1
|
Araya S, Lovsin Barle E, Wiesner L, Blum K, Hashimoto K, Fisher C, Schwind M, Galati G, Sehner C, Pfister T, Witzigmann D. RNA therapeutics-An evaluation of potential occupational health hazards and a strategy to establish occupational exposure limits (OELs). JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2025:1-20. [PMID: 40372247 DOI: 10.1080/15459624.2025.2485080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
RNA therapeutics represent a rapidly expanding and innovative group of pharmaceuticals. These new modalities necessitate the establishment of Occupational Exposure Limits (OELs) to ensure safe occupational handling. While there is an established methodology for setting OELs for small molecule therapeutics, this methodology is not readily applicable to large molecule RNA therapeutics that deserve additional considerations in their safety assessment, particularly for aspects related to their unique modes of action. This research, which involves an extensive review of the data available for RNA therapeutics to derive substance-specific OELs and to propose a strategy for low-characterized RNA therapeutics, fills this crucial gap. It is recommended to apply an activity correction factor (ACF) in the OEL formula for large molecules, as representative of the "α" in the OEL formula for small molecules, considering differences in route of administration, critical effects, mechanism of action, and the RNA delivery platform. Additionally, it is proposed to consider lower OEL values for mRNA vaccines as compared to other RNA therapeutics. Finally, it is suggested that the exposure assessment experience that has already been acquired when handling therapeutic proteins can also be used to define containment strategies for RNA therapeutics.
Collapse
Affiliation(s)
- S Araya
- Lonza Group Ltd, Basel, Switzerland
| | - E Lovsin Barle
- Takeda Pharmaceuticals International AG, Glattpark-Opfikon, Switzerland
| | | | - K Blum
- GlaxoSmithKline GmbH & Co. KG, Munich, Germany
| | - K Hashimoto
- Takeda Pharmaceutical Company, Ltd, Fujisawa, Japan
| | - C Fisher
- Takeda Pharmaceuticals International AG, Glattpark-Opfikon, Switzerland
| | - M Schwind
- Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
| | - G Galati
- Thermo Fisher Scientific, Mississauga, Canada
| | - C Sehner
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - T Pfister
- Hoffmann-La Roche AG, Basel, Switzerland
| | | |
Collapse
|
2
|
Ameri A, Gandomkar H, Ahmed HH, Kareem RA, Sameer HN, Yaseen A, Athab ZH, Adil M, Ghasemzadeh I. A review of the progress and challenges of developing dendritic-based vaccines against hepatitis B virus (HBV). Pathol Res Pract 2025; 271:156025. [PMID: 40382895 DOI: 10.1016/j.prp.2025.156025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 05/13/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025]
Abstract
Hepatitis B virus (HBV) infections that last a long time are a significant public health problem worldwide. About 254 million people around the world are chronically sick with HBV. Each year, 1.2 million new cases occur, and in 2022, 1.1 million people will die from the disease. So, it has been essential to work on finding ways to treat and avoid HBV. The process of therapeutic vaccination involves giving people a non-infectious form of a virus to start or improve immune reactions specific to HBV. This helps keep HBV infections under control. Dendritic cells (DCs) play a significant part in beginning the adaptive immune response, which could decide how well an HBV infection is treated. DC-based treatment has been looked into for people with chronic HBV (CHB) infection and has shown some sound effects. Vaccines for CHB that use DCs boost antiviral immunity by improving T cells and breaking the immune system's resistance against HBV. In these vaccines, DCs are loaded with HBV antigens (like HBsAg, HBcAg, or peptides) outside of the body and then put back into the patient to make the immune system work better. In conclusion, this DC treatment is a biological therapy method with a good chance of being used. This study examined the different DC-based medicines that can treat and prevent HBV. Finally, we've talked about clinical studies, the current problems, how to fix them, and the future of this vaccine for treating and preventing HBV.
Collapse
Affiliation(s)
- Ali Ameri
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Hossein Gandomkar
- Department of Surgical Oncology, Tehran University of Medical Medicine, Tehran, Iran
| | | | | | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar 64001, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | | | - Iman Ghasemzadeh
- Research Center Of Tropical and Infectious Diseases, Kerman University Of Medical Sciences, Kerman, Iran.
| |
Collapse
|
3
|
Eskandari A, Leow TC, Rahman MBA, Oslan SN. Advances in Therapeutic Cancer Vaccines, Their Obstacles, and Prospects Toward Tumor Immunotherapy. Mol Biotechnol 2025; 67:1336-1366. [PMID: 38625508 DOI: 10.1007/s12033-024-01144-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/15/2024] [Indexed: 04/17/2024]
Abstract
Over the past few decades, cancer immunotherapy has experienced a significant revolution due to the advancements in immune checkpoint inhibitors (ICIs) and adoptive cell therapies (ACTs), along with their regulatory approvals. In recent times, there has been hope in the effectiveness of cancer vaccines for therapy as they have been able to stimulate de novo T-cell reactions against tumor antigens. These tumor antigens include both tumor-associated antigen (TAA) and tumor-specific antigen (TSA). Nevertheless, the constant quest to fully achieve these abilities persists. Therefore, this review offers a broad perspective on the existing status of cancer immunizations. Cancer vaccine design has been revolutionized due to the advancements made in antigen selection, the development of antigen delivery systems, and a deeper understanding of the strategic intricacies involved in effective antigen presentation. In addition, this review addresses the present condition of clinical tests and deliberates on their approaches, with a particular emphasis on the immunogenicity specific to tumors and the evaluation of effectiveness against tumors. Nevertheless, the ongoing clinical endeavors to create cancer vaccines have failed to produce remarkable clinical results as a result of substantial obstacles, such as the suppression of the tumor immune microenvironment, the identification of suitable candidates, the assessment of immune responses, and the acceleration of vaccine production. Hence, there are possibilities for the industry to overcome challenges and enhance patient results in the coming years. This can be achieved by recognizing the intricate nature of clinical issues and continuously working toward surpassing existing limitations.
Collapse
Affiliation(s)
- Azadeh Eskandari
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | | | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
4
|
Haghmorad D, Eslami M, Orooji N, Halabitska I, Kamyshna I, Kamyshnyi O, Oksenych V. mRNA vaccine platforms: linking infectious disease prevention and cancer immunotherapy. Front Bioeng Biotechnol 2025; 13:1547025. [PMID: 40144393 PMCID: PMC11937095 DOI: 10.3389/fbioe.2025.1547025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/24/2025] [Indexed: 03/28/2025] Open
Abstract
The advent of mRNA vaccines, accelerated by the global response to the COVID-19 pandemic, marks a transformative shift in vaccine technology. In this article, we discuss the development, current applications, and prospects of mRNA vaccines for both the prevention and treatment of infectious diseases and oncology. By leveraging the capacity to encode antigens within host cells directly, mRNA vaccines provide a versatile and scalable platform suitable for addressing a broad spectrum of pathogens and tumor-specific antigens. We highlight recent advancements in mRNA vaccine design, innovative delivery mechanisms, and ongoing clinical trials, with particular emphasis on their efficacy in combating infectious diseases, such as COVID-19, Zika, and influenza, as well as their emerging potential in cancer immunotherapy. We also address critical challenges, including vaccine stability, optimization of immune responses, and the broader issue of global accessibility. Finally, we review potential strategies for advancing next-generation mRNA vaccines, with the aim of overcoming current limitations in vaccine technology and enhancing both preventive and therapeutic approaches for infectious and oncological diseases.
Collapse
Affiliation(s)
- Dariush Haghmorad
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Majid Eslami
- Department of Bacteriology and Virology, Semnan University of Medical Sciences, Semnan, Iran
| | - Niloufar Orooji
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Iryna Halabitska
- Department of Therapy and Family Medicine, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Iryna Kamyshna
- Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Valentyn Oksenych
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
5
|
Lan H, Zhao J, Yuan L, Li M, Pu X, Guo Y. Deep Clustering-Based Immunotherapy Prediction for Gastric Cancer mRNA Vaccine Development. Int J Mol Sci 2025; 26:2453. [PMID: 40141097 PMCID: PMC11941797 DOI: 10.3390/ijms26062453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Immunotherapy is becoming a promising strategy for treating diverse cancers. However, it benefits only a selected group of gastric cancer (GC) patients since they have highly heterogeneous immunosuppressive microenvironments. Thus, a more sophisticated immunological subclassification and characterization of GC patients is of great practical significance for mRNA vaccine therapy. This study aimed to find a new immunological subclassification for GC and further identify specific tumor antigens for mRNA vaccine development. First, deep autoencoder (AE)-based clustering was utilized to construct the immunological profile and to uncover four distinct immune subtypes of GC, labeled as Subtypes 1, 2, 3, and 4. Then, in silico prediction using machine learning methods was performed for accurate discrimination of new classifications with an average accuracy of 97.6%. Our results suggested significant clinicopathology, molecular, and immune differences across the four subtypes. Notably, Subtype 4 was characterized by poor prognosis, reduced tumor purity, and enhanced immune cell infiltration and activity; thus, tumor-specific antigens associated with Subtype 4 were identified, and a customized mRNA vaccine was developed using immunoinformatic tools. Finally, the influence of the tumor microenvironment (TME) on treatment efficacy was assessed, emphasizing that specific patients may benefit more from this therapeutic approach. Overall, our findings could help to provide new insights into improving the prognosis and immunotherapy of GC patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Yanzhi Guo
- College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
6
|
Fu Q, Zhao X, Hu J, Jiao Y, Yan Y, Pan X, Wang X, Jiao F. mRNA vaccines in the context of cancer treatment: from concept to application. J Transl Med 2025; 23:12. [PMID: 39762875 PMCID: PMC11702060 DOI: 10.1186/s12967-024-06033-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025] Open
Abstract
Immuno-oncology has witnessed remarkable advancements in the past decade, revolutionizing the landscape of cancer therapeutics in an encouraging manner. Among the diverse immunotherapy strategies, mRNA vaccines have ushered in a new era for the therapeutic management of malignant diseases, primarily due to their impressive impact on the COVID-19 pandemic. In this comprehensive review, we offer a systematic overview of mRNA vaccines, focusing on the optimization of structural design, the crucial role of delivery materials, and the administration route. Additionally, we summarize preclinical studies and clinical trials to provide valuable insights into the current status of mRNA vaccines in cancer treatment. Furthermore, we delve into a systematic discussion on the significant challenges facing the current development of mRNA tumor vaccines. These challenges encompass both intrinsic and external factors that are closely intertwined with the successful application of this innovative approach. To pave the way for a more promising future in cancer treatments, a deeper understanding of immunological mechanisms, an increasing number of high-quality clinical trials, and a well-established manufacturing platform are crucial. Collaborative efforts between scientists, clinicians, and industry engineers are essential to achieving these goals.
Collapse
Affiliation(s)
- Qiang Fu
- School of Pharmacology, Institute of Aging Medicine, Binzhou Medical University, Yantai, 264003, P. R. China
| | - Xiaoming Zhao
- Center of Physical Examination, Binzhou Medical University Affiliated 970 Hospital of the PLA Joint Logistic Support Force, Yantai, 264002, P. R. China
| | - Jinxia Hu
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, P. R. China
| | - Yang Jiao
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - Yunfei Yan
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, P. R. China
| | - Xuchen Pan
- Department of Clinical Laboratory & Health Service Training, Binzhou Medical University Affiliated 970 Hospital of the PLA Joint Logistic Support Force, Yantai, 264002, P. R. China
| | - Xin Wang
- Department of Clinical Laboratory & Health Service Training, Binzhou Medical University Affiliated 970 Hospital of the PLA Joint Logistic Support Force, Yantai, 264002, P. R. China.
| | - Fei Jiao
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, P. R. China.
| |
Collapse
|
7
|
Xu L, Li C, Liao R, Xiao Q, Wang X, Zhao Z, Zhang W, Ding X, Cao Y, Cai L, Rosenecker J, Guan S, Tang J. From Sequence to System: Enhancing IVT mRNA Vaccine Effectiveness through Cutting-Edge Technologies. Mol Pharm 2025; 22:81-102. [PMID: 39601789 DOI: 10.1021/acs.molpharmaceut.4c00863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The COVID-19 pandemic has spotlighted the potential of in vitro transcribed (IVT) mRNA vaccines with their demonstrated efficacy, safety, cost-effectiveness, and rapid manufacturing. Numerous IVT mRNA vaccines are now under clinical trials for a range of targets, including infectious diseases, cancers, and genetic disorders. Despite their promise, IVT mRNA vaccines face hurdles such as limited expression levels, nonspecific targeting beyond the liver, rapid degradation, and unintended immune activation. Overcoming these challenges is crucial to harnessing the full therapeutic potential of IVT mRNA vaccines for global health advancement. This review provides a comprehensive overview of the latest research progress and optimization strategies for IVT mRNA molecules and delivery systems, including the application of artificial intelligence (AI) models and deep learning techniques for IVT mRNA structure optimization and mRNA delivery formulation design. We also discuss recent development of the delivery platforms, such as lipid nanoparticles (LNPs), polymers, and exosomes, which aim to address challenges related to IVT mRNA protection, cellular uptake, and targeted delivery. Lastly, we offer insights into future directions for improving IVT mRNA vaccines, with the hope to spur further progress in IVT mRNA vaccine research and development.
