1
|
Delmas D, Mialhe A, Cotte AK, Connat JL, Bouyer F, Hermetet F, Aires V. Lipid metabolism in cancer: Exploring phospholipids as potential biomarkers. Biomed Pharmacother 2025; 187:118095. [PMID: 40311223 DOI: 10.1016/j.biopha.2025.118095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/03/2025] [Accepted: 04/24/2025] [Indexed: 05/03/2025] Open
Abstract
Aberrant lipid metabolism is increasingly recognized as a hallmark of cancer, contributing to tumor growth, metastatic dissemination, and resistance to therapy. Cancer cells reprogram key metabolic pathways-including de novo lipogenesis, lipid uptake, and phospholipid remodeling-to sustain malignant progression and adapt to microenvironmental demands. This review summarizes current insights into the role of lipid metabolic reprogramming in oncogenesis and highlights recent advances in lipidomics that have revealed cancer type- and stage-specific lipid signatures with diagnostic and prognostic relevance. We emphasize the dual potential of lipid metabolic pathways-particularly those involving phospholipids-as sources of clinically relevant biomarkers and therapeutic targets. Enzymes and transporters involved in these pathways have emerged as promising candidates for both diagnostic applications and pharmacological intervention. We also examine persistent challenges hindering the clinical translation of lipid-based approaches, including analytical variability, insufficient biological validation, and the lack of standardized integration into clinical workflows. Furthermore, the review explores strategies to overcome these barriers, highlighting the importance of incorporating lipidomics into multi-omics frameworks, supported by advanced computational tools and AI-driven analytics, to decipher the complexity of tumor-associated metabolic networks. We discuss how such integrative approaches can facilitate the identification of actionable metabolic targets, improve the specificity and robustness of lipid-based biomarkers, and enhance patient stratification in the context of precision oncology.
Collapse
Affiliation(s)
- Dominique Delmas
- Université Bourgogne Europe, Dijon F-21000, France; Inserm Research Center UMR1231 - Therapies and Immune Response in Cancers Team, Bioactive Molecules and Health Research Group, Dijon F-21000, France; Centre de Lutte Contre le Cancer Georges François Leclerc Center, Dijon F-21000, France; Inserm UMS58 - Biologie Santé Dijon (BioSanD), Dijon F-21000, France.
| | - Aurélie Mialhe
- Université Bourgogne Europe, Dijon F-21000, France; Inserm Research Center UMR1231 - Therapies and Immune Response in Cancers Team, Bioactive Molecules and Health Research Group, Dijon F-21000, France
| | - Alexia K Cotte
- Université Bourgogne Europe, Dijon F-21000, France; Inserm Research Center UMR1231 - Therapies and Immune Response in Cancers Team, Bioactive Molecules and Health Research Group, Dijon F-21000, France
| | - Jean-Louis Connat
- Université Bourgogne Europe, Dijon F-21000, France; Inserm Research Center UMR1231 - Therapies and Immune Response in Cancers Team, Bioactive Molecules and Health Research Group, Dijon F-21000, France
| | - Florence Bouyer
- Université Bourgogne Europe, Dijon F-21000, France; Inserm Research Center UMR1231 - Therapies and Immune Response in Cancers Team, Bioactive Molecules and Health Research Group, Dijon F-21000, France
| | - François Hermetet
- Université Bourgogne Europe, Dijon F-21000, France; Inserm Research Center UMR1231 - Therapies and Immune Response in Cancers Team, Bioactive Molecules and Health Research Group, Dijon F-21000, France
| | - Virginie Aires
- Université Bourgogne Europe, Dijon F-21000, France; Inserm Research Center UMR1231 - Therapies and Immune Response in Cancers Team, Bioactive Molecules and Health Research Group, Dijon F-21000, France
| |
Collapse
|
2
|
Bhadra M, Sachan M, Nara S. Current strategies for early epithelial ovarian cancer detection using miRNA as a potential tool. Front Mol Biosci 2024; 11:1361601. [PMID: 38690293 PMCID: PMC11058280 DOI: 10.3389/fmolb.2024.1361601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/20/2024] [Indexed: 05/02/2024] Open
Abstract
Ovarian cancer is one of the most aggressive and significant malignant tumor forms in the female reproductive system. It is the leading cause of death among gynecological cancers owing to its metastasis. Since its preliminary disease symptoms are lacking, it is imperative to develop early diagnostic biomarkers to aid in treatment optimization and personalization. In this vein, microRNAs, which are short sequence non-coding molecules, displayed great potential as highly specific and sensitive biomarker. miRNAs have been extensively advocated and proven to serve an instrumental part in the clinical management of cancer, especially ovarian cancer, by promoting the cancer cell progression, invasion, delayed apoptosis, epithelial-mesenchymal transition, metastasis of cancer cells, chemosensitivity and resistance and disease therapy. Here, we cover our present comprehension of the most up-to-date microRNA-based approaches to detect ovarian cancer, as well as current diagnostic and treatment strategies, the role of microRNAs as oncogenes or tumor suppressor genes, and their significance in ovarian cancer progression, prognosis, and therapy.
Collapse
|
3
|
Ahmadi S, Lotay N, Thompson M. Affinity-based electrochemical biosensor with antifouling properties for detection of lysophosphatidic acid, a promising early-stage ovarian cancer biomarker. Bioelectrochemistry 2023; 153:108466. [PMID: 37244204 DOI: 10.1016/j.bioelechem.2023.108466] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/29/2023]
Abstract
Electrochemical techniques are considered to be highly sensitive, capable of fast response and can be easily miniaturized, properties which can aid with regard to the fabrication of compact point-of-care medical devices; however, the main challenge in developing such a tool is overcoming a ubiquitous, problematic phenomenon known as non-specific adsorption (NSA). NSA is due to the fouling of non-target molecules in the blood on the recognition surface of the device. To overcome NSA, we have developed an affinity-based electrochemical biosensor using medical-grade stainless steel electrodes and following a unique and novel strategy using silane-based interfacial chemistry to detect lysophosphatidic acid (LPA), a highly promising biomarker, which was found to be elevated in 90 % of stage I OC patients and gradually increases as the disease progresses to later stages. The biorecognition surface was developed using the affinity-based gelsolin-actin system, which was previously investigated by our group to detect LPA using fluorescence spectroscopy. We demonstrate the capability of this label-free biosensor to detect LPA in goat serum with a detection limit of 0.7 µM as a proof-of-concept for the early diagnosis of ovarian cancer.
