 10.1002/wrna.1782] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 02/10/2023]
Abstract
The RNA polymerase III (Pol III) transcriptome is universally comprised of short, highly structured noncoding RNA (ncRNA). Through RNA-protein interactions, the Pol III transcriptome actuates functional activities ranging from nuclear gene regulation (7SK), splicing (U6, U6atac), and RNA maturation and stability (RMRP, RPPH1, Y RNA), to cytoplasmic protein targeting (7SL) and translation (tRNA, 5S rRNA). In higher eukaryotes, the Pol III transcriptome has expanded to include additional, recently evolved ncRNA species that effectively broaden the footprint of Pol III transcription to additional cellular activities. Newly evolved ncRNAs function as riboregulators of autophagy (vault), immune signaling cascades (nc886), and translation (Alu, BC200, snaR). Notably, upregulation of Pol III transcription is frequently observed in cancer, and multiple ncRNA species are linked to both cancer progression and poor survival outcomes among cancer patients. In this review, we outline the basic features and functions of the Pol III transcriptome, and the evidence for dysregulation and dysfunction for each ncRNA in cancer. When taken together, recurrent patterns emerge, ranging from shared functional motifs that include molecular scaffolding and protein sequestration, overlapping protein interactions, and immunostimulatory activities, to the biogenesis of analogous small RNA fragments and noncanonical miRNAs, augmenting the function of the Pol III transcriptome and further broadening its role in cancer. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Processing of Small RNAs RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Sihang Zhou
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Kevin Van Bortle
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
3
|
Nong J, Yang K, Li T, Lan C, Zhou X, Liu J, Xie H, Luo J, Liao X, Zhu G, Peng T. SART3, regulated by p53, is a biomarker for diagnosis, prognosis and immune infiltration in hepatocellular carcinoma. Aging (Albany NY) 2023; 15:8408-8432. [PMID: 37632835 PMCID: PMC10496991 DOI: 10.18632/aging.204978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/20/2023] [Indexed: 08/28/2023]
Abstract
OBJECTIVE This study aimed to investigate the role of squamous cell carcinoma antigen recognized by T cells 3 (SART3) in hepatocellular carcinoma (HCC). METHODS SART3 expression and prognostic value were analyzed in TCGA and GEO datasets. The diagnostic value and prognostic significance of SART3 were determined using immunohistochemistry in the Guangxi cohort. The whole-exome mutation spectrum of SART3 was analyzed in high and low expression groups in both TCGA and Guangxi cohorts. The biological functions of the SART3 gene were validated through in vitro experiments using small interfering RNA technology to downregulate SART3 expression in HCC cell lines. RESULTS SART3 expression was significantly higher in HCC tissues than in adjacent noncancerous liver tissues in TCGA, GEO and Guangxi cohorts. High expression of SART3 was significantly associated with poor prognosis in HCC patients. In TCGA and Guangxi cohorts, the expression of SART3 in the TP53 mutation group was significantly higher than that in the non-mutation group. Downregulation of SART3 expression significantly inhibited the migration and proliferation of HCC cells. SART3 may be involved mainly in immune infiltration of Th2 cells and macrophages in HCC. Additionally, SART3 can upregulate the expression of immune checkpoints (PD-L1 and TIM-3) and predict potential therapeutic agents for HCC. CONCLUSION The findings of this study demonstrate the diagnostic and prognostic value of SART3 in HCC. SART3 may be associated with immune infiltration of Th2 cells and macrophages in HCC, highlighting its potential role in the development and progression of HCC.
