1
|
Xu ZJ, Ren FZ, Zhang ZW, Xu SW, Huang JQ. Advances of Selenium in Poultry Nutrition and Health. J Nutr 2025; 155:676-689. [PMID: 39805405 DOI: 10.1016/j.tjnut.2025.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/16/2025] Open
Abstract
Selenium is widely acknowledged as an indispensable trace element for humans and various animals, including poultry. The addition of selenium in appropriate doses plays a crucial role in promoting poultry growth and reproduction. Conversely, both deficiency and excessive intake of selenium can pose significant threats to poultry health and production performance. In modern poultry farming, there is an increasing demand for precise nutrient intake, necessitating a comprehensive understanding of the multifaceted role of selenium. This review aimed to compare and contrast the properties and recommended addition amounts of different sources of selenium in poultry feed; to discuss the hazards and mechanisms associated with selenium deficiency or excess in poultry; to summarize the pivotal role that selenium plays in stress states among poultry. Overall, this review seeked to provide a comprehensive overview highlighting the significance of selenium in terms of nutrition and health for poultry while ensuring optimal utilization within poultry production.
Collapse
Affiliation(s)
- Zi-Jian Xu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Fa-Zheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Zi-Wei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| | - Shi-Wen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jia-Qiang Huang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China.
| |
Collapse
|
2
|
Ataollahi F, Amirheidari B, Amirheidari Z, Ataollahi M. Clinical and mechanistic insights into biomedical application of Se-enriched probiotics and biogenic selenium nanoparticles. Biotechnol Lett 2025; 47:18. [PMID: 39826010 DOI: 10.1007/s10529-024-03559-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/13/2024] [Accepted: 12/16/2024] [Indexed: 01/20/2025]
Abstract
Selenium is an essential element with various industrial and medical applications, hence the current considerable attention towards the genesis and utilization of SeNPs. SeNPs and other nanoparticles could be achieved via physical and chemical methods, but these methods would not only require expensive equipment and specific reagents but are also not always environment friendly. Biogenesis of SeNPs could therefore be considered as a less troublesome alternative, which opens an excellent window to the selenium and nanoparticles' world. bSeNPs have proved to exert higher bioavailability, lower toxicity, and broader utility as compared to their non-bio counterparts. Many researchers have reported promising features of bSeNP such as anti-oxidant and anti-inflammatory, in vitro and in vivo. Considering this, bSeNPs have been tried as effective agents for health disorders, especially as constituents of probiotics. This article briefly reviews selenium, selenium nanoparticles, Se-enriched probiotics, and bSeNPs' usage in an array of health disorders. Obviously, there are very many articles on bSeNPs, but we wanted to summarize studies on prominent bSeNPs features published in the twenty-first century. This review is hoped to give an outlook to researchers for their future investigations, ultimately serving better care of health disorders.
Collapse
Affiliation(s)
- Farshid Ataollahi
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Bagher Amirheidari
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Medical University Campus, Haft-Bagh Highway, Kerman, 76169-13555, Iran.
| | - Zohreh Amirheidari
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahshid Ataollahi
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
3
|
Su Y, Huang P, Wu Z, Dai W, Zhang Y, Zeng J. Effect of dietary supplementation with sanguinarine on meat quality and lipid metabolism of broilers. Poult Sci 2024; 103:103925. [PMID: 38943809 PMCID: PMC11261466 DOI: 10.1016/j.psj.2024.103925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 07/01/2024] Open
Abstract
Dietary Macleaya cordata extract (MCE) can improve the meat quality of poultry. However, the specific mechanism by which MCE regulates the meat quality has not been clarified yet. Sanguinarine (SAN) is one of the important natural active components in MCE. Our study aims to explore the regulatory mechanism of dietary SAN supplementation on meat quality through transcriptomic and gut microbiome analysis, thereby providing a basis for regularing meat quality with MCE. 240 1-day-old broilers were divided into 4 groups according to different doses of SAN (0, 0.225, 0.75, and 2.25 mg/kg). The results indicated that SAN significantly improve the physicochemical quality indicators of breast and thigh muscle in broilers, improved the serum biochemical indexes. Through transcriptome sequencing analysis of the liver and ileum tissues of broilers, we found that the differentially expressed genes induced by SAN were mainly enriched in lipid metabolism, which were related to the peroxisome proliferator-activated receptor (PPAR) pathway. It reconfirmed that SAN can regulate lipid metabolism in the body by promoting the expression of genes related to cholesterol metabolism, fatty acid transport and oxidation by RT-PCR, this ultimately affects the physicochemical quality of muscle. Additionally, through 16S rRNA sequencing analysis, we found that dietary addition of SAN increased the relative abundance of Bacteroides, Lactobacillus and unclassified_f_Lachnospiraceae, while decreased the relative abundance of Alistipes in ceca. To further investigate the impact of gut microbiota on lipid metabolism, we conducted a correlation analysis of PPAR pathway factor expression in cecum tissue and microflora structure. The results showed that Bacteroides exhibited a positive correlation with the expression of most genes in the PPAR signaling pathway. Unclassified_f__Lachnospiraceae is positively correlated with PPARγ, Cytochrome P450 family 7 subfamily A member 1 (CYP7A1) and Acyl-CoA synthetase long-chain family member 5 (ACSL5). In conclusion, dietary addition of SAN can promote the genes expression of the PPAR pathway, target the regulation of intestinal microflora structure and abundance and regulate lipid metabolism, thereby improving meat quality of broilers.