Collapse
Affiliation(s)
- Lifeng Xu
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China
| | - Chao Li
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China
| | - Rui Liao
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China
| | - Qin Xiao
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China
| | - Xiaoran Wang
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China
| | - Zhuo Zhao
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China
| | - Weijun Zhang
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China
| | - Xiaoyan Ding
- Department of Pediatrics, Ludwig-Maximilians University of Munich, Munich 80337, Germany
| | - Yuxue Cao
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Larry Cai
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Joseph Rosenecker
- Department of Pediatrics, Ludwig-Maximilians University of Munich, Munich 80337, Germany
| | - Shan Guan
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China
| | - Jie Tang
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| |
Collapse
|
8
|
Yuan Y, Sun W, Xie J, Zhang Z, Luo J, Han X, Xiong Y, Yang Y, Zhang Y. RNA nanotherapeutics for hepatocellular carcinoma treatment. Theranostics 2025; 15:965-992. [PMID: 39776807 PMCID: PMC11700867 DOI: 10.7150/thno.102964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Hepatocellular carcinoma (HCC) remains a leading cause of cancer-related mortality worldwide, particularly due to the limited effectiveness of current therapeutic options for advanced-stage disease. The efficacy of traditional treatments is often compromised by the intricate liver microenvironment and the inherent heterogeneity. RNA-based therapeutics offer a promising alternative, utilizing the innovative approach of targeting aberrant molecular pathways and modulating the tumor microenvironment. The integration of nanotechnology in this field, through the development of advanced nanocarrier delivery systems, especially lipid nanoparticles (LNPs), polymer nanoparticles (PNPs), and bioinspired vectors, enhances the precision and efficacy of RNA therapies. This review highlights the significant progress in RNA nanotherapeutics for HCC treatment, covering micro RNA (miRNA), small interfering RNA (siRNA), message RNA (mRNA), and small activating RNA (saRNA) mediated gene silencing, therapeutic protein restoration, gene activation, cancer vaccines, and concurrent therapy. It further comprehensively discusses the prevailing challenges within this therapeutic landscape and provides a forward-looking perspective on the potential of RNA nanotherapeutics to transform HCC treatment.
Collapse
Affiliation(s)
- Yihang Yuan
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
- Department of General Surgery Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School Nanjing University, Nanjing 210008, China
| | - Weijie Sun
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, China
| | - Jiaqi Xie
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Ziheng Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Jing Luo
- Department of Urology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xiangfei Han
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yongfu Xiong
- Department of Hepatobiliary Surgery, Academician (Expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637600, China
| | - Yang Yang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Yang Zhang
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
9
|
Nasr SS, Paul P, Loretz B, Lehr CM. Realizing time-staggered expression of nucleic acid-encoded proteins by co-delivery of messenger RNA and plasmid DNA on a single nanocarrier. Drug Deliv Transl Res 2024; 14:3339-3353. [PMID: 39009932 DOI: 10.1007/s13346-024-01668-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2024] [Indexed: 07/17/2024]
Abstract
Co-delivery of different protein-encoding polynucleotide species with varying expression kinetics of their therapeutic product will become a prominent requirement in the realm of combined nucleic acid(NA)-based therapies in the upcoming years. The current study explores the capacity for time-staggered expression of encoded proteins by simultaneous delivery of plasmid DNA (pDNA) in the core and mRNA on the shell of the same nanocarrier. The core is based on a Gelatin Type A-pDNA coacervate, thermally stabilized to form an irreversible nanogel stable enough for the deposition of cationic coats namely, protamine sulfate or LNP-related lipid mixtures. Only the protamine-coated nanocarriers remained colloidally stable following mRNA loading and could successfully co-transfect murine dendritic cell line DC2.4 with fluorescent reporter mRNA(mCherry) and pDNA (pAmCyan1). Further investigation of the protamine-coated nanosystem only, the transfection efficiency (percentage of transfected cells) and level of protein expression (mean fluorescence intensity, MFI) of mRNA and pDNA, simultaneously delivered by the same nanocarrier, were compared and kinetically assessed over 48 h in DC2.4 using flow cytometry. The onset of transfection for both nucleotides was initially delayed, with levels < 5% at 6 h. Thereafter, mRNA transfection reached 90% after 24 h and continued to slightly increase until 48 h. In contrast, pDNA transfection was clearly slower, reaching approximately 40% after 24 h, but continuing to increase to reach 94% at 48 h. The time course of protein expression (represented by MFI) for both NAs essentially followed that of transfection. Model-independent as well as model-dependent kinetic parameters applied to the data further confirmed such time-staggered expression of the two NA's where mRNA's rate of transfection and protein expression initially exceeded those of pDNA in the first 24 h of the experiment whereas the opposite was true during the second 24 h of the experiment where pDNA displayed the higher response rates. We expect that innovative nanocarriers capable of time-staggered co-delivery of different nucleotides could open new perspectives for multi-dosing, pulsatile or sustained expression of nucleic acid-based therapeutics in protein replacement, vaccination, and CRISPR-mediated gene editing scenarios.
Collapse
Affiliation(s)
- Sarah S Nasr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123, Saarbrücken, Germany.
- Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany.
- Fischell Department of Bioengineering, University of Maryland, College Park, USA.
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.
| | - Pascal Paul
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123, Saarbrücken, Germany
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123, Saarbrücken, Germany
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123, Saarbrücken, Germany.
- Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany.
| |
Collapse
|
10
|
Laila UE, An W, Xu ZX. Emerging prospects of mRNA cancer vaccines: mechanisms, formulations, and challenges in cancer immunotherapy. Front Immunol 2024; 15:1448489. [PMID: 39654897 PMCID: PMC11625737 DOI: 10.3389/fimmu.2024.1448489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/18/2024] [Indexed: 12/12/2024] Open
Abstract
Cancer continues to pose an alarming threat to global health, necessitating the need for the development of efficient therapeutic solutions despite massive advances in the treatment. mRNA cancer vaccines have emerged as a hopeful avenue, propelled by the victory of mRNA technology in COVID-19 vaccines. The article delves into the intricate mechanisms and formulations of cancer vaccines, highlighting the ongoing efforts to strengthen mRNA stability and ensure successful translation inside target cells. Moreover, it discusses the design and mechanism of action of mRNA, showcasing its potential as a useful benchmark for developing efficacious cancer vaccines. The significance of mRNA therapy and selecting appropriate tumor antigens for the personalized development of mRNA vaccines are emphasized, providing insights into the immune mechanism. Additionally, the review explores the integration of mRNA vaccines with other immunotherapies and the utilization of progressive delivery platforms, such as lipid nanoparticles, to improve immune responses and address challenges related to immune evasion and tumor heterogeneity. While underscoring the advantages of mRNA vaccines, the review also addresses the challenges associated with the susceptibility of RNA to degradation and the difficulty in identifying optimum tumor-specific antigens, along with the potential solutions. Furthermore, it provides a comprehensive overview of the ongoing research efforts aimed at addressing these hurdles and enhancing the effectiveness of mRNA-based cancer vaccines. Overall, this review is a focused and inclusive impression of the present state of mRNA cancer vaccines, outlining their possibilities, challenges, and future predictions in the fight against cancer, ultimately aiding in the development of more targeted therapies against cancer.
Collapse
Affiliation(s)
| | | | - Zhi-Xiang Xu
- School of Life Sciences, Henan University, Kaifeng, Henan, China
| |
Collapse
|
11
|
Karimi-Sani I, Molavi Z, Naderi S, Mirmajidi SH, Zare I, Naeimzadeh Y, Mansouri A, Tajbakhsh A, Savardashtaki A, Sahebkar A. Personalized mRNA vaccines in glioblastoma therapy: from rational design to clinical trials. J Nanobiotechnology 2024; 22:601. [PMID: 39367418 PMCID: PMC11453023 DOI: 10.1186/s12951-024-02882-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
Glioblastomas (GBMs) are the most common and aggressive malignant brain tumors, presenting significant challenges for treatment due to their invasive nature and localization in critical brain regions. Standard treatment includes surgical resection followed by radiation and adjuvant chemotherapy with temozolomide (TMZ). Recent advances in immunotherapy, including the use of mRNA vaccines, offer promising alternatives. This review focuses on the emerging use of mRNA vaccines for GBM treatment. We summarize recent advancements, evaluate current obstacles, and discuss notable successes in this field. Our analysis highlights that while mRNA vaccines have shown potential, their use in GBM treatment is still experimental. Ongoing research and clinical trials are essential to fully understand their therapeutic potential. Future developments in mRNA vaccine technology and insights into GBM-specific immune responses may lead to more targeted and effective treatments. Despite the promise, further research is crucial to validate and optimize the effectiveness of mRNA vaccines in combating GBM.
Collapse
Affiliation(s)
- Iman Karimi-Sani
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Molavi
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Naderi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyedeh-Habibeh Mirmajidi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz, 7178795844, Iran
| | - Yasaman Naeimzadeh
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Atena Mansouri
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Pather S, Charpentier N, van den Ouweland F, Rizzi R, Finlayson A, Salisch N, Muik A, Lindemann C, Khanim R, Abduljawad S, Smith ER, Gurwith M, Chen RT. A Brighton Collaboration standardized template with key considerations for a benefit-risk assessment for the Comirnaty COVID-19 mRNA vaccine. Vaccine 2024; 42:126165. [PMID: 39197299 DOI: 10.1016/j.vaccine.2024.126165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024]
Abstract
The Brighton Collaboration Benefit-Risk Assessment of VAccines by TechnolOgy (BRAVATO) Working Group evaluates the safety and other key features of new platform technology vaccines, including nucleic acid (RNA and DNA) vaccines. This manuscript uses the BRAVATO template to report the key considerations for a benefit-risk assessment of the coronavirus disease 2019 (COVID-19) mRNA-based vaccine BNT162b2 (Comirnaty®, or Pfizer-BioNTech COVID-19 vaccine) including the subsequent Original/Omicron BA.1, Original/Omicron BA.4-5 and Omicron XBB.1.5 variant-adapted vaccines developed by BioNTech and Pfizer to protect against COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Initial Emergency Use Authorizations or conditional Marketing Authorizations for the original BNT162b2 vaccine were granted based upon a favorable benefit-risk assessment taking into account clinical safety, immunogenicity, and efficacy data, which was subsequently reconfirmed for younger age groups, and by real world evidence data. In addition, the favorable benefit-risk assessment was maintained for the bivalent vaccines, developed against newly arising SARS-CoV-2 variants, with accumulating clinical trial data.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Emily R Smith
- Brighton Collaboration, a program of the Task Force for Global Health, Decatur, GA, USA.
| | - Marc Gurwith
- Brighton Collaboration, a program of the Task Force for Global Health, Decatur, GA, USA
| | - Robert T Chen
- Brighton Collaboration, a program of the Task Force for Global Health, Decatur, GA, USA
| |
Collapse
|
13
|
Gao Y, Yang L, Li Z, Peng X, Li H. mRNA vaccines in tumor targeted therapy: mechanism, clinical application, and development trends. Biomark Res 2024; 12:93. [PMID: 39217377 PMCID: PMC11366172 DOI: 10.1186/s40364-024-00644-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Malignant tumors remain a primary cause of human mortality. Among the various treatment modalities for neoplasms, tumor vaccines have consistently shown efficacy and promising potential. These vaccines offer advantages such as specificity, safety, and tolerability, with mRNA vaccines representing promising platforms. By introducing exogenous mRNAs encoding antigens into somatic cells and subsequently synthesizing antigens through gene expression systems, mRNA vaccines can effectively induce immune responses. Katalin Karikó and Drew Weissman were awarded the 2023 Nobel Prize in Physiology or Medicine for their great contributions to mRNA vaccine research. Compared with traditional tumor vaccines, mRNA vaccines have several advantages, including rapid preparation, reduced contamination, nonintegrability, and high biodegradability. Tumor-targeted therapy is an innovative treatment modality that enables precise targeting of tumor cells, minimizes damage to normal tissues, is safe at high doses, and demonstrates great efficacy. Currently, targeted therapy has become an important treatment option for malignant tumors. The application of mRNA vaccines in tumor-targeted therapy is expanding, with numerous clinical trials underway. We systematically outline the targeted delivery mechanism of mRNA vaccines and the mechanism by which mRNA vaccines induce anti-tumor immune responses, describe the current research and clinical applications of mRNA vaccines in tumor-targeted therapy, and forecast the future development trends of mRNA vaccine application in tumor-targeted therapy.