Collapse
Affiliation(s)
- Jusen Nong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning 530021, People’s Republic of China
| | - Kejian Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning 530021, People’s Republic of China
| | - Tianman Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning 530021, People’s Republic of China
- Department of Hepatobiliary Surgery, The Sixth Affiliated Hospital of Guangxi Medical University, Yulin 537000, People’s Republic of China
| | - Chenlu Lan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning 530021, People’s Republic of China
| | - Xin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning 530021, People’s Republic of China
| | - Junqi Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning 530021, People’s Republic of China
| | - Haixiang Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning 530021, People’s Republic of China
| | - Jianzhu Luo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning 530021, People’s Republic of China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning 530021, People’s Republic of China
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning 530021, People’s Republic of China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning 530021, People’s Republic of China
| |
Collapse
|
4
|
Nordin ML, Azemi AK, Nordin AH, Nabgan W, Ng PY, Yusoff K, Abu N, Lim KP, Zakaria ZA, Ismail N, Azmi F. Peptide-Based Vaccine against Breast Cancer: Recent Advances and Prospects. Pharmaceuticals (Basel) 2023; 16:923. [PMID: 37513835 PMCID: PMC10386531 DOI: 10.3390/ph16070923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Breast cancer is considered the second-leading cancer after lung cancer and is the most prevalent cancer among women globally. Currently, cancer immunotherapy via vaccine has gained great attention due to specific and targeted immune cell activity that creates a potent immune response, thus providing long-lasting protection against the disease. Despite peptides being very susceptible to enzymatic degradation and poor immunogenicity, they can be easily customized with selected epitopes to induce a specific immune response and particulate with carriers to improve their delivery and thus overcome their weaknesses. With advances in nanotechnology, the peptide-based vaccine could incorporate other components, thereby modulating the immune system response against breast cancer. Considering that peptide-based vaccines seem to show remarkably promising outcomes against cancer, this review focuses on and provides a specific view of peptide-based vaccines used against breast cancer. Here, we discuss the benefits associated with a peptide-based vaccine, which can be a mainstay in the prevention and recurrence of breast cancer. Additionally, we also report the results of recent trials as well as plausible prospects for nanotechnology against breast cancer.
Collapse
Affiliation(s)
- Muhammad Luqman Nordin
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia (UKM) Kuala Lumpur Campus, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan (UMK), Pengkalan Chepa, Kota Bharu 16100, Kelantan, Malaysia
| | - Ahmad Khusairi Azemi
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Malaysia
| | - Abu Hassan Nordin
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Arau 02600, Malaysia
| | - Walid Nabgan
- Departament d'Enginyeria Química, Universitat Rovira I Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain
| | - Pei Yuen Ng
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia (UKM), Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Khatijah Yusoff
- National Institutes of Biotechnology, Malaysia Genome and Vaccine Institute, Jalan Bangi, Kajang 43000, Malaysia
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, Jalan Ya'acob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Kue Peng Lim
- Cancer Immunology & Immunotherapy Unit, Cancer Research Malaysia, No. 1 Jalan SS12/1A, Subang Jaya 47500, Malaysia
| | - Zainul Amiruddin Zakaria
- Borneo Research on Algesia, Inflammation and Neurodegeneration (BRAIN) Group, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Malaysia
| | - Noraznawati Ismail
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Malaysia
| | - Fazren Azmi
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia (UKM) Kuala Lumpur Campus, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
5
|
Ayers KL, Eggers S, Rollo BN, Smith KR, Davidson NM, Siddall NA, Zhao L, Bowles J, Weiss K, Zanni G, Burglen L, Ben-Shachar S, Rosensaft J, Raas-Rothschild A, Jørgensen A, Schittenhelm RB, Huang C, Robevska G, van den Bergen J, Casagranda F, Cyza J, Pachernegg S, Wright DK, Bahlo M, Oshlack A, O'Brien TJ, Kwan P, Koopman P, Hime GR, Girard N, Hoffmann C, Shilon Y, Zung A, Bertini E, Milh M, Ben Rhouma B, Belguith N, Bashamboo A, McElreavey K, Banne E, Weintrob N, BenZeev B, Sinclair AH. Variants in SART3 cause a spliceosomopathy characterised by failure of testis development and neuronal defects. Nat Commun 2023; 14:3403. [PMID: 37296101 PMCID: PMC10256788 DOI: 10.1038/s41467-023-39040-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Squamous cell carcinoma antigen recognized by T cells 3 (SART3) is an RNA-binding protein with numerous biological functions including recycling small nuclear RNAs to the spliceosome. Here, we identify recessive variants in SART3 in nine individuals presenting with intellectual disability, global developmental delay and a subset of brain anomalies, together with gonadal dysgenesis in 46,XY individuals. Knockdown of the Drosophila orthologue of SART3 reveals a conserved role in testicular and neuronal development. Human induced pluripotent stem cells carrying patient variants in SART3 show disruption to multiple signalling pathways, upregulation of spliceosome components and demonstrate aberrant gonadal and neuronal differentiation in vitro. Collectively, these findings suggest that bi-allelic SART3 variants underlie a spliceosomopathy which we tentatively propose be termed INDYGON syndrome (Intellectual disability, Neurodevelopmental defects and Developmental delay with 46,XY GONadal dysgenesis). Our findings will enable additional diagnoses and improved outcomes for individuals born with this condition.
Collapse
Affiliation(s)
- Katie L Ayers
- The Murdoch Children's Research Institute, Melbourne, Australia.