Collapse
Affiliation(s)
- Yue Su
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Peng Huang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Zhiyong Wu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Wanwan Dai
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yan Zhang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Jianguo Zeng
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China; College of Veterinary, Hunan Agricultural University, Changsha, Hunan 410128, China.
| |
Collapse
|
4
|
Yang J, Wang J, Liu Z, Chen J, Jiang J, Zhao M, Gong D. Ligilactobacillus Salivarius improve body growth and anti-oxidation capacity of broiler chickens via regulation of the microbiota-gut-brain axis. BMC Microbiol 2023; 23:395. [PMID: 38071295 PMCID: PMC10709959 DOI: 10.1186/s12866-023-03135-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Certain strains of probiotic bacteria can secret functional substances namely digestive enzymes and functional peptides to regulate physiological conditions such as digestion and anti-oxidation, which are often incorporated in industrial broiler chick production. However, few studies have detailed the action mechanisms and effects of these bacteria on regulating growth and anti-oxidation levels in broiler chickens. Ligilactobacillus salivarius is a strain of probiotic bacteria used as dietary supplement. In the present study, Ligilactobacillus salivarius was evaluated for its secreted digestive enzymes in vitro. To detailed evaluate the action mechanisms and effects of gastrointestinal tract (GIT) microbiota on alleviating anti-oxidation levels of broiler chickens through the gut-brain axis. Ligilactobacillus salivarius was cultured and supplemented in the food of broilers to evaluate the probiotic effect on growth and anti-oxidation by modulation of gut microbial composition and its functional metabolites using metagenomic and metabolomic assays. Biochemical results showed that Ligilactobacillus salivarius secreted digestive enzymes: protease, lipase, and amylase. Broiler chickens with Ligilactobacillus salivarius supplemented for 42 days, showed increased body weights, a reduced oxidative status, decreased malondialdehyde levels, and improved activities rates of total superoxide dismutase, glutathione peroxidase IIand IV improved. The microbial composition of caecum was more abundant than those broiler without probiotics supplementation, owing 400 of total number (489) of bacterial operational taxonomic units (OTU). The genera of Lactobacillus, Megamonas, Ruminoccoccaceae, Ruminococcus, Alistipes and Helicobacter shared the dominant proportion of Candidatus _Arthromitus compared with the control chickens. These functional bacteria genera assisted in the transportation and digestion of amino acids, carbohydrates, and ions, synthesis of cellular membranes, and anti-oxidation. Uncultured_organism_g_ Anaerosporobacter, Lactobacillus salivarius, uncultured_bacterium_g_ Ruminococcaceae_UCG-014, uncultured_bacterium_g_ Peptococcus were strongly and positively correlated with body growth performance and anti-oxidation. A metabonomic assay suggested that the secreted of gamma-aminobutyric acid and monobactam was metabolized according to the Kyoto Encyclopedia of Genes and Genomes analysis. In conclusion, Ligilactobacillus salivarius optimized microbial composition of the caecum and secreted functional peptides through gut-brain axis to improve the body growth and antioxidation of broiler chicken.
Collapse
Affiliation(s)
- Jiajun Yang
- Jiangsu Key Laboratory of Animal genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, Jiangsu, China
| | - Jing Wang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, Jiangsu, China
| | - Zongliang Liu
- Hefei Zhien Biotechnology Company Limited, National University Science Park, No.602 of Huangshan Road, Hefei, 230031, 230001, Anhui Province, China
| | - Jun Chen
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, Jiangsu, China
| | - Jiajing Jiang
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing, 210038, Jiangsu, China
| | - Minmeng Zhao
- Jiangsu Key Laboratory of Animal genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Daoqing Gong
- Jiangsu Key Laboratory of Animal genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
5
|
Qiu H, Gao S, Hou L, Li A, Zhu LQ, Dong J, Chen F. Selenium-enriched Bacillus subtilis Improves Growth Performance, Antioxidant Capacity, Immune Status, and Gut Health of Broiler Chickens. Biol Trace Elem Res 2023; 201:5756-5763. [PMID: 36862247 DOI: 10.1007/s12011-023-03610-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/23/2023] [Indexed: 03/03/2023]
Abstract
This study aimed to investigate the effects of selenium (Se)-enriched Bacillus subtilis (Se-BS) on growth performance, antioxidant capacity, immune status, and gut health in broilers. A total of 240 one-day-old Arbor Acres broilers were randomly allotted to four groups and fed with basal diet (control group), 0.30 mg/kg Se (SS group), 3 × 109 CFU/g B. subtilis (BS group), and 0.30 mg/kg Se + 3 × 109 CFU/g B. subtilis (Se-BS group) for 42 days. The results showed that Se-BS supplementation increased body weight (BW), average daily gain, the activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), and peroxidase (POD), total antioxidant capacity (T-AOC), and the contents of interleukin (IL)-2, IL-4, and immunoglobulin (Ig) G in plasma, the index and wall thickness of the duodenum, the villus height and crypt depth of the jejunum, and GPx-1 and thioredoxin reductase 1 mRNA levels in liver and intestine and decreased feed conversion ratio (FCR) and plasma malondialdehyde (MDA) content compared with the control group on day 42 (P < 0.05). Compared with groups SS and BS, Se-BS supplementation increased BW, the activities of GPx, CAT, and POD, and the contents of IL-2, IL-4, and IgG in plasma, the index and wall thickness of the duodenum, the crypt depth and secretory IgA content of the jejunum, and GPx-1 mRNA levels in liver and intestine and decreased FCR and plasma MDA content on day 42 (P < 0.05). In conclusion, Se-BS supplementation effectively improved the growth performance antioxidant capacity, immune status, and gut health of broilers.
