1
|
Zhu C, Li J, Tang W, Li Y, Lin C, Peng D, Yang C. 2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-glucoside (TSG) from Polygonum multiflorum Thunb.: A Systematic Review on Anti-Aging. Int J Mol Sci 2025; 26:3381. [PMID: 40244282 PMCID: PMC11989756 DOI: 10.3390/ijms26073381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/18/2025] Open
Abstract
The global rise in aging populations has made healthy longevity a critical priority in medical research. 2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-glucoside (TSG), the primary bioactive component of Polygonum multiflorum Thunb. (commonly known as Fallopia multiflora Thunb., He shou wu, Fo-ti, or Polygoni multiflori radix), has emerged as a promising agent for combating aging and age-related diseases. This systematic review evaluates the anti-aging properties of TSG and its protective effects against age-related pathologies. The current evidence demonstrates that TSG exhibits comprehensive anti-aging effects, including lifespan extension, neuroprotection (e.g., ameliorating Alzheimer's and Parkinson's diseases), cardiovascular protection (e.g., reducing atherosclerosis and hypertension), delay of gonadal aging, reduction in bone loss (e.g., mitigating osteoporosis), and promotion of hair regrowth. Mechanistically, TSG alleviates oxidative stress, inflammation, and apoptosis while enhancing mitophagy, mitochondrial function telomerase activity, and epigenetic regulation. These multi-target actions align with the holistic principles of traditional Chinese medicine, highlighting TSG's potential as a multifaceted anti-aging agent. However, further research is required to establish standardized quantitative systems for evaluating TSG's efficacy, paving the way for its broader clinical application in promoting healthy aging.
Collapse
Affiliation(s)
- Can Zhu
- College of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Jinhong Li
- College of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Wenchao Tang
- College of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Yaofeng Li
- College of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Chang Lin
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Danhong Peng
- College of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Changfu Yang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| |
Collapse
|
2
|
Xue H, Nie H, Huang Z, Lu B, Wei M, Xu H, Ji L. 2,3,5,4'-tetrahydroxy-stilbene-2-O-β-D-glucoside promotes liver regeneration after partial hepatectomy in mice: The potential involvement of PPARα-mediated fatty acid metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118513. [PMID: 38969151 DOI: 10.1016/j.jep.2024.118513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/19/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE 2,3,5,4'-tetrahydroxy-stilbene-2-O-β-D-glucoside (TSG) is the principal bioactive compound contained in Polygonum multiflorum Thunb. (PMT), which is traditionally recorded to possess tonic and anti-aging efficacy. AIM OF THE STUDY To identify the TSG-provided promotion on liver regeneration (LR) following partial hepatectomy (PHx) in mice and to explicate its involved mechanism. MATERIALS AND METHODS The promotion of TSG on LR was evaluated by hematoxylin and eosin (H&E), 5-bromodeoxyuridinc (BrdU) and Ki-67 staining, and measuring the level of proliferating cell nuclear antigen (PCNA) and Cyclin D1 in mice with PHx at different time points. Gene Expression Omnibus (GEO, GSE15239) database and the label-free quantitative proteomics from liver of mice at 24 h after PHx were integrated to identify potential involved critical proteins, which were verified by Western-blot, Real-time polymerase chain reaction (RT-PCR), molecular docking and luciferase activity assay. Primary hepatocytes isolated from mice were used to investigate the TSG-provided promotion on proliferation in vitro. RESULTS TSG (20 mg/kg) promoted LR in mice after PHx. Results from RNA expression data from clinical samples and proteomic analysis from liver tissues indicated that peroxisome proliferator-activated receptor α (PPARα)-mediated fatty acid metabolism pathway were crucially associated with the TSG-provided promotion on LR. TSG enhanced the nuclear translocation of PPARα and the mRNA expression of a series of PPARα-regulated downstream genes. In addition, TSG lowered hepatic triglyceride (TG) and non-esterified fatty acid (NEFA) amounts and increased hepatic adenosine triphosphate (ATP) level in mice after PHx. TSG up-regulated the transcriptional activity of PPARα in vitro. Next results displayed that TSG promoted cell proliferation as well as ATP level in mice primary hepatocytes, which were abolished when PPARα was suppressed. Meanwhile, the cell viability was also elevated in mice primary hepatocytes treated with ATP. CONCLUSION Activating PPARα-mediated fatty acid β-oxidation (FAO) pathway led to the production of ATP, which contributed to the TSG-provided promotion on LR after PHx in mice.
Collapse
Affiliation(s)
- Haoyu Xue
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Huizhong Nie
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhenlin Huang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bin Lu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Mengjuan Wei
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hong Xu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
3
|
Lee R, Lee WY, Park HJ. Effects of Melatonin on Liver of D-Galactose-Induced Aged Mouse Model. Curr Issues Mol Biol 2023; 45:8412-8426. [PMID: 37886973 PMCID: PMC10604925 DOI: 10.3390/cimb45100530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
Melatonin, a hormone secreted by the pineal gland of vertebrates, regulates sleep, blood pressure, and circadian and seasonal rhythms, and acts as an antioxidant and anti-inflammatory agent. We investigated the protective effects of melatonin against markers of D-galactose (D-Gal)-induced hepatocellular aging, including liver inflammation, hepatocyte structural damage, and non-alcoholic fatty liver. Mice were divided into four groups: phosphate-buffered saline (PBS, control), D-Gal (200 mg/kg/day), melatonin (20 mg/kg), and D-Gal (200 mg/kg) and melatonin (20 mg) cotreatment. The treatments were administered once daily for eight consecutive weeks. Melatonin treatment alleviated D-Gal-induced hepatocyte impairment. The AST level was significantly increased in the D-Gal-treated groups compared to that in the control group, while the ALT level was decreased compared to the melatonin and D-Gal cotreated group. Inflammatory genes, such as IL1-β, NF-κB, IL-6, TNFα, and iNOS, were significantly increased in the D-Gal aging model, whereas the expression levels of these genes were low in the D-Gal and melatonin cotreated group. Interestingly, the expression levels of hepatic steatosis-related genes, such as LXRα, C/EBPα, PPARα, ACC, ACOX1, and CPT-1, were markedly decreased in the D-Gal and melatonin cotreated group. These results suggest that melatonin suppresses hepatic steatosis and inflammation in a mouse model of D-Gal-induced aging.