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia.
| | - Stefanie Eggers
- The Victorian Clinical Genetics Services, Melbourne, Australia
| | - Ben N Rollo
- Department of Neuroscience, Central Clinical School, Monash University, Alfred Centre, Melbourne, Australia
| | - Katherine R Smith
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Nadia M Davidson
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- School of BioSciences, Faculty of Science, University of Melbourne, Melbourne, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | - Nicole A Siddall
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Australia
| | - Liang Zhao
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Josephine Bowles
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Karin Weiss
- Genetics Institute, Rambam Health Care Campus, Rappaport Faculty of Medicine, Institute of Technology, Haifa, Israel
| | - Ginevra Zanni
- Unit of Muscular and Neurodegenerative Disorders and Unit of Developmental Neurology, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Lydie Burglen
- Centre de Référence des Malformations et Maladies Congénitales du Cervelet, Et Laboratoire de Neurogénétique Moléculaire, Département de Génétique et Embryologie Médicale, APHP. Sorbonne Université, Hôpital Trousseau, Paris, France
- Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Shay Ben-Shachar
- Genetic Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Jenny Rosensaft
- Genetics Institute, Kaplan Medical Center, Hebrew University Hadassah Medical School, Rehovot, 76100, Israel
| | - Annick Raas-Rothschild
- Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center, Ramat Gan, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anne Jørgensen
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Ralf B Schittenhelm
- Monash Proteomics and Metabolomics Facility, Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Cheng Huang
- Monash Proteomics and Metabolomics Facility, Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | | | | | - Franca Casagranda
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Australia
| | - Justyna Cyza
- The Murdoch Children's Research Institute, Melbourne, Australia
| | - Svenja Pachernegg
- The Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Alfred Centre, Melbourne, Australia
| | - Melanie Bahlo
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | - Alicia Oshlack
- The Peter MacCallum Cancer Centre, Melbourne, Australia
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia
| | - Terrence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Alfred Centre, Melbourne, Australia
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Australia
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, Monash University, Alfred Centre, Melbourne, Australia
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Australia
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Gary R Hime
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Australia
| | - Nadine Girard
- Aix-Marseille Université, APHM. Department of Pediatric Neurology, Timone Hospital, Marseille, France
| | - Chen Hoffmann
- Radiology Department, Sheba medical Centre, Tel Aviv, Israel
| | - Yuval Shilon
- Kaplan Medical Center, Hebrew University Hadassah Medical School, Rehovot, 76100, Israel
| | - Amnon Zung
- Pediatrics Department, Kaplan Medical Center, Rehovot, 76100, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Hadassah Medical School, Jerusalem, Israel
| | - Enrico Bertini
- Unit of Muscular and Neurodegenerative Disorders and Unit of Developmental Neurology, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Mathieu Milh
- Aix-Marseille Université, APHM. Department of Pediatric Neurology, Timone Hospital, Marseille, France
| | - Bochra Ben Rhouma
- Higher Institute of Nursing Sciences of Gabes, University of Gabes, Gabes, Tunisia
- Laboratory of Human Molecular Genetics, Faculty of Medicine of Sfax, Sfax University, Sfax, Tunisia
| | - Neila Belguith
- Laboratory of Human Molecular Genetics, Faculty of Medicine of Sfax, Sfax University, Sfax, Tunisia
- Department of Congenital and Hereditary Diseases, Charles Nicolle Hospital, Tunis, Tunisia
| | - Anu Bashamboo
- Institut Pasteur, Université de Paris, CNRS UMR3738, Human Developmental Genetics, 75015, Paris, France
| | - Kenneth McElreavey
- Institut Pasteur, Université de Paris, CNRS UMR3738, Human Developmental Genetics, 75015, Paris, France
| | - Ehud Banne
- Genetics Institute, Kaplan Medical Center, Hebrew University Hadassah Medical School, Rehovot, 76100, Israel
- The Rina Mor Genetic Institute, Wolfson Medical Center, Holon, 58100, Israel
| | - Naomi Weintrob
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Endocrinology Unit, Dana-Dwek Children's Hospital, Tel Aviv Medical Center, Tel Aviv, Israel
| | | | - Andrew H Sinclair
- The Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
6
|
Zhao MN, Zhang LF, Sun Z, Qiao LH, Yang T, Ren YZ, Zhang XZ, Wu L, Qian WL, Guo QM, Xu WX, Wang XQ, Wu F, Wang L, Gu Y, Liu MF, Lou JT. A novel microRNA-182/Interleukin-8 regulatory axis controls osteolytic bone metastasis of lung cancer. Cell Death Dis 2023; 14:298. [PMID: 37127752 PMCID: PMC10151336 DOI: 10.1038/s41419-023-05819-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 03/30/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
Bone metastasis is one of the main complications of lung cancer and most important factors that lead to poor life quality and low survival rate in lung cancer patients. However, the regulatory mechanisms underlying lung cancer bone metastasis are still poor understood. Here, we report that microRNA-182 (miR-182) plays a critical role in regulating osteoclastic metastasis of lung cancer cells. We found that miR-182 was significantly upregulated in both bone-metastatic human non-small cell lung cancer (NSCLC) cell line and tumor specimens. We further demonstrated that miR-182 markedly enhanced the ability of NSCLC cells for osteolytic bone metastasis in nude mice. Mechanistically, miR-182 promotes NSCLC cells to secrete Interleukin-8 (IL-8) and in turn facilitates osteoclastogenesis via activating STAT3 signaling in osteoclast progenitor cells. Importantly, systemically delivered IL-8 neutralizing antibody inhibits NSCLC bone metastasis in nude mice. Collectively, our findings identify the miR-182/IL-8/STAT3 axis as a key regulatory pathway in controlling lung cancer cell-induced osteolytic bone metastasis and suggest a promising therapeutic strategy that targets this regulatory axis to interrupt lung cancer bone metastasis.