Collapse
Affiliation(s)
- Yu Gao
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Zhenning Li
- Department of Oromaxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, 110001, China
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
| |
Collapse
|
14
|
Huang Y, Yang Y, Chen X, Zeng S, Chen Y, Wang H, Lv X, Hu X, Teng L. Downregulation of malic enzyme 3 facilitates progression of gastric carcinoma via regulating intracellular oxidative stress and hypoxia-inducible factor-1α stabilization. Cell Mol Life Sci 2024; 81:375. [PMID: 39212717 PMCID: PMC11364750 DOI: 10.1007/s00018-024-05388-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/04/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Gastric cancer (GC) is one of the most malignant cancers worldwide. Metabolism disorder is a critical characteristic of malignant tumors related to tumor progression and metastasis. However, the expression and molecular mechanism of malic enzyme 3 (ME3) in GC are rarely reported. In this study, we aim to investigate the molecular mechanism of ME3 in the development of GC and to explore its potential value as a prognostic and therapeutic target in GC. METHOD ME3 mRNA and protein expression were evaluated in patients with GC using RT-qPCR, WB, and immunohistochemistry, as well as their correlation with clinicopathological indicators. The effect of ME3 on proliferation and metastasis was evaluated using Cell Counting Kit-8 (CCK-8), 5-ethynyl-20-deoxyuridine (EdU) assay, transwell assay, wound healing assay, and subcutaneous injection or tail vein injection of tumor cells in mice model. The effects of ME3 knockdown on the level of metabolites and hypoxia-inducible factor-1α (HIF-1α) protein were determined in GC cells. Oxidative phosphorylation was measured to evaluate adenosine triphosphate (ATP) production. RESULTS ME3 was downregulated in human GC tissues (P < 0.001). The decreased ME3 mRNA expression was associated with younger age (P = 0.02), pathological staging (P = 0.049), and lymph node metastasis (P = 0.001), while low ME3 expression was associated with tumor size (P = 0.048), tumor invasion depth (P < 0.001), lymph node metastasis (P = 0.018), TNM staging (P < 0.001), and poor prognosis (OS, P = 0.0206; PFS P = 0.0453). ME3 knockdown promoted GC cell malignancy phenotypes. Moreover, α-ketoglutarate (α-KG) and NADPH/NADP+ ratios were reduced while malate was increased in the ME3 knockdown group under normoxia. When cells were incubated under hypoxia, the NADPH/NADP+ ratio and α-KG decreased while intracellular reactive oxygen species (ROS) increased significantly. The ME3 knockdown group exhibited an increase in ATP production and while ME3 overexpression group exhibited oppositely. We discovered that ME3 and HIF-1α expression were negatively correlated in GC cells and tissues, and proposed the hypothesis: downregulation of ME3 promotes GC progression via regulating intracellular oxidative stress and HIF-1α. CONCLUSION We provide evidence that ME3 downregulation is associated with poor prognosis in GC patients and propose a hypothesis for the ME3 regulatory mechanism in GC progression. The present study is of great scientific significance and clinical value for exploring the prognostic and therapeutic targets of GC, evaluating and improving the clinical efficacy of patients, reducing recurrence and metastasis, and improving the prognosis and quality of life of patients.
Collapse
Affiliation(s)
- Yingying Huang
- Department of Oncological Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Gynecology, Guangzhou First People's Hospital, Guangzhou, China
| | - Yan Yang
- Department of Oncological Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiangliu Chen
- Department of Oncological Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Siying Zeng
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiran Chen
- Department of Oncological Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haiyong Wang
- Department of Oncological Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiadong Lv
- Department of Oncological Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xun Hu
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lisong Teng
- Department of Oncological Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
15
|
Xiong Y, Lo Y, Song H, Lu J. Development of a Self-Luminescent Living Bioreactor for Enhancing Photodynamic Therapy in Breast Cancer. Bioconjug Chem 2024; 35:1269-1282. [PMID: 39120495 DOI: 10.1021/acs.bioconjchem.4c00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The penetration ability of visible light (<2 mm) and near-infrared (NIR) light (∼1 cm) remarkably impairs the therapeutic efficacy and clinical applications of photodynamic therapy (PDT). To address the limitation of light penetration depth, a novel self-luminescent bacterium, teLuc.FP-EcN, has been engineered through transfection of a fusion expression plasmid containing the luciferase gene teLuc and bright red fluorescent protein mScarlet-I into Escherichia coli Nissle 1917 (EcN). The engineered teLuc.FP-EcN can specifically target and colonize tumors without significant toxicity to the host. Acting as a continuous internal light source, teLuc.FP-EcN can activate the photosensitizer chlorin e6 (Ce6) to generate reactive oxygen species (ROS) and then effectively destroy tumor tissue from the inside. As a result, a significant reduction in tumor proliferation and extension of the overall survival in mouse tumor models has been observed. Furthermore, teLuc.FP-EcN-boosted PDT amplified its therapeutic effect by activating antitumor immune response, including the conversion of M2 macrophages into pro-inflammatory M1 macrophages, as well as an increase in the proportion of CD3+ T cells and a decrease in T-cell exhaustion. In conclusion, teLuc.FP-EcN can be used as an implantable light source for tumor phototherapy, which simultaneously possesses ROS generation and immune regulation.
Collapse
Affiliation(s)
- Yanian Xiong
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yingtung Lo
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Huizhu Song
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jianzhong Lu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
16
|
Chen B, Yang Y, Wang X, Yang W, Lu Y, Wang D, Zhuo E, Tang Y, Su J, Tang G, Shao S, Gu K. mRNA vaccine development and applications: A special focus on tumors (Review). Int J Oncol 2024; 65:81. [PMID: 38994758 PMCID: PMC11251742 DOI: 10.3892/ijo.2024.5669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/20/2024] [Indexed: 07/13/2024] Open
Abstract
Cancer is characterized by unlimited proliferation and metastasis, and traditional therapeutic strategies usually result in the acquisition of drug resistance, thus highlighting the need for more personalized treatment. mRNA vaccines transfer the gene sequences of exogenous target antigens into human cells through transcription and translation to stimulate the body to produce specific immune responses against the encoded proteins, so as to enable the body to obtain immune protection against said antigens; this approach may be adopted for personalized cancer therapy. Since the recent coronavirus pandemic, the development of mRNA vaccines has seen substantial progress and widespread adoption. In the present review, the development of mRNA vaccines, their mechanisms of action, factors influencing their function and the current clinical applications of the vaccine are discussed. A focus is placed on the application of mRNA vaccines in cancer, with the aim of highlighting unique advances and the remaining challenges of this novel and promising therapeutic approach.
Collapse
Affiliation(s)
- Bangjie Chen
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yipin Yang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Xinyi Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Wenzhi Yang
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - You Lu
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Daoyue Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Enba Zhuo
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yanchao Tang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Junhong Su
- Department of Rehabilitation, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Guozheng Tang
- Department of Orthopedics, Lu'an Hospital of Anhui Medical University, Lu'an, Anhui 237008, P.R. China
| | - Song Shao
- Department of Orthopedics, Lu'an Hospital of Anhui Medical University, Lu'an, Anhui 237008, P.R. China
| | - Kangsheng Gu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
17
|
Tadic S, Martínez A. Nucleic acid cancer vaccines targeting tumor related angiogenesis. Could mRNA vaccines constitute a game changer? Front Immunol 2024; 15:1433185. [PMID: 39081320 PMCID: PMC11286457 DOI: 10.3389/fimmu.2024.1433185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Tumor related angiogenesis is an attractive target in cancer therapeutic research due to its crucial role in tumor growth, invasion, and metastasis. Different agents were developed aiming to inhibit this process; however they had limited success. Cancer vaccines could be a promising tool in anti-cancer/anti-angiogenic therapy. Cancer vaccines aim to initiate an immune response against cancer cells upon presentation of tumor antigens which hopefully will result in the eradication of disease and prevention of its recurrence by inducing an efficient and long-lasting immune response. Different vaccine constructs have been developed to achieve this and they could include either protein-based or nucleic acid-based vaccines. Nucleic acid vaccines are simple and relatively easy to produce, with high efficiency and safety, thus prompting a high interest in the field. Different DNA vaccines have been developed to target crucial regulators of tumor angiogenesis. Most of them were successful in pre-clinical studies, mostly when used in combination with other therapeutics, but had limited success in the clinic. Apparently, different tumor evasion mechanisms and reduced immunogenicity still limit the potential of these vaccines and there is plenty of room for improvement. Nowadays, mRNA cancer vaccines are making remarkable progress due to improvements in the manufacturing technology and represent a powerful potential alternative. Apart from their efficiency, mRNA vaccines are simple and cheap to produce, can encompass multiple targets simultaneously, and can be quickly transferred from bench to bedside. mRNA vaccines have already accomplished amazing results in cancer clinical trials, thus ensuring a bright future in the field, although no anti-angiogenic mRNA vaccines have been described yet. This review aims to describe recent advances in anti-angiogenic DNA vaccine therapy and to provide perspectives for use of revolutionary approaches such are mRNA vaccines for anti-angiogenic treatments.
Collapse
Affiliation(s)
| | - Alfredo Martínez
- Angiogenesis Unit, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| |
Collapse
|
18
|
Song J, Zhang Y, Zhou C, Zhan J, Cheng X, Huang H, Mao S, Zong Z. The dawn of a new Era: mRNA vaccines in colorectal cancer immunotherapy. Int Immunopharmacol 2024; 132:112037. [PMID: 38599100 DOI: 10.1016/j.intimp.2024.112037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/24/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Colorectal cancer (CRC) is a typical cancer that accounts for 10% of all new cancer cases annually and nearly 10% of all cancer deaths. Despite significant progress in current classical interventions for CRC, these traditional strategies could be invasive and with numerous adverse effects. The poor prognosis of CRC patients highlights the evident and pressing need for more efficient and targeted treatment. Novel strategies regarding mRNA vaccines for anti-tumor therapy have also been well-developed since the successful application for the prevention of COVID-19. mRNA vaccine technology won the 2023 Nobel Prize in Physiology or Medicine, signaling a new direction in human anti-cancer treatment: mRNA medicine. As a promising new immunotherapy in CRC and other multiple cancer treatments, the mRNA vaccine has higher specificity, better efficacy, and fewer side effects than traditional strategies. The present review outlines the basics of mRNA vaccines and their advantages over other vaccines and informs an available strategy for developing efficient mRNA vaccines for CRC precise treatment. In the future, more exploration of mRNA vaccines for CRC shall be attached, fostering innovation to address existing limitations.
Collapse
Affiliation(s)
- Jingjing Song
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang 330006, Jiangxi, China; School of Ophthalmology and Optometry, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Yujun Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang 330006, Jiangxi, China; Huankui Academy, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Chulin Zhou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang 330006, Jiangxi, China; The Second Clinical Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Jianhao Zhan
- Huankui Academy, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Xifu Cheng
- School of Ophthalmology and Optometry, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Haoyu Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang 330006, Jiangxi, China
| | - Shengxun Mao
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang 330006, Jiangxi, China.
| | - Zhen Zong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
19
|
Pawar S, Pingale P, Garkal A, Osmani RAM, Gajbhiye K, Kulkarni M, Pardeshi K, Mehta T, Rajput A. Unlocking the potential of nanocarrier-mediated mRNA delivery across diverse biomedical frontiers: A comprehensive review. Int J Biol Macromol 2024; 267:131139. [PMID: 38615863 DOI: 10.1016/j.ijbiomac.2024.131139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/23/2024] [Accepted: 03/23/2024] [Indexed: 04/16/2024]
Abstract
Messenger RNA (mRNA) has gained marvelous attention for managing and preventing various conditions like cancer, Alzheimer's, infectious diseases, etc. Due to the quick development and success of the COVID-19 mRNA-based vaccines, mRNA has recently grown in prominence. A lot of products are in clinical trials and some are already FDA-approved. However, still improvements in line of optimizing stability and delivery, reducing immunogenicity, increasing efficiency, expanding therapeutic applications, scalability and manufacturing, and long-term safety monitoring are needed. The delivery of mRNA via a nanocarrier system gives a synergistic outcome for managing chronic and complicated conditions. The modified nanocarrier-loaded mRNA has excellent potential as a therapeutic strategy. This emerging platform covers a wide range of diseases, recently, several clinical studies are ongoing and numerous publications are coming out every year. Still, many unexplained physical, biological, and technical problems of mRNA for safer human consumption. These complications were addressed with various nanocarrier formulations. This review systematically summarizes the solved problems and applications of nanocarrier-based mRNA delivery. The modified nanocarrier mRNA meaningfully improved mRNA stability and abridged its immunogenicity issues. Furthermore, several strategies were discussed that can be an effective solution in the future for managing complicated diseases.
Collapse
Affiliation(s)
- Smita Pawar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga (E), Mumbai 400019, Maharashtra, India
| | - Prashant Pingale
- Department of Pharmaceutics, GES's Sir Dr. M. S. Gosavi College of Pharmaceutical Education and Research, Nashik 422005, Maharashtra, India
| | - Atul Garkal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India; Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Kavita Gajbhiye
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed University, Poona College of Pharmacy, Erandwane, Pune 411038, Maharashtra, India
| | - Madhur Kulkarni
- SCES's Indira College of Pharmacy, New Pune Mumbai Highway, Tathwade 411033, Pune, Maharashtra, India
| | - Krutika Pardeshi
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sandip University, Nashik 422213, Maharashtra, India
| | - Tejal Mehta
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Amarjitsing Rajput
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed University, Poona College of Pharmacy, Erandwane, Pune 411038, Maharashtra, India.
| |
Collapse
|
20
|
Zhou F, Huang L, Li S, Yang W, Chen F, Cai Z, Liu X, Xu W, Lehto V, Lächelt U, Huang R, Shi Y, Lammers T, Tao W, Xu ZP, Wagner E, Xu Z, Yu H. From structural design to delivery: mRNA therapeutics for cancer immunotherapy. EXPLORATION (BEIJING, CHINA) 2024; 4:20210146. [PMID: 38855617 PMCID: PMC11022630 DOI: 10.1002/exp.20210146] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/15/2023] [Indexed: 06/11/2024]
Abstract
mRNA therapeutics have emerged as powerful tools for cancer immunotherapy in accordance with their superiority in expressing all sequence-known proteins in vivo. In particular, with a small dosage of delivered mRNA, antigen-presenting cells (APCs) can synthesize mutant neo-antigens and multi-antigens and present epitopes to T lymphocytes to elicit antitumor effects. In addition, expressing receptors like chimeric antigen receptor (CAR), T-cell receptor (TCR), CD134, and immune-modulating factors including cytokines, interferons, and antibodies in specific cells can enhance immunological response against tumors. With the maturation of in vitro transcription (IVT) technology, large-scale and pure mRNA encoding specific proteins can be synthesized quickly. However, the clinical translation of mRNA-based anticancer strategies is restricted by delivering mRNA into target organs or cells and the inadequate endosomal escape efficiency of mRNA. Recently, there have been some advances in mRNA-based cancer immunotherapy, which can be roughly classified as modifications of the mRNA structure and the development of delivery systems, especially the lipid nanoparticle platforms. In this review, the latest strategies for overcoming the limitations of mRNA-based cancer immunotherapies and the recent advances in delivering mRNA into specific organs and cells are summarized. Challenges and opportunities for clinical applications of mRNA-based cancer immunotherapy are also discussed.