Collapse
Affiliation(s)
- Soha Ahmadi
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Navina Lotay
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Michael Thompson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada.
| |
Collapse
|
4
|
Başpınar A, Özkan D, Tokgöz S, Özkardeş AB, Kaya İO. Diagnostic value of serum autotaxin level in colorectal cancer. Biomark Med 2023; 17:787-798. [PMID: 38095984 DOI: 10.2217/bmm-2023-0496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024] Open
Abstract
Background: Autotaxin (ATX) is a nucleotide enzyme linked to cell growth, differentiation and migration. This study investigated serum levels of ATX in colorectal cancer (CRC). Methods: The study involved stage I-III CRC diagnosed between December 2020 and 2021, excluding those with neoadjuvant or adjuvant therapy, or metastasis. Healthy volunteers were controls. Serum ATX levels were measured by ELISA and compared. Results: This study included 129 patients (91 in the patient group and 38 in the control group). The optimal cutoff value of ATX for CRC was 169.98 ng/ml, and sensitivity, specificity, positive likelihood ratio and negative likelihood ratio were 91.2% (95% CI: 89.4-96.2), 78.9% (95% CI: 62.7-90.4), 4.33 and 0.11, respectively. Conclusion: The serum ATX level is a useful biomarker for CRC.
Collapse
Affiliation(s)
- Abdurrahman Başpınar
- Department of General Surgery, Ankara Training and Research Hospital, University of Health Science, Ankara, 06230, Turkey
| | - Didem Özkan
- Department of Microbiology, Etlik City Hospital, University of Health Science, Ankara, 06170, Turkey
| | - Serhat Tokgöz
- Department of General Surgery, Etlik City Hospital, University of Health Science, Ankara, 06170, Turkey
| | - Alper Bilal Özkardeş
- Department of General Surgery, Ankara Hospital, Lokman Hekim University, Ankara, 06510, Turkey
| | - İsmail Oskay Kaya
- Department of General Surgery, Etlik City Hospital, University of Health Science, Ankara, 06170, Turkey
| |
Collapse
|
5
|
Tarannum N, Kumar D, Agrawal R. Facile Titrimetric Assay of Lysophosphatidic Acid in Human Serum and Plasma for Ovarian Cancer Detection. J Cancer Prev 2023; 28:31-39. [PMID: 37434795 PMCID: PMC10331031 DOI: 10.15430/jcp.2023.28.2.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/13/2023] Open
Abstract
Herein, an instrument free facile acid-base titrimetric methodology is reported for lysophosphatidic acid (LPA) measurement in serum and plasma samples for ovarian cancer detection. The concept is based on the titrimetric method in which alkaline solution was titrated with free fatty acid. Free fatty acid is generated due to action of the lysophospholipase to LPA. A phospholipid derivative known as LPA can function as a signaling molecule. A glycerol backbone serves as the foundation for phosphatidic acid, which also has bonds to an unsaturated fatty acid at carbon-1, a hydroxyl group at carbon-2, and a phosphate molecule at carbon-3. Free fatty acid and glycerol-3-phosphate are formed when LPA reacts with lysophospholipase. The formation of free fatty acid depends on the concentration of LPA. The standard graph of known concentrations of LPA, LPA spiked serum and LPA spiked plasma was plotted. The concentration of LPA in unknown serum and plasma were calculated from the standard graph. The limit of detection of LPA in spiked serum and plasma samples via titrimetric assay was calculated as 0.156 μmol/L. A patient's chance of survival may be outweighed by an early diagnosis of ovarian cancer.
Collapse
Affiliation(s)
- Nazia Tarannum
- Department of Chemistry, Chaudhary Charan Singh University, Meerut, India
| | - Deepak Kumar
- Department of Chemistry, Chaudhary Charan Singh University, Meerut, India
| | - Ranu Agrawal
- Department of Applied Science, Sir Chhotu Ram Institute of Engineering and Technology, Chaudhary Charan Singh University, Meerut, India
| |
Collapse
|
6
|
Morikawa T, Takahashi M, Izumi Y, Bamba T, Moriyama K, Hattori G, Fujioka R, Miura S, Shibata H. Oleic Acid-Containing Phosphatidylinositol Is a Blood Biomarker Candidate for SPG28. Biomedicines 2023; 11:biomedicines11041092. [PMID: 37189713 DOI: 10.3390/biomedicines11041092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/28/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023] Open
Abstract
Hereditary spastic paraplegia is a genetic neurological disorder characterized by spasticity of the lower limbs, and spastic paraplegia type 28 is one of its subtypes. Spastic paraplegia type 28 is a hereditary neurogenerative disorder with an autosomal recessive inheritance caused by loss of function of DDHD1. DDHD1 encodes phospholipase A1, which catalyzes phospholipids to lysophospholipids such as phosphatidic acids and phosphatidylinositols to lysophosphatidic acids and lysophoshatidylinositols. Quantitative changes in these phospholipids can be key to the pathogenesis of SPG28, even at subclinical levels. By lipidome analysis using plasma from mice, we globally examined phospholipids to identify molecules showing significant quantitative changes in Ddhd1 knockout mice. We then examined reproducibility of the quantitative changes in human sera including SPG28 patients. We identified nine kinds of phosphatidylinositols that show significant increases in Ddhd1 knockout mice. Of these, four kinds of phosphatidylinositols replicated the highest level in the SPG28 patient serum. All four kinds of phosphatidylinositols contained oleic acid. This observation suggests that the amount of oleic acid-containing PI was affected by loss of function of DDHD1. Our results also propose the possibility of using oleic acid-containing PI as a blood biomarker for SPG28.