Collapse
Affiliation(s)
- Ming-Na Zhao
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, 200030, Shanghai, China
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China
| | - Ling-Fei Zhang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 310024, Hangzhou, China
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200030, Shanghai, China
| | - Zhen Sun
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200030, Shanghai, China
- School of Life Science and Technology, Shanghai Tech University, 201210, Shanghai, China
| | - Li-Hua Qiao
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China
| | - Tao Yang
- School of Life Science and Technology, Shanghai Tech University, 201210, Shanghai, China
| | - Yi-Zhe Ren
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China
| | - Xian-Zhou Zhang
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China
| | - Lei Wu
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China
| | - Wen-Li Qian
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China
| | - Qiao-Mei Guo
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China
| | - Wan-Xing Xu
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China
| | - Xue-Qing Wang
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China
| | - Fei Wu
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China
| | - Lin Wang
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China
| | - Yutong Gu
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, 200030, Shanghai, China.
| | - Mo-Fang Liu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 310024, Hangzhou, China.
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200030, Shanghai, China.
- School of Life Science and Technology, Shanghai Tech University, 201210, Shanghai, China.
| | - Jia-Tao Lou
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China.
| |
Collapse
|
7
|
Sun R, Liu Y, Lei C, Tang Z, Lu L. A novel 7 RNA-based signature for prediction of prognosis and therapeutic responses of wild-type BRAF cutaneous melanoma. Biol Proced Online 2022; 24:7. [PMID: 35751033 PMCID: PMC9233353 DOI: 10.1186/s12575-022-00170-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/10/2022] [Indexed: 11/26/2022] Open
Abstract
Background The prognosis of wild-type BRAF cutaneous melanoma (WT Bf-CM) patients remains poor due to the lack of therapeutic options. However, few studies have investigated the factors contributing to the prognosis of WT Bf-CM patients. Methods In this paper, we proposed and validated a novel 7-RNA based signature to predict the prognosis of WT Bf-CM by analyzing the information from TCGA database. Results Dependence of this signature to other clinical factors were verified and a nomogram was also drawn to promote its application in clinical practice. Functional analysis suggested that the predictive function of this signature might attribute to the prediction of the up-regulation of RNA splicing, transcription, and cellular proliferation in the high-risk group, which have been demonstrated to be linked to malignancy of cancer. Moreover, functional analysis and therapy response analysis supported that the prognosis is highly related to PI3K/Akt/mTOR pathway among WT Bf-CM patients. Conclusion Collectively, this study will provide a preliminary bioinformatics evidence for the molecular mechanism and potential drug targets that could improving WT Bf-CM prognosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12575-022-00170-2.