Collapse
Affiliation(s)
- Feng Zhou
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Lujia Huang
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Shiqin Li
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Wenfang Yang
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Fangmin Chen
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhixiong Cai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
| | - Wujun Xu
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
| | - Vesa‐Pekka Lehto
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
| | - Ulrich Lächelt
- Department of Pharmaceutical SciencesUniversity of ViennaViennaAustria
| | - Rongqin Huang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug DeliveryMinistry of Education, Fudan UniversityShanghaiChina
| | - Yang Shi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular ImagingRWTH Aachen University ClinicAachenGermany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular ImagingRWTH Aachen University ClinicAachenGermany
| | - Wei Tao
- Center for Nanomedicine and Department of Anaesthesiology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Zhi Ping Xu
- Institute of Biomedical Health Technology and Engineering and Institute of Systems and Physical BiologyShenzhen Bay LaboratoryShenzhenChina
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for NanoscienceLudwig‐Maximilians‐UniversitätMunichGermany
| | - Zhiai Xu
- School of Chemistry and Molecular EngineeringEast China Normal UniversityShanghaiChina
| | - Haijun Yu
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
21
|
Katopodi T, Petanidis S, Grigoriadou E, Anestakis D, Charalampidis C, Chatziprodromidou I, Floros G, Eskitzis P, Zarogoulidis P, Koulouris C, Sevva C, Papadopoulos K, Roulia P, Mantalovas S, Dagher M, Karakousis AV, Varsamis N, Vlassopoulos K, Theodorou V, Mystakidou CM, Katsios NI, Farmakis K, Kosmidis C. Immune Specific and Tumor-Dependent mRNA Vaccines for Cancer Immunotherapy: Reprogramming Clinical Translation into Tumor Editing Therapy. Pharmaceutics 2024; 16:455. [PMID: 38675116 PMCID: PMC11053579 DOI: 10.3390/pharmaceutics16040455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Extensive research into mRNA vaccines for cancer therapy in preclinical and clinical trials has prepared the ground for the quick development of immune-specific mRNA vaccines during the COVID-19 pandemic. Therapeutic cancer vaccines based on mRNA are well tolerated, and are an attractive choice for future cancer immunotherapy. Ideal personalized tumor-dependent mRNA vaccines could stimulate both humoral and cellular immunity by overcoming cancer-induced immune suppression and tumor relapse. The stability, structure, and distribution strategies of mRNA-based vaccines have been improved by technological innovations, and patients with diverse tumor types are now being enrolled in numerous clinical trials investigating mRNA vaccine therapy. Despite the fact that therapeutic mRNA-based cancer vaccines have not yet received clinical approval, early clinical trials with mRNA vaccines as monotherapy and in conjunction with checkpoint inhibitors have shown promising results. In this review, we analyze the most recent clinical developments in mRNA-based cancer vaccines and discuss the optimal platforms for the creation of mRNA vaccines. We also discuss the development of the cancer vaccines' clinical research, paying particular attention to their clinical use and therapeutic efficacy, which could facilitate the design of mRNA-based vaccines in the near future.
Collapse
Affiliation(s)
- Theodora Katopodi
- Laboratory of Medical Biology and Genetics, Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (T.K.); (E.G.)
| | - Savvas Petanidis
- Laboratory of Medical Biology and Genetics, Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (T.K.); (E.G.)
- Department of Pulmonology, I.M. Sechenov First Moscow State Medical University, Moscow 119992, Russia
| | - Eirini Grigoriadou
- Laboratory of Medical Biology and Genetics, Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (T.K.); (E.G.)
| | - Doxakis Anestakis
- Department of Anatomy, Medical School, University of Cyprus, Nicosia 1678, Cyprus; (D.A.); (C.C.)
| | | | | | - George Floros
- Department of Electrical and Computer Engineering, University of Thessaly, 38334 Volos, Greece;
| | - Panagiotis Eskitzis
- Department of Obstetrics, University of Western Macedonia, 50100 Kozani, Greece;
| | - Paul Zarogoulidis
- Third Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, 55236 Thessaloniki, Greece; (P.Z.); (C.K.); (C.S.); (K.P.); (S.M.); (M.D.); (A.V.K.); (C.K.)
| | - Charilaos Koulouris
- Third Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, 55236 Thessaloniki, Greece; (P.Z.); (C.K.); (C.S.); (K.P.); (S.M.); (M.D.); (A.V.K.); (C.K.)
| | - Christina Sevva
- Third Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, 55236 Thessaloniki, Greece; (P.Z.); (C.K.); (C.S.); (K.P.); (S.M.); (M.D.); (A.V.K.); (C.K.)
| | - Konstantinos Papadopoulos
- Third Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, 55236 Thessaloniki, Greece; (P.Z.); (C.K.); (C.S.); (K.P.); (S.M.); (M.D.); (A.V.K.); (C.K.)
| | - Panagiota Roulia
- Third Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, 55236 Thessaloniki, Greece; (P.Z.); (C.K.); (C.S.); (K.P.); (S.M.); (M.D.); (A.V.K.); (C.K.)
| | - Stylianos Mantalovas
- Third Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, 55236 Thessaloniki, Greece; (P.Z.); (C.K.); (C.S.); (K.P.); (S.M.); (M.D.); (A.V.K.); (C.K.)
| | - Marios Dagher
- Third Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, 55236 Thessaloniki, Greece; (P.Z.); (C.K.); (C.S.); (K.P.); (S.M.); (M.D.); (A.V.K.); (C.K.)
| | - Alexandros Vasileios Karakousis
- Third Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, 55236 Thessaloniki, Greece; (P.Z.); (C.K.); (C.S.); (K.P.); (S.M.); (M.D.); (A.V.K.); (C.K.)
| | | | - Konstantinos Vlassopoulos
- Department of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.V.); (V.T.); (C.M.M.)
| | - Vasiliki Theodorou
- Department of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.V.); (V.T.); (C.M.M.)
| | - Chrysi Maria Mystakidou
- Department of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.V.); (V.T.); (C.M.M.)
| | - Nikolaos Iason Katsios
- Medical School, Faculty of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Konstantinos Farmakis
- Pediatric Surgery Clinic, General Hospital of Thessaloniki “G. Gennimatas”, Aristotle University of Thessaloniki, 54635 Thessaloniki, Greece;
| | - Christoforos Kosmidis
- Third Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, 55236 Thessaloniki, Greece; (P.Z.); (C.K.); (C.S.); (K.P.); (S.M.); (M.D.); (A.V.K.); (C.K.)
| |
Collapse
|
22
|
VanKeulen-Miller R, Fenton OS. Messenger RNA Therapy for Female Reproductive Health. Mol Pharm 2024; 21:393-409. [PMID: 38189262 PMCID: PMC11969564 DOI: 10.1021/acs.molpharmaceut.3c00803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Female reproductive health has traditionally been an underrepresented area of research in the drug delivery sciences. This disparity is also seen in the emerging field of mRNA therapeutics, a class of medicines that promises to treat and prevent disease by upregulating protein expression in the body. Here, we review advances in mRNA therapies through the lens of improving female reproductive health. Specifically, we begin our review by discussing the fundamental structure and biochemical modifications associated with mRNA-based drugs. Then, we discuss various packaging technologies, including lipid nanoparticles, that can be utilized to protect and transport mRNA drugs to target cells in the body. Last, we conclude our review by discussing the usage of mRNA therapy for addressing pregnancy-related health and vaccination against sexually transmitted diseases in women. Of note, we also highlight relevant clinical trials using mRNA for female reproductive health while also providing their corresponding National Clinical Trial identifiers. In undertaking this review, our aim is to provide a fundamental background understanding of mRNA therapy and its usage to specifically address female health issues with an overarching goal of providing information toward addressing gender disparity in certain aspects of health research.
Collapse
Affiliation(s)
- Rachel VanKeulen-Miller
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Owen S. Fenton
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
23
|
Vuong HL, Lan CT, Le HTT. The development and technologies of RNA therapeutics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 203:13-39. [PMID: 38359995 DOI: 10.1016/bs.pmbts.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Since it was discovered for over 20 years ago, the potentiality of siRNAs in gene silencing in vitro and in vivo models has been recognized. Several studies in the new generation, molecular mechanisms, target attachment, and purification of RNA have supported the development of RNA therapeutics for a variety of applications. RNA therapeutics are growing rapidly with various platforms contributing to the standard of personalized medicine and rare disease treatment. Therefore, understanding the development and technologies of RNA therapeutics becomes a crucial point for new drug generation. Here, the primary purpose of this review is to provide a general view of six therapeutic categories that make up RNA-based therapeutic approaches, including RNA-target therapeutics, protein-targeted therapeutics, cellular reprogramming and tissues engineering, RNA-based protein replacement therapeutics, RNA-based genome editing, and RNA-based immunotherapies based on non-coding RNAs and coding RNA. Furthermore, we present an overview of the RNA strategies regarding viral approaches and nonviral approaches in designing a new generation of RNA technologies. The advantages and challenges of using RNA therapeutics are also discussed along with various approaches for RNA delivery. Therefore, this review is designed to provide updated reference evidence of RNA therapeutics in the battle against rare or difficult-to-treat diseases for researchers in this field.
Collapse
Affiliation(s)
- Huong Lan Vuong
- Pharmacy Department, National Hospital for Tropical Diseases, Hanoi, Vietnam
| | - Chu Thanh Lan
- Department of Regenerative Medicine, Institute of Tissue Regeneration, College of Medicine, Soonchunghyang University, South Korea
| | - Hien Thi Thu Le
- Intestinal Signaling and Epigenetics, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| |
Collapse
|
24
|
Malla R, Srilatha M, Farran B, Nagaraju GP. mRNA vaccines and their delivery strategies: A journey from infectious diseases to cancer. Mol Ther 2024; 32:13-31. [PMID: 37919901 PMCID: PMC10787123 DOI: 10.1016/j.ymthe.2023.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023] Open
Abstract
mRNA vaccines have evolved as promising cancer therapies. These vaccines can encode tumor-allied antigens, thus enabling personalized treatment approaches. They can also target cancer-specific mutations and overcome immune evasion mechanisms. They manipulate the body's cellular functions to produce antigens, elicit immune responses, and suppress tumors by overcoming limitations associated with specific histocompatibility leukocyte antigen molecules. However, successfully delivering mRNA into target cells destroys a crucial challenge. Viral and nonviral vectors (lipid nanoparticles and cationic liposomes) have shown great capacity in protecting mRNA from deterioration and assisting in cellular uptake. Cell-penetrating peptides, hydrogels, polymer-based nanoparticles, and dendrimers have been investigated to increase the delivery efficacy and immunogenicity of mRNA. This comprehensive review explores the landscape of mRNA vaccines and their delivery platforms for cancer, addressing design considerations, diverse delivery strategies, and recent advancements. Overall, this review contributes to the progress of mRNA vaccines as an innovative strategy for effective cancer treatment.
Collapse
Affiliation(s)
- RamaRao Malla
- Cancer Biology Lab, Department of Biochemistry and Bioinformatics, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, AP, India
| | - Mundla Srilatha
- Department of Biotechnology, Sri Venkateswara University, Tirupati 517502, AP, India
| | - Batoul Farran
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35233, USA.
| |
Collapse
|
25
|
Chen W, Zhu Y, He J, Sun X. Path towards mRNA delivery for cancer immunotherapy from bench to bedside. Theranostics 2024; 14:96-115. [PMID: 38164145 PMCID: PMC10750210 DOI: 10.7150/thno.89247] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/11/2023] [Indexed: 01/03/2024] Open
Abstract
Messenger RNA (mRNA) has emerged as a promising therapeutic agent for the prevention and treatment of various diseases. mRNA vaccines, in particular, offer an alternative approach to conventional vaccines, boasting high potency, rapid development capabilities, cost-effectiveness, and safe administration. However, the clinical application of mRNA vaccines is hindered by the challenges of mRNA instability and inefficient in vivo delivery. In recent times, remarkable technological advancements have emerged to address these challenges, utilizing two main approaches: ex vivo transfection of dendritic cells (DCs) with mRNA and direct injection of mRNA-based therapeutics, either with or without a carrier. This review offers a comprehensive overview of major non-viral vectors employed for mRNA vaccine delivery. It showcases notable preclinical and clinical studies in the field of cancer immunotherapy and discusses important considerations for advancing these promising vaccine platforms for broader therapeutic applications. Additionally, we provide insights into future possibilities and the remaining challenges in mRNA delivery technology, emphasizing the significance of ongoing research in mRNA-based therapeutics.