Collapse
Affiliation(s)
- Huiling Qiu
- Haidu College, Qingdao Agricultural University, Laiyang, 265200, Shandong Province, China
- Laboratory of Animal Nutrition and Poisoning Diseases, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, China
| | - Shansong Gao
- Laboratory of Animal Nutrition and Poisoning Diseases, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, China
| | - Lele Hou
- Laboratory of Animal Nutrition and Poisoning Diseases, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, China
| | - Anping Li
- Laboratory of Animal Nutrition and Poisoning Diseases, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, China
- DSM (China) Co. LTD, Beijing, 100027, China
| | - Lian-Qin Zhu
- Laboratory of Animal Nutrition and Poisoning Diseases, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, China
| | - Jihong Dong
- Laboratory of Animal Nutrition and Poisoning Diseases, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, China
| | - Fu Chen
- Laboratory of Animal Nutrition and Poisoning Diseases, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, China.
| |
Collapse
|
6
|
Dong J, Qiu H, Gao S, Hou L, Liu H, Zhu L, Chen F. A combination of selenium and Bacillus subtilis improves the quality and flavor of meat and slaughter performance of broilers. Front Vet Sci 2023; 10:1259760. [PMID: 38026674 PMCID: PMC10663308 DOI: 10.3389/fvets.2023.1259760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
This study aimed to investigate the effects of the combination of selenium and Bacillus subtilis (Se-BS) on the quality and flavor of meat and slaughter performance of broilers. A total of 240 one-day-old Arbor Acres broilers were randomly allotted to four treatments of a basal diet supplemented with no selenium (control), sodium selenite (SS), BS, or Se-BS and raised for 42 days. Compared with the control group, Se-BS significantly increased the carcass weight, the half-eviscerated weight, the completely eviscerated weight, the carcass rate, and redness in broiler muscles; improved the antioxidant state by increasing glutathione peroxidase (GPx) and glutathione S-transferase activities, the total antioxidant capacity, and GPx-1 and thioredoxin reductase 1 messenger RNA (mRNA) levels; promoted biological activity by increasing the contents of glutamate, phenylalanine, lysine, and tyrosine; and increased Se and five types of nitrogenous volatile substances in muscles. On the other hand, Se-BS treatment decreased the shear force, drip loss, and the malondialdehyde, glutathione, and lead contents in muscles. Se-BS exerted a better effect on slaughter performance, the physicochemical quality of meat, the redox status, the amino acid contents, the trace element contents, and volatile substances compared with SS and BS. In conclusion, Se-BS had a positive effect on the quality and flavor of meat and slaughter performance of broilers, suggesting that Se-BS may be a beneficial feed additive.
Collapse
Affiliation(s)
- Jihong Dong
- Laboratory of Animal Nutrition Metabolic and Poisoning Diseases, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Huiling Qiu
- Laboratory of Animal Nutrition Metabolic and Poisoning Diseases, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
- Haidu College, Qingdao Agricultural University, Laiyang, Shandong, China
| | - Shansong Gao
- Laboratory of Animal Nutrition Metabolic and Poisoning Diseases, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Lele Hou
- Laboratory of Animal Nutrition Metabolic and Poisoning Diseases, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Huawei Liu
- Laboratory of Animal Nutrition Metabolic and Poisoning Diseases, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Lianqin Zhu
- Laboratory of Animal Nutrition Metabolic and Poisoning Diseases, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Fu Chen
- Laboratory of Animal Nutrition Metabolic and Poisoning Diseases, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
7
|
Liang S, Wang L, Wu X, Hu X, Wang T, Jin F. The different trends in the burden of neurological and mental disorders following dietary transition in China, the USA, and the world: An extension analysis for the Global Burden of Disease Study 2019. Front Nutr 2023; 9:957688. [PMID: 36698474 PMCID: PMC9869872 DOI: 10.3389/fnut.2022.957688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 12/06/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction The highly processed western diet is substituting the low-processed traditional diet in the last decades globally. Increasing research found that a diet with poor quality such as western diet disrupts gut microbiota and increases the susceptibility to various neurological and mental disorders, while a balanced diet regulates gut microbiota and prevents and alleviates the neurological and mental disorders. Yet, there is limited research on the association between the disease burden expanding of neurological and mental disorders with a dietary transition. Methods We compared the disability-adjusted life-years (DALYs) trend by age for neurological and mental disorders in China, in the United States of America (USA), and across the world from 1990 to 2019, evaluated the dietary transition in the past 60 years, and analyzed the association between the burden trend of the two disorders with the changes in diet composition and food production. Results We identified an age-related upward pattern in disease burden in China. Compared with the USA and the world, the Chinese neurological and mental disorders DALY percent was least in the generation over 75 but rapidly increased in younger generations and surpassed the USA and/or the world in the last decades. The age-related upward pattern in Chinese disease burdens had not only shown in the presence of cardiovascular diseases, neoplasms, and diabetes mellitus but also appeared in the presence of depressive disorders, Parkinson's disease, Alzheimer's disease and other dementias, schizophrenia, headache disorders, anxiety disorders, conduct disorders, autism spectrum disorders, and eating disorders, successively. Additionally, the upward trend was associated with the dramatic dietary transition including a reduction in dietary quality and food production sustainability, during which the younger generation is more affected than the older. Following the increase in total calorie intake, alcohol intake, ratios of animal to vegetal foods, and poultry meat to pulses, the burdens of the above diseases continuously rose. Then, following the rise of the ratios of meat to pulses, eggs to pulses, and pork to pulses, the usage of fertilizers, the farming density of pigs, and the burdens of the above disease except diabetes mellitus were also ever-increasing. Even the usage of pesticides was positively correlated with the burdens of Parkinson's disease, schizophrenia, cardiovascular diseases, and neoplasms. Contrary to China, the corresponding burdens of the USA trended to reduce with the improvements in diet quality and food production sustainability. Discussion Our results suggest that improving diet quality and food production sustainability might be a promising way to stop the expanding burdens of neurological and mental disorders.