Collapse
Affiliation(s)
- Ruizheng Sun
- Department of Dermatology, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 41008, Hunan, China.,Clinical Medicine Eight-Year Program, Central South University, Changsha, China.,Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yaozhong Liu
- Department of Cardiology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Cheng Lei
- Clinical Medicine Eight-Year Program, Central South University, Changsha, China
| | - Zhenwei Tang
- Department of Dermatology, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 41008, Hunan, China. .,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
| | - Lixia Lu
- Department of Dermatology, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 41008, Hunan, China. .,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
| |
Collapse
|
8
|
Timani KA, Rezaei S, Whitmill A, Liu Y, He JJ. Tip110/SART3-Mediated Regulation of NF-κB Activity by Targeting IκBα Stability Through USP15. Front Oncol 2022; 12:843157. [PMID: 35530338 PMCID: PMC9070983 DOI: 10.3389/fonc.2022.843157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/21/2022] [Indexed: 11/25/2022] Open
Abstract
To date, there are a small number of nuclear-restricted proteins that have been reported to play a role in NF-κB signaling. However, the exact molecular mechanisms are not fully understood. Tip110 is a nuclear protein that has been implicated in multiple biological processes. In a previous study, we have shown that Tip110 interacts with oncogenic ubiquitin specific peptidase 15 (USP15) and that ectopic expression of Tip110 leads to re-distribution of USP15 from the cytoplasm to the nucleus. USP15 is known to regulate NF-κB activity through several mechanisms including modulation of IκBα ubiquitination. These findings prompted us to investigate the role of Tip110 in the NF-κB signaling pathway. We showed that Tip110 regulates NF-κB activity. The expression of Tip110 potentiated TNF-α-induced NF-κB activity and deletion of the nuclear localization domain in Tip110 abrogated this potentiation activity. We then demonstrated that Tip110 altered IκBα phosphorylation and stability in the presence of TNF-α. Moreover, we found that Tip110 and USP15 opposingly regulated NF-κB activity by targeting IκBα protein stability. We further showed that Tip110 altered the expression of NF-κB-dependent proinflammatory cytokines. Lastly, by using whole-transcriptome analysis of Tip110 knockout mouse embryonic stem cells, we found several NF-κB and NF-κB-related pathways were dysregulated. Taken together, these findings add to the nuclear regulation of NF-κB activity by Tip110 through IκBα stabilization and provide new evidence to support the role of Tip110 in controlling cellular processes such as cancers that involve proinflammatory responses.
Collapse
Affiliation(s)
- Khalid Amine Timani
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL, United States
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL, United States
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL, United States
- *Correspondence: Khalid Amine Timani,
| | - Sahar Rezaei
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL, United States
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL, United States
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL, United States
| | - Amanda Whitmill
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Ying Liu
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL, United States
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL, United States
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL, United States
| | - Johnny J. He
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL, United States
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL, United States
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL, United States
| |
Collapse
|
9
|
Filimon A, Preda IA, Boloca AF, Negroiu G. Interleukin-8 in Melanoma Pathogenesis, Prognosis and Therapy-An Integrated View into Other Neoplasms and Chemokine Networks. Cells 2021; 11:120. [PMID: 35011682 PMCID: PMC8750532 DOI: 10.3390/cells11010120] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
Cutaneous melanoma accounts for only about 7% of skin cancers but is causing almost 90% of deaths. Melanoma cells have a distinct repertoire of mutations from other cancers, a high plasticity and degree of mimicry toward vascular phenotype, stemness markers, versatility in evading and suppress host immune control. They exert a significant influence on immune, endothelial and various stromal cells which form tumor microenvironment. The metastatic stage, the leading cause of mortality in this neoplasm, is the outcome of a complex, still poorly understood, cross-talk between tumor and other cell phenotypes. There is accumulating evidence that Interleukin-8 (IL-8) is emblematic for advanced melanomas. This work aimed to present an updated status of IL-8 in melanoma tumor cellular complexity, through a comprehensive analysis including data from other chemokines and neoplasms. The multiple processes and mechanisms surveyed here demonstrate that IL-8 operates following orchestrated programs within signaling webs in melanoma, stromal and vascular cells. Importantly, the yet unknown molecularity regulating IL-8 impact on cells of the immune system could be exploited to overturn tumor fate. The molecular and cellular targets of IL-8 should be brought into the attention of even more intense scientific exploration and valorization in the therapeutical management of melanoma.
Collapse
Affiliation(s)
| | | | | | - Gabriela Negroiu
- Group of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, 060031 Bucharest, Romania; (A.F.); (I.A.P.); (A.F.B.)