Collapse
Affiliation(s)
- Wenfei Chen
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yining Zhu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Jinhan He
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
26
|
Alexandrou E, Guneri D, Neidle S, Waller ZAE. QN-302 demonstrates opposing effects between i-motif and G-quadruplex DNA structures in the promoter of the S100P gene. Org Biomol Chem 2023; 22:55-58. [PMID: 37970888 PMCID: PMC10732280 DOI: 10.1039/d3ob01464a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
GC-rich sequences can fold into G-quadruplexes and i-motifs and are known to control gene expression in many organisms. The potent G-quadruplex experimental anticancer drug QN-302 down-regulates a number of cancer-related genes, in particular S100P. Here we show this ligand has strong opposing effects with i-motif DNA structures and is one of the most potent i-motif destabilising agents reported to date. QN-302 down-regulates the expression of numerous cancer-related genes by pan-quadruplex targeting. QN-302 exhibits exceptional combined synergistic effects compared to many other G-quadruplex and i-motif interacting compounds. This work further emphasises the importance of considering G-quadruplex and i-motif DNA structures as one dynamic system.
Collapse
Affiliation(s)
- Effrosyni Alexandrou
- School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| | - Dilek Guneri
- School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| | - Stephen Neidle
- School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| | - Zoë A E Waller
- School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| |
Collapse
|
27
|
Chen J, Xu Y, Zhou M, Xu S, Varley AJ, Golubovic A, Lu RXZ, Wang KC, Yeganeh M, Vosoughi D, Li B. Combinatorial design of ionizable lipid nanoparticles for muscle-selective mRNA delivery with minimized off-target effects. Proc Natl Acad Sci U S A 2023; 120:e2309472120. [PMID: 38060560 PMCID: PMC10723144 DOI: 10.1073/pnas.2309472120] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/30/2023] [Indexed: 12/17/2023] Open
Abstract
Ionizable lipid nanoparticles (LNPs) pivotal to the success of COVID-19 mRNA (messenger RNA) vaccines hold substantial promise for expanding the landscape of mRNA-based therapies. Nevertheless, the risk of mRNA delivery to off-target tissues highlights the necessity for LNPs with enhanced tissue selectivity. The intricate nature of biological systems and inadequate knowledge of lipid structure-activity relationships emphasize the significance of high-throughput methods to produce chemically diverse lipid libraries for mRNA delivery screening. Here, we introduce a streamlined approach for the rapid design and synthesis of combinatorial libraries of biodegradable ionizable lipids. This led to the identification of iso-A11B5C1, an ionizable lipid uniquely apt for muscle-specific mRNA delivery. It manifested high transfection efficiencies in muscle tissues, while significantly diminishing off-targeting in organs like the liver and spleen. Moreover, iso-A11B5C1 also exhibited reduced mRNA transfection potency in lymph nodes and antigen-presenting cells, prompting investigation into the influence of direct immune cell transfection via LNPs on mRNA vaccine effectiveness. In comparison with SM-102, while iso-A11B5C1's limited immune transfection attenuated its ability to elicit humoral immunity, it remained highly effective in triggering cellular immune responses after intramuscular administration, which is further corroborated by its strong therapeutic performance as cancer vaccine in a melanoma model. Collectively, our study not only enriches the high-throughput toolkit for generating tissue-specific ionizable lipids but also encourages a reassessment of prevailing paradigms in mRNA vaccine design. This study encourages rethinking of mRNA vaccine design principles, suggesting that achieving high immune cell transfection might not be the sole criterion for developing effective mRNA vaccines.
Collapse
Affiliation(s)
- Jingan Chen
- Institute of Biomedical Engineering, University of Toronto, Toronto, ONM5S 3G9, Canada
| | - Yue Xu
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ONM5S 3M2, Canada
| | - Muye Zhou
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ONM5S 3M2, Canada
| | - Shufen Xu
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ONM5S 3M2, Canada
| | - Andrew James Varley
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ONM5S 3M2, Canada
| | - Alex Golubovic
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ONM5S 3M2, Canada
| | - Rick Xing Ze Lu
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ONM5S 3M2, Canada
| | - Kevin Chang Wang
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ONM5S 3M2, Canada
| | - Mina Yeganeh
- Institute of Medical Science, University of Toronto, Toronto, ONM5G 1L7, Canada
| | - Daniel Vosoughi
- Institute of Medical Science, University of Toronto, Toronto, ONM5G 1L7, Canada
- Latner Thoracic Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ONM5G 2C4, Canada
| | - Bowen Li
- Institute of Biomedical Engineering, University of Toronto, Toronto, ONM5S 3G9, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ONM5S 3M2, Canada
- Princess Margaret Cancer Center, University Health Network, Toronto, ONM5G 2C1, Canada
| |
Collapse
|
28
|
Delehedde C, Ciganek I, Rameix N, Laroui N, Gonçalves C, Even L, Midoux P, Pichon C. Impact of net charge, targeting ligand amount and mRNA modification on the uptake, intracellular routing and the transfection efficiency of mRNA lipopolyplexes in dendritic cells. Int J Pharm 2023; 647:123531. [PMID: 37863445 DOI: 10.1016/j.ijpharm.2023.123531] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/08/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
Targeting mRNA formulations to achieve cell specificity is one of the challenges that must be tackled to mettle their therapeutic potential. Here, lipopolyplexes (LPR) bearing tri-mannose-lipid (TM) are used to target mannose receptor on dendritic cells. We investigated the impact of the net charge and percentage of TM units on the binding, uptake, transfection efficiency (TE) and RNA sensors activation. Binding and uptake capacities of naked and targeted LPR increase with the percent of cationic lipid, but the latter are 2-fold more up taken by the cells. Cationic LPR bearing 5 % and 10 % TM were localized in acidic compartments in contrast to naked LPR and 2.5 % TM-LPR. The drawback is the dramatic decrease of TE as the number of TM-units increases. Cationic LPR bearing 5 % and 10 % TM strongly induced NF-κB and PKR phosphorylation at 6 h. Conversely, mTOR is less activated in line with their low TE. Those side effects are overcome by using 5-methoxyuridine mRNA resulting in an improved TE due to non-phosphorylation of NF-κB and PKR and mTOR activation. Our results point out that targeting DC via mannose receptor triggers a higher uptake of cationic LPRs and fast routing to acidic compartments, and that efficient TE requires low number of TM units use or modified mRNA to escape RNA sensors activation to enhance the translation.
Collapse
Affiliation(s)
- Christophe Delehedde
- Centre de Biophysique Moléculaire, CNRS UPR4301, F-45071, Orléans cedex 02, France; Sanofi R&D, Integrated Drug Discovery, Chilly-Mazarin, France
| | - Ivan Ciganek
- Centre de Biophysique Moléculaire, CNRS UPR4301, F-45071, Orléans cedex 02, France
| | - Nathalie Rameix
- Sanofi R&D, Integrated Drug Discovery, Chilly-Mazarin, France
| | - Nabila Laroui
- Centre de Biophysique Moléculaire, CNRS UPR4301, F-45071, Orléans cedex 02, France
| | - Cristine Gonçalves
- Centre de Biophysique Moléculaire, CNRS UPR4301, F-45071, Orléans cedex 02, France
| | - Luc Even
- Sanofi R&D, Integrated Drug Discovery, Chilly-Mazarin, France
| | - Patrick Midoux
- Centre de Biophysique Moléculaire, CNRS UPR4301, F-45071, Orléans cedex 02, France
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, CNRS UPR4301, F-45071, Orléans cedex 02, France; Inserm UMS 55 ART ARNm and University of Orléans, F-45100 Orléans; Institut Universitaire de France, 1 rue Descartes, F-75035 Paris, France.
| |
Collapse
|
29
|
Chen ES, Ho ES. In-silico study of antisense oligonucleotide antibiotics. PeerJ 2023; 11:e16343. [PMID: 38025700 PMCID: PMC10656905 DOI: 10.7717/peerj.16343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023] Open
Abstract
Background The rapid emergence of antibiotic-resistant bacteria directly contributes to a wave of untreatable infections. The lack of new drug development is an important driver of this crisis. Most antibiotics today are small molecules that block vital processes in bacteria. To optimize such effects, the three-dimensional structure of targeted bacterial proteins is imperative, although such a task is time-consuming and tedious, impeding the development of antibiotics. The development of RNA-based therapeutics has catalyzed a new platform of antibiotics-antisense oligonucleotides (ASOs). These molecules hybridize with their target mRNAs with high specificity, knocking down or interfering with protein translation. This study aims to develop a bioinformatics pipeline to identify potent ASO targets in essential bacterial genes. Methods Three bacterial species (P. gingivalis, H. influenzae, and S. aureus) were used to demonstrate the utility of the pipeline. Open reading frames of bacterial essential genes were downloaded from the Database of Essential Genes (DEG). After filtering for specificity and accessibility, ASO candidates were ranked based on their self-hybridization score, predicted melting temperature, and the position on the gene in an operon. Enrichment analysis was conducted on genes associated with putative potent ASOs. Results A total of 45,628 ASOs were generated from 348 unique essential genes in P. gingivalis. A total of 1,117 of them were considered putative. A total of 27,273 ASOs were generated from 191 unique essential genes in H. influenzae. A total of 847 of them were considered putative. A total of 175,606 ASOs were generated from 346 essential genes in S. aureus. A total of 7,061 of them were considered putative. Critical biological processes associated with these genes include translation, regulation of cell shape, cell division, and peptidoglycan biosynthetic process. Putative ASO targets generated for each bacterial species are publicly available here: https://github.com/EricSHo/AOA. The results demonstrate that our bioinformatics pipeline is useful in identifying unique and accessible ASO targets in bacterial species that post major public health issues.
Collapse
Affiliation(s)
- Erica S. Chen
- Biology, Lafayette College, Easton, PA, United States
| | - Eric S. Ho
- Biology, Lafayette College, Easton, PA, United States
| |
Collapse
|
30
|
Lu TL, Li CL, Gong YQ, Hou FT, Chen CW. Identification of tumor antigens and immune subtypes of hepatocellular carcinoma for mRNA vaccine development. World J Gastrointest Oncol 2023; 15:1717-1738. [PMID: 37969406 PMCID: PMC10631436 DOI: 10.4251/wjgo.v15.i10.1717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/10/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023] Open
Abstract
BACKGROUND mRNA vaccines have been investigated in multiple tumors, but limited studies have been conducted on their use for hepatocellular carcinoma (HCC). AIM To identify candidate mRNA vaccine antigens for HCC and suitable subpopulations for mRNA vaccination. METHODS Gene expression profiles and clinical information of HCC datasets were obtained from International Cancer Genome Consortium and The Cancer Genome Atlas. Genes with somatic mutations and copy number variations were identified by cBioPortal analysis. The differentially expressed genes with significant prognostic value were identified by Gene Expression Profiling Interactive Analysis 2 website analysis. The Tumor Immune Estimation Resource database was used to assess the correlation between candidate antigens and the abundance of antigen-presenting cells (APCs). Tumor-associated antigens were overexpressed in tumors and associated with prognosis, genomic alterations, and APC infiltration. A consensus cluster analysis was performed with the Consensus Cluster Plus package to identify the immune subtypes. The weighted gene coexpression network analysis (WGCNA) was used to determine the candidate biomarker molecules for appropriate populations for mRNA vaccines. RESULTS AURKA, CCNB1, CDC25C, CDK1, TRIP13, PES1, MCM3, PPM1G, NEK2, KIF2C, PTTG1, KPNA2, and PRC1 were identified as candidate HCC antigens for mRNA vaccine development. Four immune subtypes (IS1-IS4) and five immune gene modules of HCC were identified that were consistent in both patient cohorts. The immune subtypes showed distinct cellular and clinical characteristics. The IS1 and IS3 immune subtypes were immunologically "cold". The IS2 and IS4 immune subtypes were immunologically "hot", and the immune checkpoint genes and immunogenic cell death genes were upregulated in these subtypes. IS1-related modules were identified with the WGCNA algorithm. Ultimately, five hub genes (RBP4, KNG1, METTL7A, F12, and ABAT) were identified, and they might be potential biomarkers for mRNA vaccines. CONCLUSION AURKA, CCNB1, CDC25C, CDK1, TRIP13, PES1, MCM3, PPM1G, NEK2, KIF2C, PTTG1, KPNA2, and PRC1 have been identified as candidate HCC antigens for mRNA vaccine development. The IS1 and IS3 immune subtypes are suitable populations for mRNA vaccination. RBP4, KNG1, METTL7A, F12, and ABAT are potential biomarkers for mRNA vaccines.