Collapse
Affiliation(s)
- Takuya Morikawa
- Division of Genomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masatomo Takahashi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kosei Moriyama
- Division of Genomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Nutritional Sciences, Nakamura Gakuen University, 5-7-1, Befu, Jonan-ku, Fukuoka 814-0198, Japan
| | - Gohsuke Hattori
- Department of Neurosurgery, Kurume University School of Medicine, 67 Asahi-Machi, Kurume, Fukuoka 830-0011, Japan
| | - Ryuta Fujioka
- Department of Food and Nutrition, Beppu University Junior College, 82, Kitaishigaki, Oita 874-8501, Japan
| | - Shiroh Miura
- Department of Neurology and Geriatric Medicine, Ehime University Graduate School of Medicine, 454, Shitsukawa, Toon 791-0295, Japan
| | - Hiroki Shibata
- Division of Genomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
7
|
Chae CS, Sandoval TA, Hwang SM, Park ES, Giovanelli P, Awasthi D, Salvagno C, Emmanuelli A, Tan C, Chaudhary V, Casado J, Kossenkov AV, Song M, Barrat FJ, Holcomb K, Romero-Sandoval EA, Zamarin D, Pépin D, D’Andrea AD, Färkkilä A, Cubillos-Ruiz JR. Tumor-Derived Lysophosphatidic Acid Blunts Protective Type I Interferon Responses in Ovarian Cancer. Cancer Discov 2022; 12:1904-1921. [PMID: 35552618 PMCID: PMC9357054 DOI: 10.1158/2159-8290.cd-21-1181] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 04/05/2022] [Accepted: 05/09/2022] [Indexed: 02/07/2023]
Abstract
Lysophosphatidic acid (LPA) is a bioactive lipid enriched in the tumor microenvironment of immunosuppressive malignancies such as ovarian cancer. Although LPA enhances the tumorigenic attributes of cancer cells, the immunomodulatory activity of this phospholipid messenger remains largely unexplored. Here, we report that LPA operates as a negative regulator of type I interferon (IFN) responses in ovarian cancer. Ablation of the LPA-generating enzyme autotaxin (ATX) in ovarian cancer cells reprogrammed the tumor immune microenvironment, extended host survival, and improved the effects of therapies that elicit protective responses driven by type I IFN. Mechanistically, LPA sensing by dendritic cells triggered PGE2 biosynthesis that suppressed type I IFN signaling via autocrine EP4 engagement. Moreover, we identified an LPA-controlled, immune-derived gene signature associated with poor responses to combined PARP inhibition and PD-1 blockade in patients with ovarian cancer. Controlling LPA production or sensing in tumors may therefore be useful to improve cancer immunotherapies that rely on robust induction of type I IFN. SIGNIFICANCE This study uncovers that ATX-LPA is a central immunosuppressive pathway in the ovarian tumor microenvironment. Ablating this axis sensitizes ovarian cancer hosts to various immunotherapies by unleashing protective type I IFN responses. Understanding the immunoregulatory programs induced by LPA could lead to new biomarkers predicting resistance to immunotherapy in patients with cancer. See related commentary by Conejo-Garcia and Curiel, p. 1841. This article is highlighted in the In This Issue feature, p. 1825.
Collapse
Affiliation(s)
- Chang-Suk Chae
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
| | - Tito A. Sandoval
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
| | - Sung-Min Hwang
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
| | - Eun Sil Park
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - Paolo Giovanelli
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065. USA.,Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Deepika Awasthi
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
| | - Camilla Salvagno
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
| | - Alexander Emmanuelli
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA.,Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065. USA
| | - Chen Tan
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
| | - Vidyanath Chaudhary
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA
| | - Julia Casado
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland.,Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
| | - Andrew V. Kossenkov
- Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Minkyung Song
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, and Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, Gyeonggi-do, Korea
| | - Franck J. Barrat
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065. USA.,HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA
| | - Kevin Holcomb
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
| | - E. Alfonso Romero-Sandoval
- Department of Anesthesiology, Pain Mechanisms Laboratory, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Dmitriy Zamarin
- Department of Medicine, Gynecologic Medical Oncology Service, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - David Pépin
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital; Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Alan D. D’Andrea
- Susan F. Smith Center for Women’s Cancers, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Anniina Färkkilä
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland.,Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
| | - Juan R. Cubillos-Ruiz
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA.,Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065. USA.,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA,Correspondence: Juan R. Cubillos-Ruiz, Ph.D., Associate Professor of Immunology, Weill Cornell Medicine, New York, NY, , Phone: 212-743-1323
| |
Collapse
|
8
|
Tarannum N, Kumar D, Agrawal R, Verma Y. Selectively Imprinted β‐cyclodextrin Polymer for Colorimetric Assay of Lysophosphatidic Acid for Point of Care Detection of Ovarian Cancer. ChemistrySelect 2022. [DOI: 10.1002/slct.202202027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nazia Tarannum
- Department of Chemistry Chaudhary Charan Singh University Meerut 250004 India
| | - Deepak Kumar
- Department of Chemistry Chaudhary Charan Singh University Meerut 250004 India
| | - Ranu Agrawal
- Department of Applied Science SCRIET Chaudhary Charan Singh University Meerut 250004 India
| | - Yeshvandra Verma
- Department of Toxicology Chaudhary Charan Singh University Meerut 250004 India
| |
Collapse
|
9
|
Flores-López M, García-Marchena N, Araos P, Requena-Ocaña N, Porras-Perales O, Torres-Galván S, Suarez J, Pizarro N, de la Torre R, Rubio G, Ruiz-Ruiz JJ, Rodríguez de Fonseca F, Serrano A, Pavón-Morón FJ. Sex Differences in Plasma Lysophosphatidic Acid Species in Patients with Alcohol and Cocaine Use Disorders. Brain Sci 2022; 12:brainsci12050588. [PMID: 35624975 PMCID: PMC9139721 DOI: 10.3390/brainsci12050588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/20/2022] [Accepted: 04/29/2022] [Indexed: 02/01/2023] Open
Abstract
Preclinical evidence suggests a main role of lysophosphatidic acid (LPA) signaling in drug addiction. Recently, we reported alterations in the plasma concentrations of LPA species in patients with alcohol use disorder (AUD). As there are sex differences in drug addiction, the main aim of the present study was to investigate whether relevant LPA species (16:0-LPA, 18:0-LPA, 18:1-LPA, 18:2-LPA and 20:4-LPA) were associated with sex and/or substance use disorder (SUD). This exploratory study was conducted in 214 abstinent patients with lifetime SUD, and 91 healthy control subjects. The SUD group was divided according to the diagnosis of AUD and/or cocaine use disorder (CUD). Participants were clinically assessed, and plasma samples were collected to determine LPA species and total LPA. We found that LPA concentrations were significantly affected by sex, and women showed higher concentrations than men. In addition, there were significantly lower 16:0-LPA, 18:2-LPA and total LPA concentrations in patients with SUD than in controls. Namely, patients with CUD and AUD + CUD showed lower LPA concentrations than controls or patients with AUD. In conclusion, our data suggest that LPA species could be potential biomarkers for SUD in women and men, which could contribute to a better stratification of these patients in treatment programs.