Collapse
Affiliation(s)
- Shan Liang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Gut-brain Psychology Laboratory, Beijing, China
| | - Li Wang
- Department for the History of Science and Scientific Archaeology, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaoli Wu
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Gut-brain Psychology Laboratory, Beijing, China
| | - Xu Hu
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Gut-brain Psychology Laboratory, Beijing, China
| | - Tao Wang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Gut-brain Psychology Laboratory, Beijing, China
| | - Feng Jin
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Gut-brain Psychology Laboratory, Beijing, China
| |
Collapse
|
8
|
Exopolymer-Functionalized Nanoselenium from Bacillus subtilis SR41: Characterization, Monosaccharide Analysis and Free Radical Scavenging Ability. Polymers (Basel) 2022; 14:polym14173523. [PMID: 36080599 PMCID: PMC9459814 DOI: 10.3390/polym14173523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 11/18/2022] Open
Abstract
To provide a safe and effective supplement of the essential trace element selenium, we focused on the biosynthesis of nanoselenium (SeNPs) via probiotics. A novel kind of exopolymer-functionalized nanoselenium (SeEPS), whose average size was 67.0 ± 0.6 nm, was produced by Bacillus subtilis SR41, whereas the control consisted of exopolymers without selenium (EPS). Chemical composition analysis, Fourier transform infrared (FTIR) spectroscopy and high-performance liquid chromatography (HPLC) confirmed that SeEPS and EPS shared similar polysaccharide characteristic groups, such as COO- and C=O, and contained not only 45.2–45.4% of sugars but also 23.5–24.7% of proteins and some lipids. Both SeEPS and EPS were primarily composed of mannose, amino glucose, ribose, glucose and galactose. Furthermore, to identify the biologically active component of SeEPS, three kinds of selenium particles with different stabilizers [Se(0), bovine serum albumin-Se and EPS-Se] were synthesized chemically, and their ability to scavenge free radicals in vitro was compared with that of SeEPS and EPS. The results revealed that EPS itself exhibited weak superoxide and hydroxyl radical scavenging abilities. Nevertheless, SeEPS had superior antioxidant properties compared to all other products, possibly due to the specific structure of SeNPs and exopolymers. Our results suggested that exopolymer-functionalized SeNPs with specific monosaccharide composition and structure could eventually find a potential application as an antioxidant.
Collapse
|
9
|
Deng S, Hu S, Xue J, Yang K, Zhuo R, Xiao Y, Fang R. Productive Performance, Serum Antioxidant Status, Tissue Selenium Deposition, and Gut Health Analysis of Broiler Chickens Supplemented with Selenium and Probiotics-A Pilot Study. Animals (Basel) 2022; 12:ani12091086. [PMID: 35565512 PMCID: PMC9103767 DOI: 10.3390/ani12091086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
The effect and interaction of dietary selenium (Se) and probiotics on three yellow chicken growth performance, tissue Se content, antioxidant capacity, and gut health were studied from 0 to 70 days of age. A total of 400 one-day-old broilers were distributed into four groups (I-Se, O-Se, I-Se + pros, and O-Se + pros groups) consisting of a 2 × 2 factorial design. The main factors were the source of Se (I-Se = inorganic Se: 0.2 mg/kg sodium selenite; O-Se = organic Se: 0.2 mg/kg Selenium yeast) and the level of probiotics (0.5% EM or 0% EM, the component of EM mainly includes Lactobacillus and Yeast at the dose of 2 × 108 cfu/kg and 3 × 107 cfu/kg, respectively). Each treatment had 5 duplicates consisting of 20 broilers. The results showed that the I-Se group had a greater (p < 0.05) ratio of feed: weight gain (F/G) of broilers at Starter (0−35 d) than the other treatments. Compared to the I-Se group, the O-Se group increased (p < 0.05) Se concentrations in the liver, pancreas, breast muscles, thigh muscle, and the activity of total antioxidative capacity (T-AOC) in serum, as well as the relative abundance of Barnesiella and Lactobacillus in cecum. Meanwhile, probiotics enhanced (p < 0.05) Se concentrations in the pancreas, thigh muscle, serum, and the activity of T-AOC and glutathione peroxidase (GSH-Px), the duodenum’s ratio of villi height to crypt depth (V/C), the jejunum villus height and V/C, and the ileum’s villus height. Furthermore, the significant interactions (p < 0.05) between Se sources and the level of probiotics were observed in Se concentrations in the pancreas, thigh muscle, serum, crypt depth of duodenum, and villus height of jejunum of birds, and Barnesiella abundance in the cecal. In conclusion, our results demonstrate that the combination of O-Se + pros can improve broiler early growth performance, tissue Se content in the pancreas, thigh muscle, and serum, promote intestinal development, and regulate the composition of intestinal flora, suggesting a better combination. These findings provide an effective method of nutrient combination addition to improving the performance of three yellow chickens.
Collapse
Affiliation(s)
- Shengting Deng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.D.); (S.H.); (J.X.); (K.Y.); (R.Z.); (Y.X.)
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
| | - Shengjun Hu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.D.); (S.H.); (J.X.); (K.Y.); (R.Z.); (Y.X.)