Collapse
Affiliation(s)
- Tai-Liang Lu
- Department of General Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan Province, China
| | - Cheng-Long Li
- Department of General Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan Province, China
| | - Yong-Qiang Gong
- Department of General Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan Province, China
| | - Fu-Tao Hou
- Department of General Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan Province, China
| | - Chao-Wu Chen
- Department of General Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan Province, China
| |
Collapse
|
31
|
Nelli F, Giannarelli D, Fabbri A, Virtuoso A, Giron Berrios JR, Marrucci E, Fiore C, Schirripa M, Signorelli C, Chilelli MG, Primi F, Panichi V, Topini G, Silvestri MA, Ruggeri EM. Immune-related adverse events and disease outcomes after the third dose of SARS-CoV-2 mRNA-BNT162b2 vaccine in cancer patients receiving immune checkpoint inhibitors. Cancer Immunol Immunother 2023; 72:3217-3228. [PMID: 37428196 PMCID: PMC10992090 DOI: 10.1007/s00262-023-03489-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 06/27/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND The clinical implications of the third dose of coronavirus disease 2019 (COVID-19) vaccines in patients receiving immune checkpoint inhibitors are currently unknown. We performed a prospective analysis of the Vax-On-Third study to investigate the effects of antibody response on immune-related adverse events (irAEs) and disease outcomes. METHODS Recipients of the booster dose of SARS-CoV-2 mRNA-BNT162b2 vaccine who had received at least one course of an anti-PD-1/PD-L1 treatment before vaccination for an advanced solid malignancy were eligible. RESULTS The current analysis included 56 patients with metastatic disease (median age: 66 years; male: 71%), most of whom had a lung cancer diagnosis and were being treated with pembrolizumab- or nivolumab-based regimens. The optimal cut-point antibody titer of 486 BAU/mL allowed a dichotomization of recipients into low-responders (Low-R, < 486 BAU/mL) or high-responders (High-R, ≥ 486 BAU/mL). After a median follow-up time of 226 days, 21.4% of patients experienced moderate to severe irAEs without any recrudescence of immune toxicities preceding the booster dose. The frequencies of irAE before and after the third dose did not differ, but an increase in the cumulative incidence of immuno-related thyroiditis was observed within the High-R subgroup. On multivariate analysis, an enhanced humoral response correlated with a better outcome in terms of durable clinical benefit, which resulted in a significant reduction in the risk of disease control loss but not mortality. CONCLUSIONS Our findings would strengthen the recommendation not to change anti-PD-1/PD-L1 treatment plans based on current or future immunization schedules, implying that all these patients should be closely monitored.
Collapse
Affiliation(s)
- Fabrizio Nelli
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, Strada Sammartinese snc, 01100, Viterbo, Italy.
| | - Diana Giannarelli
- Biostatistics Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Agnese Fabbri
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, Strada Sammartinese snc, 01100, Viterbo, Italy
| | - Antonella Virtuoso
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, Strada Sammartinese snc, 01100, Viterbo, Italy
| | - Julio Rodrigo Giron Berrios
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, Strada Sammartinese snc, 01100, Viterbo, Italy
| | - Eleonora Marrucci
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, Strada Sammartinese snc, 01100, Viterbo, Italy
| | - Cristina Fiore
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, Strada Sammartinese snc, 01100, Viterbo, Italy
| | - Marta Schirripa
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, Strada Sammartinese snc, 01100, Viterbo, Italy
| | - Carlo Signorelli
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, Strada Sammartinese snc, 01100, Viterbo, Italy
| | - Mario Giovanni Chilelli
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, Strada Sammartinese snc, 01100, Viterbo, Italy
| | - Francesca Primi
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, Strada Sammartinese snc, 01100, Viterbo, Italy
| | - Valentina Panichi
- Microbiology and Virology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, Viterbo, Italy
| | - Giuseppe Topini
- Microbiology and Virology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, Viterbo, Italy
| | - Maria Assunta Silvestri
- Microbiology and Virology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, Viterbo, Italy
| | - Enzo Maria Ruggeri
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, Strada Sammartinese snc, 01100, Viterbo, Italy
| |
Collapse
|
32
|
Wang B, Pei J, Xu S, Liu J, Yu J. Recent advances in mRNA cancer vaccines: meeting challenges and embracing opportunities. Front Immunol 2023; 14:1246682. [PMID: 37744371 PMCID: PMC10511650 DOI: 10.3389/fimmu.2023.1246682] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023] Open
Abstract
Since the successful application of messenger RNA (mRNA) vaccines in preventing COVID-19, researchers have been striving to develop mRNA vaccines for clinical use, including those exploited for anti-tumor therapy. mRNA cancer vaccines have emerged as a promising novel approach to cancer immunotherapy, offering high specificity, better efficacy, and fewer side effects compared to traditional treatments. Multiple therapeutic mRNA cancer vaccines are being evaluated in preclinical and clinical trials, with promising early-phase results. However, the development of these vaccines faces various challenges, such as tumor heterogeneity, an immunosuppressive tumor microenvironment, and practical obstacles like vaccine administration methods and evaluation systems for clinical application. To address these challenges, we highlight recent advances from preclinical studies and clinical trials that provide insight into identifying obstacles associated with mRNA cancer vaccines and discuss potential strategies to overcome them. In the future, it is crucial to approach the development of mRNA cancer vaccines with caution and diligence while promoting innovation to overcome existing barriers. A delicate balance between opportunities and challenges will help guide the progress of this promising field towards its full potential.
Collapse
Affiliation(s)
- Bolin Wang
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China
| | - Jinli Pei
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China
| | - Shengnan Xu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China
| | - Jie Liu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China
| | - Jinming Yu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
33
|
Wang C, Pan C, Yong H, Wang F, Bo T, Zhao Y, Ma B, He W, Li M. Emerging non-viral vectors for gene delivery. J Nanobiotechnology 2023; 21:272. [PMID: 37592351 PMCID: PMC10433663 DOI: 10.1186/s12951-023-02044-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023] Open
Abstract
Gene therapy holds great promise for treating a multitude of inherited and acquired diseases by delivering functional genes, comprising DNA or RNA, into targeted cells or tissues to elicit manipulation of gene expression. However, the clinical implementation of gene therapy remains substantially impeded by the lack of safe and efficient gene delivery vehicles. This review comprehensively outlines the novel fastest-growing and efficient non-viral gene delivery vectors, which include liposomes and lipid nanoparticles (LNPs), highly branched poly(β-amino ester) (HPAE), single-chain cyclic polymer (SCKP), poly(amidoamine) (PAMAM) dendrimers, and polyethyleneimine (PEI). Particularly, we discuss the research progress, potential development directions, and remaining challenges. Additionally, we provide a comprehensive overview of the currently approved non-viral gene therapeutics, as well as ongoing clinical trials. With advances in biomedicine, molecular biology, materials science, non-viral gene vectors play an ever-expanding and noteworthy role in clinical gene therapy.
Collapse
Affiliation(s)
- Chenfei Wang
- Department of Dermatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Chaolan Pan
- Department of Dermatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Haiyang Yong
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Feifei Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Tao Bo
- School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yitong Zhao
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, 232000, China
| | - Bin Ma
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Wei He
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, 232000, China
| | - Ming Li
- Department of Dermatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China.
| |
Collapse
|
34
|
Diao L, Liu M. Rethinking Antigen Source: Cancer Vaccines Based on Whole Tumor Cell/tissue Lysate or Whole Tumor Cell. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300121. [PMID: 37254712 PMCID: PMC10401146 DOI: 10.1002/advs.202300121] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/29/2023] [Indexed: 06/01/2023]
Abstract
Cancer immunotherapies have improved human health, and one among the important technologies for cancer immunotherapy is cancer vaccine. Antigens are the most important components in cancer vaccines. Generally, antigens in cancer vaccines can be divided into two categories: pre-defined antigens and unidentified antigens. Although, cancer vaccines loaded with predefined antigens are commonly used, cancer vaccine loaded with mixed unidentified antigens, especially whole cancer cells or cancer cell lysates, is a very promising approach, and such vaccine can obviate some limitations in cancer vaccines. Their advantages include, but are not limited to, the inclusion of pan-spectra (all or most kinds of) antigens, inducing pan-clones specific T cells, and overcoming the heterogeneity of cancer cells. In this review, the recent advances in cancer vaccines based on whole-tumor antigens, either based on whole cancer cells or whole cancer cell lysates, are summarized. In terms of whole cancer cell lysates, the focus is on applying whole water-soluble cell lysates as antigens. Recently, utilizing the whole cancer cell lysates as antigens in cancer vaccines has become feasible. Considering that pre-determined antigen-based cancer vaccines (mainly peptide-based or mRNA-based) have various limitations, developing cancer vaccines based on whole-tumor antigens is a promising alternative.
Collapse
Affiliation(s)
- Lu Diao
- Department of PharmaceuticsCollege of Pharmaceutical Sciences, Soochow University199 of Ren ai RoadSuzhouJiangsu215123P. R. China
- Kunshan Hospital of Traditional Chinese MedicineKunshanJiangsu215300P. R. China
- Suzhou Ersheng Biopharmaceutical Co., Ltd.Suzhou215123P. R. China
| | - Mi Liu
- Department of PharmaceuticsCollege of Pharmaceutical Sciences, Soochow University199 of Ren ai RoadSuzhouJiangsu215123P. R. China
- Kunshan Hospital of Traditional Chinese MedicineKunshanJiangsu215300P. R. China
- Suzhou Ersheng Biopharmaceutical Co., Ltd.Suzhou215123P. R. China
| |
Collapse
|
35
|
Zhang T, Xu H, Zheng X, Xiong X, Zhang S, Yi X, Li J, Wei Q, Ai J. Clinical benefit and safety associated with mRNA vaccines for advanced solid tumors: A meta-analysis. MedComm (Beijing) 2023; 4:e286. [PMID: 37470066 PMCID: PMC10353527 DOI: 10.1002/mco2.286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/31/2023] [Accepted: 04/23/2023] [Indexed: 07/21/2023] Open
Abstract
Tumor mRNA vaccines have been developed for over 20 years. Whether mRNA vaccines could promote a clinical benefit to advanced cancer patients is highly unknown. PubMed and Embase were retrieved from January 1, 2000 to January 4, 2023. Random effects models were employed. Clinical benefit (objective response rate [ORR], disease control rate [DCR], 1-year/2-year progression-free survival [PFS], and overall survival [OS]) and safety (vaccine-related grade 3-5 adverse events [AEs]) were evaluated. Overall, 984 patients (32 trials) were enrolled. The most typical cancer types were melanoma (13 trials), non-small cell lung cancer (5 trials), renal cell carcinoma (4 trials), and prostate adenocarcinoma (4 trials). The pooled ORR and DCR estimates were 10.0% (95%CI, 4.6-17.0%) and 34.6% (95%CI, 24.1-45.9%). The estimates for 1-year and 2-year PFS were 38.4% (95%CI, 24.8-53.0%) and 20.0% (95%CI, 10.4-31.7%), respectively. The estimates for 1-year and 2-year OS were 75.3% (95%CI, 62.4-86.3%) and 45.5% (95%CI, 34.0-57.2%), respectively. The estimate for vaccine-related grade 3-5 AEs was 1.0% (95%CI, 0.2-2.4%). Conclusively, mRNA vaccines seem to demonstrate modest clinical response rates, with acceptable survival rates and rare grade 3-5 AEs.
Collapse
Affiliation(s)
- Tian‐yi Zhang
- Department of Urology, West China HospitalSichuan UniversityChengduChina
- Institute of Urology, West China HospitalSichuan UniversityChengduChina
| | - Hang Xu
- Department of Urology, West China HospitalSichuan UniversityChengduChina
- Institute of Urology, West China HospitalSichuan UniversityChengduChina
| | - Xiao‐nan Zheng
- Department of Urology, West China HospitalSichuan UniversityChengduChina
- Institute of Urology, West China HospitalSichuan UniversityChengduChina
| | - Xing‐yu Xiong
- Department of Urology, West China HospitalSichuan UniversityChengduChina
- Institute of Urology, West China HospitalSichuan UniversityChengduChina
| | - Shi‐yu Zhang
- Department of Urology, West China HospitalSichuan UniversityChengduChina
- Institute of Urology, West China HospitalSichuan UniversityChengduChina
| | - Xian‐yanling Yi
- Department of Urology, West China HospitalSichuan UniversityChengduChina
- Institute of Urology, West China HospitalSichuan UniversityChengduChina
| | - Jin Li
- Department of Urology, West China HospitalSichuan UniversityChengduChina
- Institute of Urology, West China HospitalSichuan UniversityChengduChina
| | - Qiang Wei
- Department of Urology, West China HospitalSichuan UniversityChengduChina
- Institute of Urology, West China HospitalSichuan UniversityChengduChina
| | - Jian‐zhong Ai
- Department of Urology, West China HospitalSichuan UniversityChengduChina
- Institute of Urology, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
36
|
Nelli F, Signorelli C, Fabbri A, Giannarelli D, Virtuoso A, Giron Berrios JR, Marrucci E, Fiore C, Schirripa M, Chilelli MG, Primi F, Panichi V, Topini G, Silvestri MA, Ruggeri EM. Changes in Peripheral Immune Cells after the Third Dose of SARS-CoV-2 mRNA-BNT162b2 Vaccine and Disease Outcomes in Cancer Patients Receiving Immune Checkpoint Inhibitors: A Prospective Analysis of the Vax-on-Third-Profile Study. Cancers (Basel) 2023; 15:3625. [PMID: 37509286 PMCID: PMC10377319 DOI: 10.3390/cancers15143625] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Anti-SARS-CoV-2 mRNA vaccines can deeply affect cell-mediated immune responses in immunocompromised recipients, including cancer patients receiving active treatments. The clinical implications of changes in peripheral blood lymphocyte subsets following the third dose of mRNA-BNT162b2 vaccination (tozinameran) in patients on immune checkpoint blockade are not fully understood. We conducted a prospective analysis of the Vax-On-Third-Profile study to evaluate the impact of circulating lymphocyte dynamics on disease outcomes in this subgroup of patients. METHODS Recipients of booster dosing who had received before vaccination at least one course of an anti-PD-1/PD-L1 treatment for an advanced solid tumor were eligible. Immunophenotyping of peripheral blood was performed before the third dose of tozinameran (timepoint-1) and four weeks later (timepoint-2) to quantify the absolute counts of lymphocyte subpopulations, including CD3+CD4+ T cells, CD3+CD8+ T cells, B cells, and NK cells. Logistic regression was used to analyze the relationship between lymphocyte subsets and durable clinical benefit (DCB). The log-rank test and Cox regression model were applied to evaluate the relationship between lymphocyte subpopulations and both vaccine-related time-to-treatment failure (V-TTF) and overall survival (OS). RESULTS We included a total of 56 patients with metastatic disease who were given a third dose of tozinameran between 23 September and 7 October 2021 (median age: 66 years; male: 71%). Most recipients had a diagnosis of lung cancer and were being treated with pembrolizumab or nivolumab. Compared to baseline, the third immunization resulted in an incremental change in the median counts of all lymphocyte subpopulations, which was statistically significant only for NK cells (p < 0.001). A significant correlation was found between NK cell counts and DCB at timepoint-2 (p < 0.001). Multivariate logistic regression analysis of DCB confirmed the predictive significance of high-level NK cell counts (p = 0.020). In multivariate Cox regression analysis, high-level NK cell counts independently predicted longer V-TTF [HR 0.34 (95% CI 0.14-0.80), p = 0.014] and OS [HR 0.36 (95% CI 0.15-0.89), p = 0.027]. CONCLUSIONS Our data suggest expansion of NK cell counts as the most noteworthy change in circulating lymphocytes after the third dose of tozinameran in cancer patients receiving PD-1/PD-L1-targeted agents. This change correlated with enhanced therapeutic efficacy, improving the rate of disease control, and prolonging survival outcomes. Similar findings have not been previously reported, implying that they have proof-of-concept value and warrant further confirmation.