| |
Collapse
|
10
|
The spliceosome factor sart3 regulates hematopoietic stem/progenitor cell development in zebrafish through the p53 pathway. Cell Death Dis 2021; 12:906. [PMID: 34611130 PMCID: PMC8492694 DOI: 10.1038/s41419-021-04215-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/09/2021] [Accepted: 09/23/2021] [Indexed: 12/27/2022]
Abstract
Hematopoietic stem cells (HSCs) possess the potential for self-renew and the capacity, throughout life, to differentiate into all blood cell lineages. Yet, the mechanistic basis for HSC development remains largely unknown. In this study, we characterized a zebrafish smu471 mutant with hematopoietic stem/progenitor cell (HSPC) defects and found that sart3 was the causative gene. RNA expression profiling of the sart3smu471 mutant revealed spliceosome and p53 signaling pathway to be the most significantly enriched pathways in the sart3smu471 mutant. Knock down of p53 rescued HSPC development in the sart3smu471 mutant. Interestingly, the p53 inhibitor, mdm4, had undergone an alternative splicing event in the mutant. Restoration of mdm4 partially rescued HSPC deficiency. Thus, our data suggest that HSPC proliferation and maintenance require sart3 to ensure the correct splicing and expression of mdm4, so that the p53 pathway is properly inhibited to prevent definitive hematopoiesis failure. This study expands our knowledge of the regulatory mechanisms that impact HSPC development and sheds light on the mechanistic basis and potential therapeutic use of sart3 in spliceosome-mdm4-p53 related disorders.
Collapse
|
11
|
Small molecule inhibition of ATM kinase increases CRISPR-Cas9 1-bp insertion frequency. Nat Commun 2021; 12:5111. [PMID: 34433825 PMCID: PMC8387472 DOI: 10.1038/s41467-021-25415-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/10/2021] [Indexed: 11/28/2022] Open
Abstract
Mutational outcomes following CRISPR-Cas9-nuclease cutting in mammalian cells have recently been shown to be predictable and, in certain cases, skewed toward single genotypes. However, the ability to control these outcomes remains limited, especially for 1-bp insertions, a common and therapeutically relevant class of repair outcomes. Here, through a small molecule screen, we identify the ATM kinase inhibitor KU-60019 as a compound capable of reproducibly increasing the fraction of 1-bp insertions relative to other Cas9 repair outcomes. Small molecule or genetic ATM inhibition increases 1-bp insertion outcome fraction across three human and mouse cell lines, two Cas9 species, and dozens of target sites, although concomitantly reducing the fraction of edited alleles. Notably, KU-60019 increases the relative frequency of 1-bp insertions to over 80% of edited alleles at several native human genomic loci and improves the efficiency of correction for pathogenic 1-bp deletion variants. The ability to increase 1-bp insertion frequency adds another dimension to precise template-free Cas9-nuclease genome editing. The mutational outcome of CRISPR-Cas9 editing can be both predictable and targeted. Here the authors show that ATM inhibitor KU-60019 increases 1 bp insertions at the targeted locus.
Collapse
|
12
|
Hypoxia and Extracellular Acidification as Drivers of Melanoma Progression and Drug Resistance. Cells 2021; 10:cells10040862. [PMID: 33918883 PMCID: PMC8070386 DOI: 10.3390/cells10040862] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/31/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022] Open
Abstract
Hypoxia and elevated extracellular acidification are prevalent features of solid tumors and they are often shown to facilitate cancer progression and drug resistance. In this review, we have compiled recent and most relevant research pertaining to the role of hypoxia and acidification in melanoma growth, invasiveness, and response to therapy. Melanoma represents a highly aggressive and heterogeneous type of skin cancer. Currently employed treatments, including BRAF V600E inhibitors and immune therapy, often are not effective due to a rapidly developing drug resistance. A variety of intracellular mechanisms impeding the treatment were discovered. However, the tumor microenvironment encompassing stromal and immune cells, extracellular matrix, and physicochemical conditions such as oxygen level or acidity, may also influence the therapy effectiveness. Hypoxia and acidification are able to reprogram the metabolism of melanoma cells, enhance their survival and invasiveness, as well as promote the immunosuppressive environment. For this reason, these physicochemical features of the melanoma niche and signaling pathways related to them emerge as potential therapeutic targets.