Collapse
Affiliation(s)
- María Flores-López
- Instituto de Investigación Biomédica de Málaga—IBIMA, 29590 Málaga, Spain; (M.F.-L.); (N.G.-M.); (P.A.); (N.R.-O.); (O.P.-P.); (S.T.-G.); (J.S.); (F.R.d.F.); (F.J.P.-M.)
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, 29010 Málaga, Spain
| | - Nuria García-Marchena
- Instituto de Investigación Biomédica de Málaga—IBIMA, 29590 Málaga, Spain; (M.F.-L.); (N.G.-M.); (P.A.); (N.R.-O.); (O.P.-P.); (S.T.-G.); (J.S.); (F.R.d.F.); (F.J.P.-M.)
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Unidad de Adicciones-Servicio de Medicina Interna, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), 08916 Badalona, Spain
| | - Pedro Araos
- Instituto de Investigación Biomédica de Málaga—IBIMA, 29590 Málaga, Spain; (M.F.-L.); (N.G.-M.); (P.A.); (N.R.-O.); (O.P.-P.); (S.T.-G.); (J.S.); (F.R.d.F.); (F.J.P.-M.)
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, 29010 Málaga, Spain
| | - Nerea Requena-Ocaña
- Instituto de Investigación Biomédica de Málaga—IBIMA, 29590 Málaga, Spain; (M.F.-L.); (N.G.-M.); (P.A.); (N.R.-O.); (O.P.-P.); (S.T.-G.); (J.S.); (F.R.d.F.); (F.J.P.-M.)
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Oscar Porras-Perales
- Instituto de Investigación Biomédica de Málaga—IBIMA, 29590 Málaga, Spain; (M.F.-L.); (N.G.-M.); (P.A.); (N.R.-O.); (O.P.-P.); (S.T.-G.); (J.S.); (F.R.d.F.); (F.J.P.-M.)
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, 29010 Málaga, Spain
| | - Sandra Torres-Galván
- Instituto de Investigación Biomédica de Málaga—IBIMA, 29590 Málaga, Spain; (M.F.-L.); (N.G.-M.); (P.A.); (N.R.-O.); (O.P.-P.); (S.T.-G.); (J.S.); (F.R.d.F.); (F.J.P.-M.)
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Juan Suarez
- Instituto de Investigación Biomédica de Málaga—IBIMA, 29590 Málaga, Spain; (M.F.-L.); (N.G.-M.); (P.A.); (N.R.-O.); (O.P.-P.); (S.T.-G.); (J.S.); (F.R.d.F.); (F.J.P.-M.)
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Departamento de Anatomía Humana, Medicina Legal e Historia de la Ciencia, Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain
| | - Nieves Pizarro
- Grup de Recerca en Farmacologia Integrada i Neurociència de Sistemes, Programa de Recerca en Neurociéncia, Institut Hospital del Mar d’Investigacions Mèdiques-IMIM, 08003 Barcelona, Spain; (N.P.); (R.d.l.T.)
| | - Rafael de la Torre
- Grup de Recerca en Farmacologia Integrada i Neurociència de Sistemes, Programa de Recerca en Neurociéncia, Institut Hospital del Mar d’Investigacions Mèdiques-IMIM, 08003 Barcelona, Spain; (N.P.); (R.d.l.T.)
- Centro de Investigación Biomédica en Red de Fisiopatologia de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Gabriel Rubio
- Servicio de Psiquiatría, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
| | - Juan Jesús Ruiz-Ruiz
- Centro Provincial de Drogodependencias de Málaga, Diputación Provincial de Málaga, 29010 Málaga, Spain;
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga—IBIMA, 29590 Málaga, Spain; (M.F.-L.); (N.G.-M.); (P.A.); (N.R.-O.); (O.P.-P.); (S.T.-G.); (J.S.); (F.R.d.F.); (F.J.P.-M.)
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Antonia Serrano
- Instituto de Investigación Biomédica de Málaga—IBIMA, 29590 Málaga, Spain; (M.F.-L.); (N.G.-M.); (P.A.); (N.R.-O.); (O.P.-P.); (S.T.-G.); (J.S.); (F.R.d.F.); (F.J.P.-M.)
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Correspondence:
| | - Francisco Javier Pavón-Morón
- Instituto de Investigación Biomédica de Málaga—IBIMA, 29590 Málaga, Spain; (M.F.-L.); (N.G.-M.); (P.A.); (N.R.-O.); (O.P.-P.); (S.T.-G.); (J.S.); (F.R.d.F.); (F.J.P.-M.)
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Unidad de Gestión Clínica del Corazón, Hospital Universitario Virgen de la Victoria de Málaga, 29010 Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
10
|
Lusk H, Burdette JE, Sanchez LM. Models for measuring metabolic chemical changes in the metastasis of high grade serous ovarian cancer: fallopian tube, ovary, and omentum. Mol Omics 2021; 17:819-832. [PMID: 34338690 PMCID: PMC8649074 DOI: 10.1039/d1mo00074h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ovarian cancer (OC) is the most lethal gynecologic malignancy and high grade serous ovarian cancer (HGSOC) is the most common and deadly subtype, accounting for 70-80% of OC deaths. HGSOC has a distinct pattern of metastasis as many believe it originates in the fallopian tube and then it metastasizes first to the ovary, and later to the adipose-rich omentum. Metabolomics has been heavily utilized to investigate metabolite changes in HGSOC tumors and metastasis. Generally, metabolomics studies have traditionally been applied to biospecimens from patients or animal models; a number of recent studies have combined metabolomics with innovative cell-culture techniques to model the HGSOC metastatic microenvironment for the investigation of cell-to-cell communication. The purpose of this review is to serve as a tool for researchers aiming to model the metastasis of HGSOC for metabolomics analyses. It will provide a comprehensive overview of current knowledge on the origin and pattern of metastasis of HGSOC and discuss the advantages and limitations of different model systems to help investigators choose the best model for their research goals, with a special emphasis on compatibility with different metabolomics modalities. It will also examine what is presently known about the role of small molecules in the origin and metastasis of HGSOC.
Collapse
Affiliation(s)
- Hannah Lusk
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA.