Collapse
Affiliation(s)
- Fabrizio Nelli
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
- Thoracic Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
| | - Carlo Signorelli
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
| | - Agnese Fabbri
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
| | - Diana Giannarelli
- Biostatistics Unit, Scientific Directorate, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Antonella Virtuoso
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
- Thoracic Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
| | - Julio Rodrigo Giron Berrios
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
| | - Eleonora Marrucci
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
| | - Cristina Fiore
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
| | - Marta Schirripa
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
| | - Mario Giovanni Chilelli
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
| | - Francesca Primi
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
| | - Valentina Panichi
- Cytofluorimetry Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
| | - Giuseppe Topini
- Cytofluorimetry Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
| | - Maria Assunta Silvestri
- Microbiology and Virology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
| | - Enzo Maria Ruggeri
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
| |
Collapse
|
37
|
Chehelgerdi M, Chehelgerdi M. The use of RNA-based treatments in the field of cancer immunotherapy. Mol Cancer 2023; 22:106. [PMID: 37420174 PMCID: PMC10401791 DOI: 10.1186/s12943-023-01807-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/13/2023] [Indexed: 07/09/2023] Open
Abstract
Over the past several decades, mRNA vaccines have evolved from a theoretical concept to a clinical reality. These vaccines offer several advantages over traditional vaccine techniques, including their high potency, rapid development, low-cost manufacturing, and safe administration. However, until recently, concerns over the instability and inefficient distribution of mRNA in vivo have limited their utility. Fortunately, recent technological advancements have mostly resolved these concerns, resulting in the development of numerous mRNA vaccination platforms for infectious diseases and various types of cancer. These platforms have shown promising outcomes in both animal models and humans. This study highlights the potential of mRNA vaccines as a promising alternative approach to conventional vaccine techniques and cancer treatment. This review article aims to provide a thorough and detailed examination of mRNA vaccines, including their mechanisms of action and potential applications in cancer immunotherapy. Additionally, the article will analyze the current state of mRNA vaccine technology and highlight future directions for the development and implementation of this promising vaccine platform as a mainstream therapeutic option. The review will also discuss potential challenges and limitations of mRNA vaccines, such as their stability and in vivo distribution, and suggest ways to overcome these issues. By providing a comprehensive overview and critical analysis of mRNA vaccines, this review aims to contribute to the advancement of this innovative approach to cancer treatment.
Collapse
Affiliation(s)
- Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
38
|
Ben-Akiva E, Karlsson J, Hemmati S, Yu H, Tzeng SY, Pardoll DM, Green JJ. Biodegradable lipophilic polymeric mRNA nanoparticles for ligand-free targeting of splenic dendritic cells for cancer vaccination. Proc Natl Acad Sci U S A 2023; 120:e2301606120. [PMID: 37339211 PMCID: PMC10293809 DOI: 10.1073/pnas.2301606120] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/22/2023] [Indexed: 06/22/2023] Open
Abstract
Nanoparticle (NP)-based mRNA cancer vaccines hold great promise to realize personalized cancer treatments. To advance this technology requires delivery formulations for efficient intracellular delivery to antigen-presenting cells. We developed a class of bioreducible lipophilic poly(beta-amino ester) nanocarriers with quadpolymer architecture. The platform is agnostic to the mRNA sequence, with one-step self-assembly allowing for delivery of multiple antigen-encoding mRNAs as well as codelivery of nucleic acid-based adjuvants. We examined structure-function relationships for NP-mediated mRNA delivery to dendritic cells (DCs) and identified that a lipid subunit of the polymer structure was critical. Following intravenous administration, the engineered NP design facilitated targeted delivery to the spleen and preferential transfection of DCs without the need for surface functionalization with targeting ligands. Treatment with engineered NPs codelivering antigen-encoding mRNA and toll-like receptor agonist adjuvants led to robust antigen-specific CD8+ T cell responses, resulting in efficient antitumor therapy in in vivo models of murine melanoma and colon adenocarcinoma.
Collapse
Affiliation(s)
- Elana Ben-Akiva
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD21231
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD21231
- Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD21231
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD21287
| | - Johan Karlsson
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD21231
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD21231
- Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD21231
- Department of Chemistry–Ångström Laboratory, Uppsala University, UppsalaSE-75121, Sweden
| | - Shayan Hemmati
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD21231
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD21231
- Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD21231
| | - Hongzhe Yu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD21231
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD21231
- Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD21231
| | - Stephany Y. Tzeng
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD21231
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD21231
- Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD21231
| | - Drew M. Pardoll
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD21287
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD21231
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD21231
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD21231
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD21231
| | - Jordan J. Green
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD21231
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD21231
- Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD21231
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD21287
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD21231
- Department of Materials Science & Engineering, Johns Hopkins University, Baltimore, MD21231
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD21231
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD21231
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD21231
| |
Collapse
|
39
|
Münter R, Christensen E, Andresen TL, Larsen JB. Studying how administration route and dose regulates antibody generation against LNPs for mRNA delivery with single-particle resolution. Mol Ther Methods Clin Dev 2023; 29:450-459. [PMID: 37251983 PMCID: PMC10220314 DOI: 10.1016/j.omtm.2023.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 05/08/2023] [Indexed: 05/31/2023]
Abstract
Following the recent approval of both siRNA- and mRNA-based therapeutics, nucleic acid therapies are considered a game changer in medicine. Their envisioned widespread use for many therapeutic applications with an array of cellular target sites means that various administration routes will be employed. Concerns exist regarding adverse reactions against the lipid nanoparticles (LNPs) used for mRNA delivery, as PEG coatings on nanoparticles can induce severe antibody-mediated immune reactions, potentially being boosted by the inherently immunogenic nucleic acid cargo. While exhaustive information is available on how physicochemical features of nanoparticles affects immunogenicity, it remains unexplored how the fundamental choice of administration route regulates anti-particle immunity. Here, we directly compared antibody generation against PEGylated mRNA-carrying LNPs administered by the intravenous, intramuscular, or subcutaneous route, using a novel sophisticated assay capable of measuring antibody binding to authentic LNP surfaces with single-particle resolution. Intramuscular injections in mice were found to generate overall low and dose-independent levels of anti-LNP antibodies, while both intravenous and subcutaneous LNP injections generated substantial and highly dose-dependent levels. These findings demonstrate that before LNP-based mRNA medicines can be safely applied to new therapeutic applications, it will be crucial to carefully consider the choice of administration route.
Collapse
Affiliation(s)
- Rasmus Münter
- Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark (DTU), 2800 Kongens Lyngby, Denmark
| | - Esben Christensen
- Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark (DTU), 2800 Kongens Lyngby, Denmark
| | - Thomas L. Andresen
- Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark (DTU), 2800 Kongens Lyngby, Denmark
| | - Jannik B. Larsen
- Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark (DTU), 2800 Kongens Lyngby, Denmark
| |
Collapse
|
40
|
Ren S, Zhang Z, Li M, Wang D, Guo R, Fang X, Chen F. Cancer testis antigen subfamilies: Attractive targets for therapeutic vaccine (Review). Int J Oncol 2023; 62:71. [PMID: 37144487 PMCID: PMC10198712 DOI: 10.3892/ijo.2023.5519] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/21/2023] [Indexed: 05/06/2023] Open
Abstract
Cancer‑testis antigen (CTA) is a well‑accepted optimal target library for cancer diagnosis and treatment. Most CTAs are located on the X chromosome and aggregate into large gene families, such as the melanoma antigen, synovial sarcoma X and G antigen families. Members of the CTA subfamily are usually co‑expressed in tumor tissues and share similar structural characteristics and biological functions. As cancer vaccines are recommended to induce specific antitumor responses, CTAs, particularly CTA subfamilies, are widely used in the design of cancer vaccines. To date, DNA, mRNA and peptide vaccines have been commonly used to generate tumor‑specific CTAs in vivo and induce anticancer effects. Despite promising results in preclinical studies, the antitumor efficacy of CTA‑based vaccines is limited in clinical trials, which may be partially attributed to weak immunogenicity, low efficacy of antigen delivery and presentation processes, as well as a suppressive immune microenvironment. Recently, the development of nanomaterials has enhanced the cancer vaccination cascade, improved the antitumor performance and reduced off‑target effects. The present study provided an in‑depth review of the structural characteristics and biofunctions of the CTA subfamilies, summarised the design and utilisation of CTA‑based vaccine platforms and provided recommendations for developing nanomaterial‑derived CTA‑targeted vaccines.
Collapse
Affiliation(s)
- Shengnan Ren
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Zhanyi Zhang
- Bethune Third Clinical Medical College, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Mengyuan Li
- Traditional Chinese Medicine College, Jilin Agricultural University, Changchun, Jilin 130118, P.R. China
| | - Daren Wang
- Bethune Third Clinical Medical College, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ruijie Guo
- Bethune Third Clinical Medical College, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xuedong Fang
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Fangfang Chen
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
41
|
Yang W, Cao J, Cheng H, Chen L, Yu M, Chen Y, Cui X. Nanoformulations targeting immune cells for cancer therapy: mRNA therapeutics. Bioact Mater 2023; 23:438-470. [PMCID: PMC9712057 DOI: 10.1016/j.bioactmat.2022.11.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
The approved worldwide use of two messenger RNA (mRNA) vaccines (BNT162b2 and mRNA-1273) in late 2020 has proven the remarkable success of mRNA therapeutics together with lipid nanoformulation technology in protecting people against coronaviruses during COVID-19 pandemic. This unprecedented and exciting dual strategy with nanoformulations and mRNA therapeutics in play is believed to be a promising paradigm in targeted cancer immunotherapy in future. Recent advances in nanoformulation technologies play a prominent role in adapting mRNA platform in cancer treatment. In this review, we introduce the biologic principles and advancements of mRNA technology, and chemistry fundamentals of intriguing mRNA delivery nanoformulations. We discuss the latest promising nano-mRNA therapeutics for enhanced cancer immunotherapy by modulation of targeted specific subtypes of immune cells, such as dendritic cells (DCs) at peripheral lymphoid organs for initiating mRNA cancer vaccine-mediated antigen specific immunotherapy, and DCs, natural killer (NK) cells, cytotoxic T cells, or multiple immunosuppressive immune cells at tumor microenvironment (TME) for reversing immune evasion. We highlight the clinical progress of advanced nano-mRNA therapeutics in targeted cancer therapy and provide our perspectives on future directions of this transformative integrated technology toward clinical implementation.
Collapse
Affiliation(s)
- Wei Yang
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, PR China
| | - Jianwei Cao
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, PR China
| | - Hui Cheng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Meihua Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China,Corresponding author
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China,Corresponding author
| | - Xingang Cui
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, PR China,Corresponding author
| |
Collapse
|
42
|
Hajiaghapour Asr M, Dayani F, Saedi Segherloo F, Kamedi A, Neill AO, MacLoughlin R, Doroudian M. Lipid Nanoparticles as Promising Carriers for mRNA Vaccines for Viral Lung Infections. Pharmaceutics 2023; 15:1127. [PMID: 37111613 PMCID: PMC10146241 DOI: 10.3390/pharmaceutics15041127] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
In recent years, there has been an increase in deaths due to infectious diseases, most notably in the context of viral respiratory pathogens. Consequently, the focus has shifted in the search for new therapies, with attention being drawn to the use of nanoparticles in mRNA vaccines for targeted delivery to improve the efficacy of these vaccines. Notably, mRNA vaccine technologies denote as a new era in vaccination due to their rapid, potentially inexpensive, and scalable development. Although they do not pose a risk of integration into the genome and are not produced from infectious elements, they do pose challenges, including exposing naked mRNAs to extracellular endonucleases. Therefore, with the development of nanotechnology, we can further improve their efficacy. Nanoparticles, with their nanometer dimensions, move more freely in the body and, due to their small size, have unique physical and chemical properties. The best candidates for vaccine mRNA transfer are lipid nanoparticles (LNPs), which are stable and biocompatible and contain four components: cationic lipids, ionizable lipids, polyethylene glycols (PEGs), and cholesterol, which are used to facilitate cytoplasmic mRNA delivery. In this article, the components and delivery system of mRNA-LNP vaccines against viral lung infections such as influenza, coronavirus, and respiratory syncytial virus are reviewed. Moreover, we provide a succinct overview of current challenges and potential future directions in the field.