Collapse
|
13
|
Korbecki J, Kojder K, Kapczuk P, Kupnicka P, Gawrońska-Szklarz B, Gutowska I, Chlubek D, Baranowska-Bosiacka I. The Effect of Hypoxia on the Expression of CXC Chemokines and CXC Chemokine Receptors-A Review of Literature. Int J Mol Sci 2021; 22:ijms22020843. [PMID: 33467722 PMCID: PMC7830156 DOI: 10.3390/ijms22020843] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 12/26/2022] Open
Abstract
Hypoxia is an integral component of the tumor microenvironment. Either as chronic or cycling hypoxia, it exerts a similar effect on cancer processes by activating hypoxia-inducible factor-1 (HIF-1) and nuclear factor (NF-κB), with cycling hypoxia showing a stronger proinflammatory influence. One of the systems affected by hypoxia is the CXC chemokine system. This paper reviews all available information on hypoxia-induced changes in the expression of all CXC chemokines (CXCL1, CXCL2, CXCL3, CXCL4, CXCL5, CXCL6, CXCL7, CXCL8 (IL-8), CXCL9, CXCL10, CXCL11, CXCL12 (SDF-1), CXCL13, CXCL14, CXCL15, CXCL16, CXCL17) as well as CXC chemokine receptors—CXCR1, CXCR2, CXCR3, CXCR4, CXCR5, CXCR6, CXCR7 and CXCR8. First, we present basic information on the effect of these chemoattractant cytokines on cancer processes. We then discuss the effect of hypoxia-induced changes on CXC chemokine expression on the angiogenesis, lymphangiogenesis and recruitment of various cells to the tumor niche, including myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs), regulatory T cells (Tregs) and tumor-infiltrating lymphocytes (TILs). Finally, the review summarizes data on the use of drugs targeting the CXC chemokine system in cancer therapies.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (P.K.); (P.K.); (D.C.)
| | - Klaudyna Kojder
- Department of Anaesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-281 Szczecin, Poland;
| | - Patrycja Kapczuk
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (P.K.); (P.K.); (D.C.)
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (P.K.); (P.K.); (D.C.)
| | - Barbara Gawrońska-Szklarz
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland;
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (P.K.); (P.K.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (P.K.); (P.K.); (D.C.)
- Correspondence: ; Tel.: +48-914661515
| |
Collapse
|
14
|
Ene CD, Tampa M, Nicolae I, Mitran CI, Mitran MI, Matei C, Caruntu A, Caruntu C, Georgescu SR. Antiganglioside Antibodies and Inflammatory Response in Cutaneous Melanoma. J Immunol Res 2020; 2020:2491265. [PMID: 32855975 PMCID: PMC7443004 DOI: 10.1155/2020/2491265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/24/2020] [Indexed: 01/30/2023] Open
Abstract
INTRODUCTION Endogenously produced antiganglioside antibodies could affect the evolution of cutaneous melanoma. Epidemiological and experimental evidence suggest "chronic inflammation" to be one of the hallmarks in skin cancers. The aim of the study was to characterize the relation between antiganglioside antibodies and inflammation in cutaneous melanoma focusing on gangliosides GM1, GM2, GM3, GD1a, GD1b, GT1b, GQ1b. Material and Method. We performed an observational study that included 380 subjects subdivided into three groups: patients with metastatic melanoma (170 cases), patients with primary melanoma (160 cases), and healthy subjects (50 subjects). The assessment of antiganglioside antibodies, IgG, and IgM classes, against -GM1, -GM2, -GM3, -GD1a, -GD1b, -GT1b, -GQ1b was performed using immunoblot technique (EUROLine kit). RESULTS The presence of IgG and IgM antiganglioside antibodies in primary melanoma was (%), as follows: anti-GM1 (5.0 and 13.1), -GM2 (1.8 and 18.1), -GM3 (0.6 and 5.6), -GD1a (0.6 and 15.0), -GD1b (3.7 and 10.7), -GT1b (0.0 and 13.1), -GQ1b (0.0 and 5.0). In metastatic melanoma, the level of antiganglioside antibodies was significantly lower compared with primary melanoma (p < 0.05), while in the control group they were absent. Antiganglioside antibodies anti-GM1 and -GD1a were positively correlated, while anti-GM3, -GD1b, and -GT1b were negatively associated with the inflammatory markers, interleukin 8 (IL-8), and C reactive protein (CRP). CONCLUSIONS Tumour ganglioside antigens generate an immune response in patients with primary melanomas. The host's ability to elaborate an early antiganglioside response could be considered as a defence mechanism, directed toward eliminating a danger signal from the tumour microenvironment. Antiganglioside antibodies associated with inflammation markers could be used as diagnostic, monitoring, and treatment tools in patients with cutaneous melanoma.