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, 900 S Ashland Ave., Chicago, IL, 60607, USA
| | - Laura M Sanchez
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA.
| |
Collapse
|
11
|
Geraldo LHM, Spohr TCLDS, Amaral RFD, Fonseca ACCD, Garcia C, Mendes FDA, Freitas C, dosSantos MF, Lima FRS. Role of lysophosphatidic acid and its receptors in health and disease: novel therapeutic strategies. Signal Transduct Target Ther 2021; 6:45. [PMID: 33526777 PMCID: PMC7851145 DOI: 10.1038/s41392-020-00367-5] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Lysophosphatidic acid (LPA) is an abundant bioactive phospholipid, with multiple functions both in development and in pathological conditions. Here, we review the literature about the differential signaling of LPA through its specific receptors, which makes this lipid a versatile signaling molecule. This differential signaling is important for understanding how this molecule can have such diverse effects during central nervous system development and angiogenesis; and also, how it can act as a powerful mediator of pathological conditions, such as neuropathic pain, neurodegenerative diseases, and cancer progression. Ultimately, we review the preclinical and clinical uses of Autotaxin, LPA, and its receptors as therapeutic targets, approaching the most recent data of promising molecules modulating both LPA production and signaling. This review aims to summarize the most update knowledge about the mechanisms of LPA production and signaling in order to understand its biological functions in the central nervous system both in health and disease.
Collapse
Affiliation(s)
- Luiz Henrique Medeiros Geraldo
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Université de Paris, PARCC, INSERM, F-75015, Paris, France
| | | | | | | | - Celina Garcia
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio de Almeida Mendes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Catarina Freitas
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos Fabio dosSantos
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flavia Regina Souza Lima
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
12
|
Irvin S, Clarke MA, Trabert B, Wentzensen N. Systematic review and meta-analysis of studies assessing the relationship between statin use and risk of ovarian cancer. Cancer Causes Control 2020; 31:869-879. [PMID: 32685996 DOI: 10.1007/s10552-020-01327-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 07/07/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE The link between lipid-stabilizing medications and epithelial ovarian carcinogenesis is incompletely understood. Statins may reduce ovarian cancer risk, but results are inconclusive. METHODS We conducted a systematic review and meta-analysis of studies reporting associations between statin use and ovarian cancer risk in PubMed. Summary risk ratios (RRs) and confidence intervals (CIs) were calculated. Subgroup analyses by cancer histotype, statin class (lipo- or hydrophilic) and duration of statin use were conducted. Use of individual statins in populations was assessed to determine population-specific differences in statin types. RESULTS Nine studies with 435,237 total women were included (1 randomized controlled trial (RCT); 4 prospective; 4 case-control). Statin use was associated with a reduced risk of ovarian cancer (RR 0.87, 95% CI 0.74-1.03) and risk was significantly reduced in populations with low pravastatin use (RR 0.83, 95% CI 0.70-0.99). Risk estimates varied by statin class (3 studies; lipophilic: RR 0.88, 95% CI 0.69-1.12; hydrophilic: RR 1.06, 95% CI 0.72-1.57) and cancer histotype (3 studies; serous: RR 0.95, 95% CI 0.69-1.30; clear cell: RR 1.17, 95% CI 0.74-1.86). Long-term use was associated with a reduced risk of ovarian cancer (RR 0.77, 95% CI 0.54-1.10) that further reduced when pravastatin use was low (RR 0.68, 95% CI 0.46-1.01). Between-study heterogeneity was high overall and in subgroups (I2 > 60%). CONCLUSION Statins may be associated with a reduced risk of ovarian cancer, but the effect likely differs by individual statin, duration of use and cancer histotype. Additional well-powered studies are needed to elucidate important subgroup effects.
Collapse
Affiliation(s)
- Sarah Irvin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD, 20850, USA.
| | - Megan A Clarke
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD, 20850, USA
| | - Britton Trabert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD, 20850, USA
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD, 20850, USA
| |
Collapse
|
13
|
Catani MV, Savini I, Tullio V, Gasperi V. The "Janus Face" of Platelets in Cancer. Int J Mol Sci 2020; 21:ijms21030788. [PMID: 31991775 PMCID: PMC7037171 DOI: 10.3390/ijms21030788] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/20/2022] Open
Abstract
Besides their vital role in hemostasis and thrombosis, platelets are also recognized to be involved in cancer, where they play an unexpected central role: They actively influence cancer cell behavior, but, on the other hand, platelet physiology and phenotype are impacted by tumor cells. The existence of this platelet-cancer loop is supported by a large number of experimental and human studies reporting an association between alterations in platelet number and functions and cancer, often in a way dependent on patient, cancer type and treatment. Herein, we shall report on an update on platelet-cancer relationships, with a particular emphasis on how platelets might exert either a protective or a deleterious action in all steps of cancer progression. To this end, we will describe the impact of (i) platelet count, (ii) bioactive molecules secreted upon platelet activation, and (iii) microvesicle-derived miRNAs on cancer behavior. Potential explanations of conflicting results are also reported: Both intrinsic (heterogeneity in platelet-derived bioactive molecules with either inhibitory or stimulatory properties; features of cancer cell types, such as aggressiveness and/or tumour stage) and extrinsic (heterogeneous characteristics of cancer patients, study design and sample preparation) factors, together with other confounding elements, contribute to “the Janus face” of platelets in cancer. Given the difficulty to establish the univocal role of platelets in a tumor, a better understanding of their exact contribution is warranted, in order to identify an efficient therapeutic strategy for cancer management, as well as for better prevention, screening and risk assessment protocols.
Collapse
Affiliation(s)
- Maria Valeria Catani
- Correspondence: (M.V.C.); (V.G.); Tel.: +39-06-72596465 (M.V.C.); +39-06-72596465 (V.G.)
| | | | | | - Valeria Gasperi
- Correspondence: (M.V.C.); (V.G.); Tel.: +39-06-72596465 (M.V.C.); +39-06-72596465 (V.G.)