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
| | - Junjing Xue
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.D.); (S.H.); (J.X.); (K.Y.); (R.Z.); (Y.X.)
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
| | - Kaili Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.D.); (S.H.); (J.X.); (K.Y.); (R.Z.); (Y.X.)
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
| | - Ruiwen Zhuo
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.D.); (S.H.); (J.X.); (K.Y.); (R.Z.); (Y.X.)
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
| | - Yuanyuan Xiao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.D.); (S.H.); (J.X.); (K.Y.); (R.Z.); (Y.X.)
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
| | - Rejun Fang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.D.); (S.H.); (J.X.); (K.Y.); (R.Z.); (Y.X.)
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
- Correspondence:
| |
Collapse
|
10
|
Qiu K, Zheng JJ, Obianwuna UE, Wang J, Zhang HJ, Qi GH, Wu SG. Effects of Dietary Selenium Sources on Physiological Status of Laying Hens and Production of Selenium-Enriched Eggs. Front Nutr 2021; 8:726770. [PMID: 34938756 PMCID: PMC8685220 DOI: 10.3389/fnut.2021.726770] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Developing new sources of organic selenium (Se) has potential benefits for animal production and human nutrition via animal-based foods enriched with Se. The objective of this study was to evaluate the effects of Se-enriched insect protein (SEIP) in comparison with other sources, such as sodium selenite (SS) and selenium-enriched yeast (SEY), on performance, egg quality, selenium concentration in eggs, serum biochemical indices, immune capacity, and intestinal morphology of laying hens. Four hundred and fifty 24-week-old Hy-Line Brown laying hens with 94.0 ± 1.5% laying rate were randomly allocated to five groups with six replicates of 15 hens each. The control diet was prepared without adding exogenous selenium (calculated basal Se content of 0.08 mg/kg). The normal group was fed basal diets supplemented with 0.3 mg/kg of Se provided by sodium selenite. Three treatment groups (SS, SEY, and SEIP, respectively) were fed basal diets supplemented with 2 mg/kg of Se provided by sodium selenite, Se-enriched yeast, and SEIP, respectively. The feeding trial lasted for 12 weeks. Results revealed that dietary supplementation of 2 mg/kg of Se increased egg weight, decreased feed conversion ratio, and enhanced the antioxidant capacity of eggs in laying hens relative to the control group, whereas no significant differences were observed among SS, SEY, and SEIP treatment groups for the same. The organic source of Se provided by SEY or SEIP showed higher bio efficiency, as indicated by higher selenium content in eggs of SEY and SEIP compared with SS, although higher content was observed in SEY compared with SEIP. Also, the organic Se source significantly improved antioxidant capacity and immune functions of laying hens than the inorganic Se source. Diets supplemented with SEIP and SS significantly improved jejunal morphology of the laying hens compared with SEY, whereas SEIP was more effective than SEY to improve the oviduct health of laying hens. The results of this work evidently points the additive effect and nontoxicity of SEIP. Thus, SEIP could be used as another organic source of Se in the diet of laying hens and production of selenium-enriched eggs for humans.
Collapse
Affiliation(s)
- Kai Qiu
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture & Rural Affairs, National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun-Jie Zheng
- Beijing Agricultural Products Quality and Safety Center, Beijing, China
| | - Uchechukwu Edna Obianwuna
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture & Rural Affairs, National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Wang
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture & Rural Affairs, National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hai-Jun Zhang
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture & Rural Affairs, National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guang-Hai Qi
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture & Rural Affairs, National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shu-Geng Wu
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture & Rural Affairs, National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
11
|
Yang J, Wang J, Huang K, Liu Q, GuofangLiu, Xu X, Zhang H, Zhu M. Selenium-enriched Bacillus subtilis yb-114246 improved growth and immunity of broiler chickens through modified ileal bacterial composition. Sci Rep 2021; 11:21690. [PMID: 34737359 PMCID: PMC8568892 DOI: 10.1038/s41598-021-00699-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023] Open
Abstract
Here, a Selenium-enriched Bacillus subtilis (SEBS) strain was generated and supplemented to broiler chickens' diet, and the impact in ileum bacterial microbiome, immunity and body weight were assessed. In a nutshell, five hundred 1-old old chicken were randomly divided into five groups: control, inorganic Se, Bacillus subtilis (B. subtilis), SEBS, and antibiotic, and colonization with B. subtilis and SEBS in the gastrointestinal tract (GIT) were measured by fluorescence in situ hybridization (FISH) assay and quantitative real-time polymerase chain reaction (qPCR). In summary, Chicks fed SEBS or B. subtilis had higher body weight than the control chicks or those given inorganic Se. SEBS colonized in distal segments of the ileum improved bacterial diversity, reduced the endogenous pathogen burden and increased the number of Lactobacillus sp. in the ileal mucous membrane. Species of unclassified Lachnospiraceae, uncultured Anaerosporobacter, Peptococcus, Lactobacillus salivarius, and Ruminococcaceae_UCG-014, and unclassified Butyricicoccus in the ileal mucous membrane played a key role in promoting immunity. Inorganic Se supplementation also improved bacterial composition of ileal mucous membranes, but to a less extent. In conclusion, SEBS improved performance and immunity of broiler chickens through colonization and modulation of the ileal mucous membrane microbiome.