Collapse
Affiliation(s)
- Corina Daniela Ene
- “Carol Davila” Nephrology Hospital, 4 Calea Grivitei, 010731 Bucharest, Romania
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
| | - Mircea Tampa
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
- “Victor Babes” Clinical Hospital for Infectious Diseases, 281 Mihai Bravu, 030303 Bucharest, Romania
| | - Ilinca Nicolae
- “Victor Babes” Clinical Hospital for Infectious Diseases, 281 Mihai Bravu, 030303 Bucharest, Romania
| | - Cristina Iulia Mitran
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
| | - Madalina Irina Mitran
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
| | - Clara Matei
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 134 Calea Plevnei, 010825 Bucharest, Romania
- Faculty of Medicine, “Titu Maiorescu” University, 22 Dambrovnicului, 031593 Bucharest, Romania
| | - Constantin Caruntu
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
- “Prof. N. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 22-24 Gr. Manolescu, Bucharest 011233, Romania
| | - Simona Roxana Georgescu
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
- “Victor Babes” Clinical Hospital for Infectious Diseases, 281 Mihai Bravu, 030303 Bucharest, Romania
| |
Collapse
|
15
|
Sun L, Jiang L, Grant CN, Wang HG, Gragnoli C, Liu Z, Wu R. Computational Identification of Gene Networks as a Biomarker of Neuroblastoma Risk. Cancers (Basel) 2020; 12:cancers12082086. [PMID: 32731407 PMCID: PMC7465094 DOI: 10.3390/cancers12082086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 01/03/2023] Open
Abstract
Neuroblastoma is a common cancer in children, affected by a number of genes that interact with each other through intricate but coordinated networks. Traditional approaches can only reconstruct a single regulatory network that is topologically not informative enough to explain the complexity of neuroblastoma risk. We implemented and modified an advanced model for recovering informative, omnidirectional, dynamic, and personalized networks (idopNetworks) from static gene expression data for neuroblastoma risk. We analyzed 3439 immune genes of neuroblastoma for 217 high-risk patients and 30 low-risk patients by which to reconstruct large patient-specific idopNetworks. By converting these networks into risk-specific representations, we found that the shift in patients from a low to high risk or from a high to low risk might be due to the reciprocal change of hub regulators. By altering the directions of regulation exerted by these hubs, it may be possible to reduce a high risk to a low risk. Results from a holistic, systems-oriented paradigm through idopNetworks can potentially enable oncologists to experimentally identify the biomarkers of neuroblastoma and other cancers.
Collapse
Affiliation(s)
- Lidan Sun
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (L.S.); (L.J.)
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA 17033, USA;
| | - Libo Jiang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (L.S.); (L.J.)
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Christa N. Grant
- Division of Pediatric Surgery, Department of Surgery, Penn State College of Medicine, Hershey, PA 17033, USA;
| | - Hong-Gang Wang
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA 17022, USA;
| | - Claudia Gragnoli
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA 17033, USA;
- Division of Endocrinology, Diabetes, and Metabolic Disease, Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19144, USA
- Molecular Biology Laboratory, Bios Biotech Multi Diagnostic Health Center, 00197 Rome, Italy
| | - Zhenqiu Liu
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA 17033, USA;
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA 17022, USA;
- Correspondence: (Z.L.); (R.W.); Tel.: +1-717-531-0003 (Z.L.); +1-717-531-2037 (R.W.)
| | - Rongling Wu
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA 17033, USA;
- Correspondence: (Z.L.); (R.W.); Tel.: +1-717-531-0003 (Z.L.); +1-717-531-2037 (R.W.)
| |
Collapse
|
16
|
|
17
|
CPAP promotes angiogenesis and metastasis by enhancing STAT3 activity. Cell Death Differ 2019; 27:1259-1273. [PMID: 31511651 PMCID: PMC7206147 DOI: 10.1038/s41418-019-0413-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/09/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022] Open
Abstract
Centrosomal P4.1-associated protein (CPAP) is overexpressed in hepatocellular carcinoma (HCC) and positively correlated with recurrence and vascular invasion. Here, we found that CPAP plays an important role in HCC malignancies. Functional characterization indicated that CPAP overexpression increases tumor growth, angiogenesis, and metastasis ex vivo and in vivo. In addition, overexpressed CPAP contributes to sorafenib resistance. Mechanical investigation showed that the expression level of CPAP is positively correlated with activated STAT3 in HCC. CPAP acts as a transcriptional coactivator of STAT3 by directly binding with STAT3. Interrupting the interaction between CPAP and STAT3 attenuates STAT3-mediated tumor growth and angiogenesis. Overexpression of CPAP upregulates several STAT3 target genes such as IL-8 and CD44 that are involved in angiogenesis, and CPAP mRNA expression is positively correlated with the levels of both mRNAs in HCC. Knocked-down expression of CPAP impairs IL-6-mediated STAT3 activation, target gene expression, cell migration, and invasion abilities. IL-6/STAT3-mediated angiogenesis is significantly increased by CPAP overexpression and can be blocked by decreased expression of IL-8. Our findings not only shed light on the importance of CPAP in HCC malignancies, but also provide potential therapeutic strategies for inhibiting the angiogenesis pathway and treating metastatic HCC.
Collapse
|