| |
Collapse
|
14
|
Mir SS, Bhat HF, Bhat ZF. Dynamic actin remodeling in response to lysophosphatidic acid. J Biomol Struct Dyn 2020; 38:5253-5265. [PMID: 31920158 DOI: 10.1080/07391102.2019.1696230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Lysophosphatidic acid (LPA) is a multifunctional regulator of actin cytoskeleton that exerts a dramatic impact on the actin cytoskeleton to build a platform for diverse cellular processes including growth cone guidance, neurite retraction and cell motility. It has been implicated in the formation and dissociation of complexes between actin and actin binding proteins, supporting its role in actin remodeling. Several studies point towards its ability to facilitate formation of special cellular structures including focal adhesions and actin stress fibres by phosphoregulation of several actin associated proteins and their multiple regulatory kinases and phosphatases. In addition, multiple levels of crosstalk among the signaling cascades activated by LPA, affect actin cytoskeleton-mediated cell migration and chemotaxis which in turn play a crucial role in cancer metastasis. In the current review, we have attempted to highlight the role of LPA as an actin modulator which functions by controlling activities of specific cellular proteins that underlie mechanisms employed in cytoskeletal and pathophysiological events within the cell. Further studies on the actin affecting/remodeling activity of LPA in different cell types will no doubt throw up many surprises essential to gain a full understanding of its contribution in physiological processes as well as in diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Saima S Mir
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu And Kashmir, India.,Division of Animal Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Srinagar, Jammu And Kashmir, India
| | - Hina F Bhat
- Division of Animal Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Srinagar, Jammu And Kashmir, India
| | - Zuhaib F Bhat
- Department of Wine, Food & Molecular Biosciences, Lincoln University, Lincoln, New Zealand.,Division of Livestock Products and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu (SKUAST-J), R.S. Pora, Jammu And Kashmir, India
| |
Collapse
|
15
|
Elevated Autotaxin and LPA Levels During Chronic Viral Hepatitis and Hepatocellular Carcinoma Associate with Systemic Immune Activation. Cancers (Basel) 2019; 11:cancers11121867. [PMID: 31769428 PMCID: PMC6966516 DOI: 10.3390/cancers11121867] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/16/2022] Open
Abstract
Circulating autotaxin (ATX) is elevated in persons with liver disease, particularly in the setting of chronic hepatitis C virus (HCV) and HCV/HIV infection. It is thought that plasma ATX levels are, in part, attributable to impaired liver clearance that is secondary to fibrotic liver disease. In a discovery data set, we identified plasma ATX to be associated with parameters of systemic immune activation during chronic HCV and HCV/HIV infection. We and others have observed a partial normalization of ATX levels within months of starting interferon-free direct-acting antiviral (DAA) HCV therapy, consistent with a non-fibrotic liver disease contribution to elevated ATX levels, or HCV-mediated hepatocyte activation. Relationships between ATX, lysophosphatidic acid (LPA) and parameters of systemic immune activation will be discussed in the context of HCV infection, age, immune health, liver health, and hepatocellular carcinoma (HCC).
Collapse
|
16
|
Xu Y. Targeting Lysophosphatidic Acid in Cancer: The Issues in Moving from Bench to Bedside. Cancers (Basel) 2019; 11:E1523. [PMID: 31658655 PMCID: PMC6826372 DOI: 10.3390/cancers11101523] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/02/2019] [Accepted: 10/08/2019] [Indexed: 12/16/2022] Open
Abstract
Since the clear demonstration of lysophosphatidic acid (LPA)'s pathological roles in cancer in the mid-1990s, more than 1000 papers relating LPA to various types of cancer were published. Through these studies, LPA was established as a target for cancer. Although LPA-related inhibitors entered clinical trials for fibrosis, the concept of targeting LPA is yet to be moved to clinical cancer treatment. The major challenges that we are facing in moving LPA application from bench to bedside include the intrinsic and complicated metabolic, functional, and signaling properties of LPA, as well as technical issues, which are discussed in this review. Potential strategies and perspectives to improve the translational progress are suggested. Despite these challenges, we are optimistic that LPA blockage, particularly in combination with other agents, is on the horizon to be incorporated into clinical applications.
Collapse
Affiliation(s)
- Yan Xu
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, 950 W. Walnut Street R2-E380, Indianapolis, IN 46202, USA.
| |
Collapse
|
17
|
Kouba S, Ouldamer L, Garcia C, Fontaine D, Chantome A, Vandier C, Goupille C, Potier-Cartereau M. Lipid metabolism and Calcium signaling in epithelial ovarian cancer. Cell Calcium 2019; 81:38-50. [PMID: 31200184 DOI: 10.1016/j.ceca.2019.06.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 02/06/2023]
Abstract
Epithelial Ovarian cancer (EOC) is the deadliest gynecologic malignancy and represents the fifth leading cause of all cancer-related deaths in women. The majority of patients are diagnosed at an advanced stage of the disease that has spread beyond the ovaries to the peritoneum or to distant organs (stage FIGO III-IV) with a 5-year overall survival of about 29%. Consequently, it is necessary to understand the pathogenesis of this disease. Among the factors that contribute to cancer development, lipids and ion channels have been described to be associated to cancerous diseases particularly in breast, colorectal and prostate cancers. Here, we reviewed the literature data to determine how lipids or lipid metabolites may influence EOC risk or progression. We also highlighted the role and the expression of the calcium (Ca2+) and calcium-activated potassium (KCa) channels in EOC and how lipids might regulate them. Although lipids and some subclasses of nutritional lipids may be associated to EOC risk, lipid metabolism of LPA (lysophosphatidic acid) and AA (arachidonic acid) emerges as an important signaling network in EOC. Clinical data showed that they are found at high concentrations in EOC patients and in vitro and in vivo studies referred to them as triggers of the Ca2+entry in the cancer cells inducing their proliferation, migration or drug resistance. The cross-talk between lipid mediators and Ca2+ and/or KCa channels needs to be elucidated in EOC in order to facilitate the understanding of its outcomes and potentially suggest novel therapeutic strategies including treatment and prevention.
Collapse
Affiliation(s)
- Sana Kouba
- Université de Tours, INSERM, N2C UMR 1069, Faculté de Médecine, Tours, France; Réseau Molécules Marines, Métabolisme et Cancer du Cancéropôle Grand Ouest, France
| | - Lobna Ouldamer
- Université de Tours, INSERM, N2C UMR 1069, Faculté de Médecine, Tours, France; Université de Tours, INSERM, N2C UMR 1069, CHRU de Tours, Service de gynécologie et d'obstétrique, Tours, France
| | - Céline Garcia
- Université de Tours, INSERM, N2C UMR 1069, Faculté de Médecine, Tours, France; Réseau Molécules Marines, Métabolisme et Cancer du Cancéropôle Grand Ouest, France
| | - Delphine Fontaine
- Université de Tours, INSERM, N2C UMR 1069, Faculté de Médecine, Tours, France; Réseau Molécules Marines, Métabolisme et Cancer du Cancéropôle Grand Ouest, France
| | - Aurélie Chantome
- Réseau Molécules Marines, Métabolisme et Cancer du Cancéropôle Grand Ouest, France; Université de Tours, INSERM, N2C UMR 1069, Faculté de Pharmacie, Tours, France
| | - Christophe Vandier
- Université de Tours, INSERM, N2C UMR 1069, Faculté de Médecine, Tours, France; Réseau Molécules Marines, Métabolisme et Cancer du Cancéropôle Grand Ouest, France
| | - Caroline Goupille
- Réseau CASTOR du Cancéropôle Grand Ouest, France; Université de Tours, INSERM, N2C UMR 1069, CHRU de Tours, Faculté de Médecine, Tours, France
| | - Marie Potier-Cartereau
- Université de Tours, INSERM, N2C UMR 1069, Faculté de Médecine, Tours, France; Réseau Molécules Marines, Métabolisme et Cancer du Cancéropôle Grand Ouest, France.