Collapse
Affiliation(s)
- Mena Hajiaghapour Asr
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 1571914911, Iran
| | - Fatemeh Dayani
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 1571914911, Iran
| | - Fatemeh Saedi Segherloo
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 1571914911, Iran
| | - Ali Kamedi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 1571914911, Iran
| | - Andrew O’ Neill
- Department of Clinical Medicine, Tallaght University Hospital, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Ronan MacLoughlin
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Research and Development, Science and Emerging Technologies, Aerogen Limited, Galway Business Park, H91 HE94 Galway, Ireland
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Mohammad Doroudian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 1571914911, Iran
- Department of Clinical Medicine, Tallaght University Hospital, Trinity College Dublin, D02 PN40 Dublin, Ireland
| |
Collapse
|
43
|
You H, Jones MK, Gordon CA, Arganda AE, Cai P, Al-Wassiti H, Pouton CW, McManus DP. The mRNA Vaccine Technology Era and the Future Control of Parasitic Infections. Clin Microbiol Rev 2023; 36:e0024121. [PMID: 36625671 PMCID: PMC10035331 DOI: 10.1128/cmr.00241-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Despite intensive long-term efforts, with very few exceptions, the development of effective vaccines against parasitic infections has presented considerable challenges, given the complexity of parasite life cycles, the interplay between parasites and their hosts, and their capacity to escape the host immune system and to regulate host immune responses. For many parasitic diseases, conventional vaccine platforms have generally proven ill suited, considering the complex manufacturing processes involved and the costs they incur, the inability to posttranslationally modify cloned target antigens, and the absence of long-lasting protective immunity induced by these antigens. An effective antiparasite vaccine platform is required to assess the effectiveness of novel vaccine candidates at high throughput. By exploiting the approach that has recently been used successfully to produce highly protective COVID mRNA vaccines, we anticipate a new wave of research to advance the use of mRNA vaccines to prevent parasitic infections in the near future. This article considers the characteristics that are required to develop a potent antiparasite vaccine and provides a conceptual foundation to promote the development of parasite mRNA-based vaccines. We review the recent advances and challenges encountered in developing antiparasite vaccines and evaluate the potential of developing mRNA vaccines against parasites, including those causing diseases such as malaria and schistosomiasis, against which vaccines are currently suboptimal or not yet available.
Collapse
Affiliation(s)
- Hong You
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Malcolm K. Jones
- School of Veterinary Science, The University of Queensland, Brisbane, Australia
| | - Catherine A. Gordon
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Alexa E. Arganda
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Pengfei Cai
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Harry Al-Wassiti
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Colin W. Pouton
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Donald P. McManus
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| |
Collapse
|
44
|
Feng J, He H. Identification of tumour antigens and immune subtypes in the development of an anti-cancer vaccine for endometrial carcinoma. Scand J Immunol 2023; 97:e13250. [PMID: 36575819 DOI: 10.1111/sji.13250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022]
Abstract
Therapeutic application of vaccines to endometrial carcinoma (EC) remains uncertain. In this study, we aimed to identify potential tumour antigens for use in the development of an anti-tumour mRNA vaccine and clarify immune subtypes and their characteristics for immunotherapeutic application in heterogeneous EC by integrating multi-omics data. Importantly, four potential tumour antigen candidates-PGR, RBPJ, PARVG and MSX1-were identified and significantly correlated with better overall survival, disease-free survival and distinct antigen-presenting cell infiltration in EC. In addition, two different immune subtypes by consensus clustering analysis of the immune-related genes were identified. Patients with C2 immunophenotypes exhibited superior survival outcomes and 'hot' immunoreactivity and harboured higher microsatellite instability scores and tumoral mutation burden but lower copy-number variation burden. Furthermore, the distinct expression of immunogenic cell death modulators and differential microenvironmental characteristics of immune-cell infiltration were also revealed between C1 and C2 immune-subtype tumours. Enrichment analysis of the co-expression of immune-related genes showed enrichment in immune response, immune cell-mediated immunity and antigen processing pathways. These results indicated that these identified tumour antigens can be used for developing antitumour mRNA vaccines, and tumours with C2 immunophenotypic characteristics demonstrated sensitivity and susceptibility to immunotherapy in EC.
Collapse
Affiliation(s)
- Jianyang Feng
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hong He
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
45
|
Host Cell Restriction Factors Blocking Efficient Vector Transduction: Challenges in Lentiviral and Adeno-Associated Vector Based Gene Therapies. Cells 2023; 12:cells12050732. [PMID: 36899868 PMCID: PMC10001033 DOI: 10.3390/cells12050732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 03/03/2023] Open
Abstract
Gene therapy relies on the delivery of genetic material to the patient's cells in order to provide a therapeutic treatment. Two of the currently most used and efficient delivery systems are the lentiviral (LV) and adeno-associated virus (AAV) vectors. Gene therapy vectors must successfully attach, enter uncoated, and escape host restriction factors (RFs), before reaching the nucleus and effectively deliver the therapeutic genetic instructions to the cell. Some of these RFs are ubiquitously expressed in mammalian cells, while others are cell-specific, and others still are expressed only upon induction by danger signals as type I interferons. Cell restriction factors have evolved to protect the organism against infectious diseases and tissue damage. These restriction factors can be intrinsic, directly acting on the vector, or related with the innate immune response system, acting indirectly through the induction of interferons, but both are intertwined. The innate immunity is the first line of defense against pathogens and, as such cells derived from myeloid progenitors (but not only), are well equipped with RFs to detect pathogen-associated molecular patterns (PAMPs). In addition, some non-professional cells, such as epithelial cells, endothelial cells, and fibroblasts, play major roles in pathogen recognition. Unsurprisingly, foreign DNA and RNA molecules are among the most detected PAMPs. Here, we review and discuss identified RFs that block LV and AAV vector transduction, hindering their therapeutic efficacy.
Collapse
|
46
|
Opposite Effects of mRNA-Based and Adenovirus-Vectored SARS-CoV-2 Vaccines on Regulatory T Cells: A Pilot Study. Biomedicines 2023; 11:biomedicines11020511. [PMID: 36831046 PMCID: PMC9953737 DOI: 10.3390/biomedicines11020511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/12/2023] Open
Abstract
New-generation mRNA and adenovirus vectored vaccines against SARS-CoV-2 spike protein are endowed with immunogenic, inflammatory and immunomodulatory properties. Recently, BioNTech developed a noninflammatory tolerogenic mRNA vaccine (MOGm1Ψ) that induces in mice robust expansion of antigen-specific regulatory T (Treg) cells. The Pfizer/BioNTech BNT162b2 mRNA vaccine against SARS-CoV-2 is identical to MOGm1Ψ except for the lipid carrier, which differs for containing lipid nanoparticles rather than lipoplex. Here we report that vaccination with BNT162b2 led to an increase in the frequency and absolute count of CD4posCD25highCD127low putative Treg cells; in sharp contrast, vaccination with the adenovirus-vectored ChAdOx1 nCoV-19 vaccine led to a significant decrease of CD4posCD25high cells. This pilot study is very preliminary, suffers from important limitations and, frustratingly, very hardly can be refined in Italy because of the >90% vaccination coverage. Thus, the provocative perspective that BNT162b2 and MOGm1Ψ may share the capacity to promote expansion of Treg cells deserves confirmatory studies in other settings.
Collapse
|
47
|
Husseini RA, Abe N, Hara T, Abe H, Kogure K. Use of Iontophoresis Technology for Transdermal Delivery of a Minimal mRNA Vaccine as a Potential Melanoma Therapeutic. Biol Pharm Bull 2023; 46:301-308. [PMID: 36724958 DOI: 10.1248/bpb.b22-00746] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
mRNA vaccines have attracted considerable attention as a result of the 2019 coronavirus pandemic; however, challenges remain regarding use of mRNA vaccines, including insufficient delivery owing to the high molecular weights and high negative charges associated with mRNA. These characteristics of mRNA vaccines impair intracellular uptake and subsequent protein translation. In the current study, we prepared a minimal mRNA vaccine encoding a tumor associated antigen human gp10025-33 peptide (KVPRNQDWL), as a potential treatment for melanoma. Minimal mRNA vaccines have recently shown promise at improving the translational process, and can be prepared via a simple production method. Moreover, we previously reported the successful use of iontophoresis (IP) technology in the delivery of hydrophilic macromolecules into skin layers, as well as intracellular delivery of small interfering RNA (siRNA). We hypothesized that combining IP technology with a newly synthesized minimal mRNA vaccine can improve both transdermal and intracellular delivery of mRNA. Following IP-induced delivery of a mRNA vaccine, an immune response is elicited resulting in activation of skin resident immune cells. As expected, combining both technologies led to potent stimulation of the immune system, which was observed via potent tumor inhibition in mice bearing melanoma. Additionally, there was an elevation in mRNA expression levels of various cytokines, mainly interferon (IFN)-γ, as well as infiltration of cytotoxic CD8+ T cells in the tumor tissue, which are responsible for tumor clearance. This is the first report demonstrating the application of IP for delivery of a minimal mRNA vaccine as a potential melanoma therapeutic.
Collapse
Affiliation(s)
- Rabab A Husseini
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University.,Department of Pharmaceutical Health Chemistry, Graduate School of Pharmaceutical Sciences, Tokushima University
| | - Naoko Abe
- Department of Chemistry, Graduate School of Science, Nagoya University
| | - Tomoaki Hara
- Department of Chemistry, Graduate School of Science, Nagoya University
| | - Hiroshi Abe
- Department of Chemistry, Graduate School of Science, Nagoya University
| | - Kentaro Kogure
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University
| |
Collapse
|
48
|
Chen S, Pounraj S, Sivakumaran N, Kakkanat A, Sam G, Kabir MT, Rehm BHA. Precision-engineering of subunit vaccine particles for prevention of infectious diseases. Front Immunol 2023; 14:1131057. [PMID: 36817419 PMCID: PMC9935699 DOI: 10.3389/fimmu.2023.1131057] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Vaccines remain the best approach for the prevention of infectious diseases. Protein subunit vaccines are safe compared to live-attenuated whole cell vaccines but often show reduced immunogenicity. Subunit vaccines in particulate format show improved vaccine efficacy by inducing strong immune responses leading to protective immunity against the respective pathogens. Antigens with proper conformation and function are often required to induce functional immune responses. Production of such antigens requiring post-translational modifications and/or composed of multiple complex domains in bacterial hosts remains challenging. Here, we discuss strategies to overcome these limitations toward the development of particulate vaccines eliciting desired humoral and cellular immune responses. We also describe innovative concepts of assembling particulate vaccine candidates with complex antigens bearing multiple post-translational modifications. The approaches include non-covalent attachments (e.g. biotin-avidin affinity) and covalent attachments (e.g. SpyCatcher-SpyTag) to attach post-translationally modified antigens to particles.
Collapse
Affiliation(s)
- Shuxiong Chen
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia,*Correspondence: Bernd H. A. Rehm, ; Shuxiong Chen,
| | - Saranya Pounraj
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Nivethika Sivakumaran
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Anjali Kakkanat
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Gayathri Sam
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Md. Tanvir Kabir
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Bernd H. A. Rehm
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia,Menzies Health Institute Queensland (MHIQ), Griffith University, Gold Coast, QLD, Australia,*Correspondence: Bernd H. A. Rehm, ; Shuxiong Chen,
| |
Collapse
|
49
|
A Comprehensive Review of mRNA Vaccines. Int J Mol Sci 2023; 24:ijms24032700. [PMID: 36769023 PMCID: PMC9917162 DOI: 10.3390/ijms24032700] [Citation(s) in RCA: 163] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
mRNA vaccines have been demonstrated as a powerful alternative to traditional conventional vaccines because of their high potency, safety and efficacy, capacity for rapid clinical development, and potential for rapid, low-cost manufacturing. These vaccines have progressed from being a mere curiosity to emerging as COVID-19 pandemic vaccine front-runners. The advancements in the field of nanotechnology for developing delivery vehicles for mRNA vaccines are highly significant. In this review we have summarized each and every aspect of the mRNA vaccine. The article describes the mRNA structure, its pharmacological function of immunity induction, lipid nanoparticles (LNPs), and the upstream, downstream, and formulation process of mRNA vaccine manufacturing. Additionally, mRNA vaccines in clinical trials are also described. A deep dive into the future perspectives of mRNA vaccines, such as its freeze-drying, delivery systems, and LNPs targeting antigen-presenting cells and dendritic cells, are also summarized.
Collapse
|
50
|
mRNA-From COVID-19 Treatment to Cancer Immunotherapy. Biomedicines 2023; 11:biomedicines11020308. [PMID: 36830845 PMCID: PMC9953480 DOI: 10.3390/biomedicines11020308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
This review provides an overview covering mRNA from its use in the COVID-19 pandemic to cancer immunotherapy, starting from the selection of appropriate antigens, tumor-associated and tumor-specific antigens, neoantigens, the basics of optimizing the mRNA molecule in terms of stability, efficacy, and tolerability, choosing the best formulation and the optimal route of administration, to summarizing current clinical trials of mRNA vaccines in tumor therapy.
Collapse
|