Collapse
Affiliation(s)
- Jiajun Yang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, Jiangsu, China
- College of Animal Science and Technology, Chinese Agricultural University, Beijing, 100093, China
| | - Jing Wang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, Jiangsu, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qingxin Liu
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, Jiangsu, China
| | - GuofangLiu
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, Jiangsu, China
| | - Xiaozhou Xu
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, Jiangsu, China
| | - Hao Zhang
- College of Animal Science and Technology, Chinese Agricultural University, Beijing, 100093, China.
| | - Mengling Zhu
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, Jiangsu, China.
| |
Collapse
|
12
|
Hu T, Lei Y, Li M, Liu Q, Song L, Zhao D. Dietary Eucommia ulmoides Extract Alleviates the Effect of Cold Stress on Chick Growth Performance, Antioxidant and Immune Ability. Animals (Basel) 2021; 11:3008. [PMID: 34827741 PMCID: PMC8614489 DOI: 10.3390/ani11113008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/09/2021] [Accepted: 10/16/2021] [Indexed: 01/10/2023] Open
Abstract
This study aimed to investigate the protective value of Eucommia ulmoides extract (EUE) on chicks under cold stress. A total of 21 compounds were identified in EUE using mass spectrometry (LC-MS). Ninety chicks were divided into a control group (CS) fed a basal diet and an experimental group supplemented with EUE, exposed to 10 ± 1 °C for 8 h per day. Results showed, compared with the CS group, the body weights (BW) (p < 0.01) and average daily gains ADG (p < 0.05) of the EUE group were increased throughout the study period. Chicks fed EUE had higher AFI (0-7 d, p < 0.001) and lower feed-to-gain ratios (F/G) (0-15 d, p < 0.001). EUE increased the activities of superoxide dismutase (SOD) (15 d, p < 0.05) and glutathione peroxidase (GSH-Px) (7 d, p < 0.05), whereas it decreased malondialdehyde (MDA) (15 d, p < 0.01). The contents of IgA (7 d, p < 0.05), IgG (7 d; 15 d, p < 0.01), and IgM (15 d, p < 0. 001) were higher in the EUE group. Dietary EUE could also reduce chick organ damage. Overall, EUE as a natural feed additive can improve the growth performance, antioxidant capacity, and immune level, and reduce the organ damage of cold-stressed chicks.
Collapse
Affiliation(s)
- Ting Hu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China; (T.H.); (Y.L.); (M.L.)
- Guizhou Key Lab of Agro-Bioengineering, Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
- College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Yue Lei
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China; (T.H.); (Y.L.); (M.L.)
- Guizhou Key Lab of Agro-Bioengineering, Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
- Guizhou Institute of Subtropical Crops, Xingyi 562400, China
| | - Minxue Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China; (T.H.); (Y.L.); (M.L.)
- Guizhou Key Lab of Agro-Bioengineering, Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Qin Liu
- College of Animal Science, Guizhou University, Guiyang 550025, China;
| | - Li Song
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China; (T.H.); (Y.L.); (M.L.)
- Guizhou Key Lab of Agro-Bioengineering, Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Degang Zhao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China; (T.H.); (Y.L.); (M.L.)
- Guizhou Key Lab of Agro-Bioengineering, Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
- Guizhou Academy of Agricultural Science, Guiyang 550006, China
| |
Collapse
|
13
|
Bami MK, Afsharmanesh M, Salarmoini M, Ebrahimnejad H. Effects of selenium-chitosan on growth performance, carcass traits, meat quality, and blood indices of broiler chickens. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Application of Selenium Conjugated to Animal Protein in Laying Hens' Diet for the Production of Selenium-Enriched Eggs. Foods 2021; 10:foods10061224. [PMID: 34071289 PMCID: PMC8228457 DOI: 10.3390/foods10061224] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
The current experiment was conducted to investigate the application effects of selenium conjugated to insect protein (SCIP) in the production of selenium-enriched eggs. A total of 450 laying hens were randomly assigned to five dietary groups, each group consisting of six replicates. Hens in the control group received a diet without selenium supplementation, whereas hens in the other four groups received diets supplemented with either 1, 2, 5, or 10 mg/kg of selenium from SCIP. The productive performance, egg quality, antioxidant and immune capacity, biochemical indices, intestinal morphology, and oviduct health of laying hens were evaluated. The results showed that the supplementation of organic selenium provided by SCIP in the diets of laying hens enhanced performance and egg quality without any toxicity effect, even at the 10 mg/kg inclusion level. A level of 2 mg/kg of selenium provided by SCIP in diets tentatively improved the serum antioxidant and immune capacity, intestinal development, and oviduct health of laying hens in a conspicuous manner. Hence, the biosafety and positive effects of SCIP as a feed additive supplement in laying hens' diet have been demonstrated with the enhanced production of safe and selenium-enriched eggs.
Collapse
|
15
|
Yang J, Wang J, Huang K, Zhu M, Liu Q, Liu G, Chen F, Zhang H, Qin S. Selenium enriched Bacillus subtilis yb-1114246 activated the TLR2-NF-κB1 signaling pathway to regulate chicken intestinal β-defensin 1 expression. Food Funct 2021; 12:5913-5926. [PMID: 34028482 DOI: 10.1039/d1fo01158h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of this study was to investigate the effects and potential signaling pathway of selenium-enriched Bacillus subtilis (SEBS) on beta defensin 1 (BD1) expression in chicken intestine. Chinese Huainan Partridge chickens (500 individuals) were randomly allocated into five groups, including control, inorganic Se, B. subtilis, SEBS, and a mixture of Se and B. subtilis (Se-BS). After 56 d of feeding, chicken ileal mucous membranes were harvested to detect differences in expression of BD1. The results indicated that BD1 was produced in intestinal crypt cells and secreted into the lumen through the villi brush border. BD1 was up-regulated in distal ileum segments colonized by SEBS and B. subtilis. Chicken primary intestinal crypt cells were cultured and grouped into control, inorganic Se, B. subtilis, SEBS, and Se-BS treatments to identify the receptor of B. subtilis. Results indicated that B. subtilis and SEBS were recognized by toll-like receptor 2 (TLR2), stimulating the NF-κB1 signaling pathway to increase expression of BD-1, which was further enhanced when combined with Se. Pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 were up-regulated with B. subtilis supplementation, and inhibited under the action of Se. In conclusion, B. subtilis and SEBS were recognized by the TLR2 receptor in the ileal mucous membrane, which activated the TLR2-MyD88-NF-κB1 signaling pathway to upregulate BD1 expression. In addition, Se enhanced recognition of B. subtilis and reduced levels of pro-inflammatory factors caused by estrogenic B. subtilis supplementation.