| |
Collapse
|
18
|
Gotoh L, Yamada M, Hattori K, Sasayama D, Noda T, Yoshida S, Kunugi H, Yamada M. Lysophosphatidic acid levels in cerebrospinal fluid and plasma samples in patients with major depressive disorder. Heliyon 2019; 5:e01699. [PMID: 31193411 PMCID: PMC6526395 DOI: 10.1016/j.heliyon.2019.e01699] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 04/14/2019] [Accepted: 05/07/2019] [Indexed: 02/07/2023] Open
Abstract
Major depressive disorder (MDD) is the most common psychiatric disorders. However, a biochemical marker has yet to be established for clinical purposes. It is proposed that lysophosphatidic acid (LPA, 1-acyl-2-sn-glycerol-3-phosphoate) plays some important roles in emotional regulation of experimental animals. Therefore, in this study, we measured LPA levels using enzyme-linked immunosorbent assays of cerebrospinal fluid (CSF) and plasma samples from patients with MDD. The participants were 52 patients and 49 normal healthy controls for CSF study, and 47 patients and 44 controls for plasma study. We used the Japanese version of the GRID Hamilton Depression Rating Scale (17-item version) for the assessment of depressive symptoms. We found no associations between LPA levels (CSF or plasma) and either diagnosis or severity of MDD, or with psychotropic medication. In conclusion, our data suggest that LPA levels likely would not serve as a practical biomarker of MDD.
Collapse
Affiliation(s)
- Leo Gotoh
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8553, Japan
| | - Misa Yamada
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8553, Japan
| | - Kotaro Hattori
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan
- Translational Medical Center, National Center of Neurology and Psychiatry, Tokyo, 187-8551, Japan
| | - Daimei Sasayama
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan
- Department of Psychiatry, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takamasa Noda
- National Center of Neurology and Psychiatry Hospital, Tokyo, 187-8551, Japan
| | - Sumiko Yoshida
- National Center of Neurology and Psychiatry Hospital, Tokyo, 187-8551, Japan
- Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo, 187-8551, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan
| | - Mitsuhiko Yamada
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8553, Japan
| |
Collapse
|
19
|
Meshcheryakova A, Svoboda M, Jaritz M, Mungenast F, Salzmann M, Pils D, Cacsire Castillo-Tong D, Hager G, Wolf A, Braicu EI, Sehouli J, Lambrechts S, Vergote I, Mahner S, Birner P, Zimmermann P, Brindley DN, Heinze G, Zeillinger R, Mechtcheriakova D. Interrelations of Sphingolipid and Lysophosphatidate Signaling with Immune System in Ovarian Cancer. Comput Struct Biotechnol J 2019; 17:537-560. [PMID: 31049165 PMCID: PMC6479272 DOI: 10.1016/j.csbj.2019.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 12/16/2022] Open
Abstract
The sphingolipid and lysophosphatidate regulatory networks impact diverse mechanisms attributed to cancer cells and the tumor immune microenvironment. Deciphering the complexity demands implementation of a holistic approach combined with higher-resolution techniques. We implemented a multi-modular integrative approach consolidating the latest accomplishments in gene expression profiling, prognostic/predictive modeling, next generation digital pathology, and systems biology for epithelial ovarian cancer. We assessed patient-specific transcriptional profiles using the sphingolipid/lysophosphatidate/immune-associated signature. This revealed novel sphingolipid/lysophosphatidate-immune gene-gene associations and distinguished tumor subtypes with immune high/low context. These were characterized by robust differences in sphingolipid-/lysophosphatidate-related checkpoints and the drug response. The analysis also nominates novel survival models for stratification of patients with CD68, LPAR3, SMPD1, PPAP2B, and SMPD2 emerging as the most prognostically important genes. Alignment of proprietary data with curated transcriptomic data from public databases across a variety of malignancies (over 600 categories; over 21,000 arrays) showed specificity for ovarian carcinoma. Our systems approach identified novel sphingolipid-lysophosphatidate-immune checkpoints and networks underlying tumor immune heterogeneity and disease outcomes. This holds great promise for delivering novel stratifying and targeting strategies.
Collapse
Affiliation(s)
- Anastasia Meshcheryakova
- Molecular Systems Biology and Pathophysiology Research Group, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Martin Svoboda
- Molecular Systems Biology and Pathophysiology Research Group, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Markus Jaritz
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - Felicitas Mungenast
- Molecular Systems Biology and Pathophysiology Research Group, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Martina Salzmann
- Molecular Systems Biology and Pathophysiology Research Group, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Dietmar Pils
- Sectionfor Clinical Biometrics, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Dan Cacsire Castillo-Tong
- Translational Gynecology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Gudrun Hager
- Molecular Oncology Group, Department of Obstetrics and Gynecology and Comprehensive Cancer Center, Gynecologic Cancer Unit, Medical University of Vienna, Vienna, Austria
| | - Andrea Wolf
- Translational Gynecology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Elena Ioana Braicu
- Charité – Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Gynecology, Berlin, Germany
| | - Jalid Sehouli
- Charité – Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Gynecology, Berlin, Germany
| | - Sandrina Lambrechts
- Division of Gynecologic Oncology, University Hospital Leuven, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Ignace Vergote
- Division of Gynecologic Oncology, University Hospital Leuven, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Sven Mahner
- Department of Gynecology and Gynecologic Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Birner
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | | | - David N. Brindley
- Cancer Research Institute of Northern Alberta, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Georg Heinze
- Sectionfor Clinical Biometrics, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Robert Zeillinger
- Molecular Oncology Group, Department of Obstetrics and Gynecology and Comprehensive Cancer Center, Gynecologic Cancer Unit, Medical University of Vienna, Vienna, Austria
| | - Diana Mechtcheriakova
- Molecular Systems Biology and Pathophysiology Research Group, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
20
|
Rady HA, Othman MM, Agamia AFM, Mahmoud MH, Elghrabawy SA. Comparative Study Between Serum Level of Lysophosphatidic Acid and CA-125 in Epithelial Ovarian Cancer. INDIAN JOURNAL OF GYNECOLOGIC ONCOLOGY 2018. [DOI: 10.1007/s40944-018-0204-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
21
|
Qualitative and quantitative comparison of cyclic phosphatidic acid and its related lipid species in rat serum using hydrophilic interaction liquid chromatography with tandem-mass spectrometry. J Chromatogr A 2018; 1567:177-184. [DOI: 10.1016/j.chroma.2018.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/26/2018] [Accepted: 07/02/2018] [Indexed: 12/15/2022]
|
22
|
Lysophospholipid Signaling in the Epithelial Ovarian Cancer Tumor Microenvironment. Cancers (Basel) 2018; 10:cancers10070227. [PMID: 29987226 PMCID: PMC6071084 DOI: 10.3390/cancers10070227] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 12/12/2022] Open
Abstract
As one of the important cancer hallmarks, metabolism reprogramming, including lipid metabolism alterations, occurs in tumor cells and the tumor microenvironment (TME). It plays an important role in tumorigenesis, progression, and metastasis. Lipids, and several lysophospholipids in particular, are elevated in the blood, ascites, and/or epithelial ovarian cancer (EOC) tissues, making them not only useful biomarkers, but also potential therapeutic targets. While the roles and signaling of these lipids in tumor cells are extensively studied, there is a significant gap in our understanding of their regulations and functions in the context of the microenvironment. This review focuses on the recent study development in several oncolipids, including lysophosphatidic acid and sphingosine-1-phosphate, with emphasis on TME in ovarian cancer.
Collapse
|
23
|
Sánchez-Marín L, Ladrón de Guevara-Miranda D, Mañas-Padilla MC, Alén F, Moreno-Fernández RD, Díaz-Navarro C, Pérez-Del Palacio J, García-Fernández M, Pedraza C, Pavón FJ, Rodríguez de Fonseca F, Santín LJ, Serrano A, Castilla-Ortega E. Systemic blockade of LPA 1/3 lysophosphatidic acid receptors by ki16425 modulates the effects of ethanol on the brain and behavior. Neuropharmacology 2018; 133:189-201. [PMID: 29378212 DOI: 10.1016/j.neuropharm.2018.01.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/24/2018] [Indexed: 01/08/2023]
Abstract
The systemic administration of lysophosphatidic acid (LPA) LPA1/3 receptor antagonists is a promising clinical tool for cancer, sclerosis and fibrosis-related diseases. Since LPA1 receptor-null mice engage in increased ethanol consumption, we evaluated the effects of systemic administration of an LPA1/3 receptor antagonist (intraperitoneal ki16425, 20 mg/kg) on ethanol-related behaviors as well as on brain and plasma correlates. Acute administration of ki16425 reduced motivation for ethanol but not for saccharine in ethanol self-administering Wistar rats. Mouse experiments were conducted in two different strains. In Swiss mice, ki16425 treatment reduced both ethanol-induced sedation (loss of righting reflex, LORR) and ethanol reward (escalation in ethanol consumption and ethanol-induced conditioned place preference, CPP). Furthermore, in the CPP-trained Swiss mice, ki16425 prevented the effects of ethanol on basal c-Fos expression in the medial prefrontal cortex and on adult neurogenesis in the hippocampus. In the c57BL6/J mouse strain, however, no effects of ki16425 on LORR or voluntary drinking were observed. The c57BL6/J mouse strain was then evaluated for ethanol withdrawal symptoms, which were attenuated when ethanol was preceded by ki16425 administration. In these animals, ki16425 modulated the expression of glutamate-related genes in brain limbic regions after ethanol exposure; and peripheral LPA signaling was dysregulated by either ki16425 or ethanol. Overall, these results suggest that LPA1/3 receptor antagonists might be a potential new class of drugs that are suitable for treating or preventing alcohol use disorders. A pharmacokinetic study revealed that systemic ki16425 showed poor brain penetration, suggesting the involvement of peripheral events to explain its effects.
Collapse
Affiliation(s)
- Laura Sánchez-Marín
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain
| | - David Ladrón de Guevara-Miranda
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Psicología, Universidad de Málaga, Spain
| | - M Carmen Mañas-Padilla
- Centro de Experimentación Animal, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Medicina, Universidad de Málaga, Spain
| | - Francisco Alén
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain
| | - Román D Moreno-Fernández
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Psicología, Universidad de Málaga, Spain
| | - Caridad Díaz-Navarro
- Fundación MEDINA, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento 34, 18016, Granada, Spain
| | - José Pérez-Del Palacio
- Fundación MEDINA, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento 34, 18016, Granada, Spain
| | - María García-Fernández
- Departamento de Fisiología Humana, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Medicina, Universidad de Málaga, Spain
| | - Carmen Pedraza
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Psicología, Universidad de Málaga, Spain
| | - Francisco J Pavón
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain
| | - Luis J Santín
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Psicología, Universidad de Málaga, Spain.
| | - Antonia Serrano
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain.
| | - Estela Castilla-Ortega
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain.
| |
Collapse
|
24
|
Autotaxin-Lysophosphatidic Acid: From Inflammation to Cancer Development. Mediators Inflamm 2017; 2017:9173090. [PMID: 29430083 PMCID: PMC5753009 DOI: 10.1155/2017/9173090] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/22/2017] [Indexed: 12/13/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a ubiquitous lysophospholipid and one of the main membrane-derived lipid signaling molecules. LPA acts as an autocrine/paracrine messenger through at least six G protein-coupled receptors (GPCRs), known as LPA1–6, to induce various cellular processes including wound healing, differentiation, proliferation, migration, and survival. LPA receptors and autotaxin (ATX), a secreted phosphodiesterase that produces this phospholipid, are overexpressed in many cancers and impact several features of the disease, including cancer-related inflammation, development, and progression. Many ongoing studies aim to understand ATX-LPA axis signaling in cancer and its potential as a therapeutic target. In this review, we discuss the evidence linking LPA signaling to cancer-related inflammation and its impact on cancer progression.
Collapse
|