Collapse
Affiliation(s)
- Jiajun Yang
- School of Animal Science and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, China212400 and College of Animal Science and Technology, Chinese Agricultural University, Beijing, China100093.
| | - Jing Wang
- School of Animal Science and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, China212400 and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China210095
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China210095
| | - Mengling Zhu
- School of Animal Science and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, China212400
| | - Qinxing Liu
- School of Animal Science and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, China212400
| | - Guofang Liu
- School of Animal Science and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, China212400
| | - Fu Chen
- College of Animal Science and Technology, Chinese Agricultural University, Beijing, China100093.
| | - Hao Zhang
- College of Animal Science and Technology, Chinese Agricultural University, Beijing, China100093.
| | - Shunyi Qin
- Key Laboratory of Agricultural Animal Breeding and Healthy Breeding of Tianjin, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China300384.
| |
Collapse
|
16
|
Khajeh Bami M, Afsharmanesh M, Espahbodi M. Dietary supplementation with biosynthesised nano-selenium affects growth, carcass characteristics, meat quality and blood parameters of broiler chickens. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an21192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Liu X, Liu W, Deng Y, He C, Xiao B, Guo S, Zhou X, Tang S, Qu X. Use of encapsulated Bacillus subtilis and essential oils to improve antioxidant and immune status of blood and production and hatching performance of laying hens. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1862715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xu Liu
- College of Animal Science and Technology, Hunan Agricultural University, Hunan, Changsha, China
| | - Wei Liu
- College of Animal Science and Technology, Hunan Agricultural University, Hunan, Changsha, China
| | - Yuying Deng
- College of Animal Science and Technology, Hunan Agricultural University, Hunan, Changsha, China
| | - Changqing He
- College of Animal Science and Technology, Hunan Agricultural University, Hunan, Changsha, China
| | - Bing Xiao
- Hunan Yunfeifeng Agricultural Co. Ltd, Huaihua, Hunan, China
| | - Songchang Guo
- College of Animal Science and Technology, Hunan Agricultural University, Hunan, Changsha, China
| | - Xuebin Zhou
- Shanghai Naseco Products Company, Shanghai, China
| | - Shengguo Tang
- College of Animal Science and Technology, Hunan Agricultural University, Hunan, Changsha, China
| | - Xiangyong Qu
- College of Animal Science and Technology, Hunan Agricultural University, Hunan, Changsha, China
| |
Collapse
|
18
|
Hou L, Qiu H, Sun P, Zhu L, Chen F, Qin S. Selenium-enriched Saccharomyces cerevisiae improves the meat quality of broiler chickens via activation of the glutathione and thioredoxin systems. Poult Sci 2020; 99:6045-6054. [PMID: 33142523 PMCID: PMC7647820 DOI: 10.1016/j.psj.2020.07.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 07/08/2020] [Accepted: 07/19/2020] [Indexed: 12/31/2022] Open
Abstract
The aim of this study was to investigate the effects of selenium (Se)-enriched Saccharomyces cerevisiae (SSC) on meat quality and to elucidate the underlying mechanisms in broilers. A total of 200 one-day-old Arbor Acres broiler chickens were randomly allocated to one of four treatments with 5 replications of 10 chickens each. Group 1 served as a control and was fed a basal diet without Se supplementation, while groups 2, 3, and 4 were fed the basal diet supplemented with S. cerevisiae (SC), sodium selenite (SS), and SSC, respectively. Breast muscle samples were collected to evaluate meat quality, selenium concentration, oxidative stability, and the mRNA levels of antioxidant enzyme genes on day 42. As compared with groups 1 and 2, SS and SSC supplementation increased Se concentration, glutathione peroxidase (GPx) and thioredoxin reductase (TR) activities, total antioxidant capacity, and the mRNA levels of GPx-1, GPx-4, TR-1, and TR-3 (P < 0.05) and decreased drip loss and malondialdehyde (MDA) content (P < 0.05). As compared with group 3, SSC supplementation increased pH, lightness, yellowness, Se concentration, GPx and superoxide dismutase activities, and the mRNA levels of GPx-1 and GPx-4 (P < 0.05) but decreased drip loss and MDA content (P < 0.05). Thus, SSC improved meat quality and oxidative stability by activating the glutathione and thioredoxin systems, which should be attributed to the combined roles of Se and SC.
Collapse
Affiliation(s)
- Lele Hou
- Institute of Nutrition Metabolic Disease and Poisoning Disease in Animals, Qingdao Agricultural University, Qingdao 266109, China
| | - Huiling Qiu
- Institute of Nutrition Metabolic Disease in Animals, Haidu College, Qingdao Agricultural University, Laiyang 265200, China
| | - Peng Sun
- Institute of Nutrition Metabolic Disease in Animals, Shandong Vocational Animal Science and Veterinary College, Weifang 261061, China
| | - Lianqin Zhu
- Institute of Nutrition Metabolic Disease and Poisoning Disease in Animals, Qingdao Agricultural University, Qingdao 266109, China
| | - Fu Chen
- Institute of Nutrition Metabolic Disease and Poisoning Disease in Animals, Qingdao Agricultural University, Qingdao 266109, China.
| | - Shunyi Qin
- Key Laboratory of Agricultural Animal Breeding and Healthy Breeding of Tianjin, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China.
| |
Collapse
|
19
|
Yang J, Huang K, Wang J, Wu D, Liu Z, Yu P, Wei Z, Chen F. Combined Use of Bacillus subtilis yb-114,246 and Bacillus licheniformis yb-214,245 Improves Body Growth Performance of Chinese Huainan Partridge Shank Chickens by Enhancing Intestinal Digestive Profiles. Probiotics Antimicrob Proteins 2020; 13:327-342. [PMID: 32783087 DOI: 10.1007/s12602-020-09691-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The aim of our study was to unveil the promoting function of compound Bacillus sp. in improving chicken digestion-induced higher body growth performance. Strains of Bacillus subtilis and B. licheniformis were jointly supplemented to the chick diet. Digestive enzyme activities in the digesta improved, development of intestinal villus enhanced, and duodenum and ileum villous height increased, while their crypt depth declined, and the cecum's bacterial composition optimized after 56 days of supplementation. Bacterial composition at the phylum level changed significantly, more Firmicutes, Proteobacteria, Epsilonbacteraeota, and Tenericutes, but fewer Bacteroidetes were detected in cecum digesta in the compound Bacillus supplemented group. Bacterial composition diversity, which improves the abundances of metabolic genes through KEGG pathway classification, became more abundant. Results indicated that the Ruminococcaceae UCG-005, unclassified Ruminococcaceae, and unclassified Lachnospiraceae species are actively correlated with body growth, promoting higher final body weight. In conclusion, owing to digestive enzyme secretion, the development of intestinal villus was stimulated and gastrointestinal bacterial composition optimized, and two combined Bacillus sp. improved chicken body growth. Our findings show the promoting action of Bacillus subtilis and B. licheniformis on digestion, which can be an alternative to antibiotics.
Collapse
Affiliation(s)
- Jiajun Yang
- The College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China.,Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agriculture Science, No. 40 of NongKe South of Road, Hefei, 230031, Anhui, China
| | - Kehe Huang
- Institute of Nutritional and Metabolic Disorders, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Wang
- Institute of Nutritional and Metabolic Disorders, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dong Wu
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agriculture Science, No. 40 of NongKe South of Road, Hefei, 230031, Anhui, China
| | - Zongliang Liu
- Hefei Zhien Biotechnology Company Limited, National University Science Park, No.602 of Huangshan Road, Hefei, 230031, Anhui Province, China
| | - Pengcheng Yu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhanyong Wei
- The College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China.
| | - Fu Chen
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
20
|
Chen F, Hou L, Zhu L, ChengboYang, Zhu F, Qiu H, Qin S. Effects of selenide chitosan sulfate on glutathione system in hepatocytes and specific pathogen-free chickens. Poult Sci 2020; 99:3979-3986. [PMID: 32731985 PMCID: PMC7597923 DOI: 10.1016/j.psj.2020.04.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 04/20/2020] [Accepted: 04/25/2020] [Indexed: 12/20/2022] Open
Abstract
This study aimed to investigate the effects of selenide chitosan sulfate (Se-CTS-S) on glutathione (GSH) system in hepatocytes and chickens. Chitosan, sodium selenite (Na2SeO3), selenide chitosan, chitosan sulfate (CTS-S), and Se-CTS-S were added to the culture medium and the basal diets; glutathione peroxidase (GSH-Px) activity, GSH content, total antioxidant capacity (T-AOC), and mRNA levels of cellular GPx (GPx-1) and phospholipid hydroperoxide GPx (GPx-4) in vivo and in vitro were determined. The results showed that Se-CTS-S increased (P < 0.05) GPx-1 and GPx-4 mRNA levels in hepatocytes and livers, and GSH-Px activity, GSH content, and T-AOC in the medium, hepatocytes, plasma, and livers compared with the control and chitosan treatments. Compared with CTS-S, Se-CTS-S treatments increased (P < 0.05) GPx-1 and GPx-4 mRNA levels in hepatocytes and livers, and GSH-Px activity, GSH content, and T-AOC capacity in the medium, hepatocytes, and livers. Compared with Na2SeO3 and CTS-Se, Se-CTS-S increased (P < 0.05) GPx-1 mRNA levels in hepatocytes and livers, GPx-4 mRNA levels in hepatocytes and livers, GSH-Px activity in the medium, hepatocytes, and livers, GSH contents in plasma and livers, and T-AOC in the medium, plasma, and livers. Thus, Se-CTS-S showed better biological activity that mainly benefited from the synergistic effects of Se and sulfate on GSH system.
Collapse
Affiliation(s)
- Fu Chen
- Institute of Animal Nutritional Metabolic Disease and Poisoning Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lele Hou
- Institute of Animal Nutritional Metabolic Disease and Poisoning Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lianqin Zhu
- Institute of Animal Nutritional Metabolic Disease and Poisoning Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - ChengboYang
- Department of Animal Science, University of Manitoba, Winnipeg Manitoba, R3T 2N2, Canada
| | - Fenghua Zhu
- Institute of Animal Nutritional Metabolic Disease and Poisoning Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Huiling Qiu
- Haidu College, Qingdao Agricultural University, Laiyang, 265200, China.
| | - Shunyi Qin
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300384, China.
| |
Collapse
|