Collapse
Affiliation(s)
- Ran Lee
- Department of Livestock, Korea National University of Agriculture and Fisheries, Jeonju 54874, Republic of Korea; (R.L.); (W.-Y.L.)
- Department of Animal Biotechnology, College of Life Science, Sangji University, Wonju-si 26339, Republic of Korea
| | - Won-Yong Lee
- Department of Livestock, Korea National University of Agriculture and Fisheries, Jeonju 54874, Republic of Korea; (R.L.); (W.-Y.L.)
| | - Hyun-Jung Park
- Department of Animal Biotechnology, College of Life Science, Sangji University, Wonju-si 26339, Republic of Korea
| |
Collapse
|
4
|
Tung TH, Lai WD, Lee HC, Su KP, Panunggal B, Huang SY. Attenuation of Chronic Stress-Induced Depressive-like Symptoms by Fish Oil via Alleviating Neuroinflammation and Impaired Tryptophan Metabolism in Aging Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14550-14561. [PMID: 37769277 PMCID: PMC10915802 DOI: 10.1021/acs.jafc.3c01784] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023]
Abstract
The prevalence of depression is increasing, and geriatric depression, in particular, is difficult to recognize and treat. Depression in older adults is often accompanied by neuroinflammation in the central nervous system (CNS). Neuroinflammation affects the brain's physiological and immune functions through several pathways and induces depressive symptoms. This study investigated the relationship among depression, neuroinflammation, and fish oil supplementation. Thirty-six male Sprague-Dawley rats were used in an aging-related depression animal model to simulate geriatric depression. Cognitive function, depressive-like symptoms, peripheral nervous system and CNS inflammation status, and the tryptophan-related metabolic pathway were analyzed. The geriatric depression animal model was associated with depressive-like behaviors and cognitive impairment. The integrity of the blood-brain barrier was compromised, resulting in increased expression of ionized calcium-binding adapter molecule 1 and the glial fibrillary acidic protein in the brain, indicating increased neuroinflammation. Tryptophan metabolism was also negatively affected. The geriatric-depressive-like rats had high levels of neurotoxic 5-hydroxyindoleacetic acid and kynurenine in their hippocampus. Fish oil intake improved depressive-like symptoms and cognitive impairment, reduced proinflammatory cytokine expression, activated the brain's glial cells, and increased the interleukin-10 level in the prefrontal cortex. Thus, fish oil intervention could ameliorate abnormal neurobehaviors and neuroinflammation and elevate the serotonin level in the hippocampus.
Collapse
Affiliation(s)
- Te-Hsuan Tung
- School
of Nutrition and Health Sciences, Taipei
Medical University, Taipei 110301, Taiwan
| | - Wen-De Lai
- School
of Nutrition and Health Sciences, Taipei
Medical University, Taipei 110301, Taiwan
| | - Hsiu-Chuan Lee
- School
of Nutrition and Health Sciences, Taipei
Medical University, Taipei 110301, Taiwan
| | - Kuan-Pin Su
- Department
of Psychiatry & Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung 404018, Taiwan
- College of
Medicine, China Medical University, Taichung 404018, Taiwan
| | - Binar Panunggal
- School
of Nutrition and Health Sciences, Taipei
Medical University, Taipei 110301, Taiwan
- Department
of Nutrition Science, Faculty of Medicine, Diponegoro University, Semarang 50275, Indonesia
- Center
of Nutrition Research, Diponegoro University, Semarang 50275, Indonesia
| | - Shih-Yi Huang
- School
of Nutrition and Health Sciences, Taipei
Medical University, Taipei 110301, Taiwan
- Graduate
Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110301, Taiwan
- Nutrition
Research Centre, Taipei Medical University
Hospital, Taipei 110301, Taiwan
| |
Collapse
|
5
|
Lou Q, Meng XE, Wei C, Tong J, Chen Y, Li M, Wang Q, Guo S, Duan JA, Shang EX, Zhu Y. Jian-Yan-Ling capsules ameliorate cognitive impairment in mice with D-galactose-induced senescence and inhibit the oxidation-induced apoptosis of HT22 hippocampal cells by regulating the Nrf2-HO1 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 310:116356. [PMID: 36924864 DOI: 10.1016/j.jep.2023.116356] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/18/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Jian-Yan-Ling (JYL) capsule is a famous anti-aging Chinese patent medicine. It is applied mainly to delay senescence to improve cognition in aging individuals. However, the action mechanisms of JYL for improving cognition have not been determined. AIM OF THE STUDY We will evaluate the effect of the JYL capsule at improving the cognition of aging mice by improving oxidative stress in the hippocampus and exploring its action mechanism. MATERIALS AND METHODS A senescence mouse model was developed via intraperitoneal injection of D-galactose. The effect of the JYL capsule at improving the learning and memory abilities of mice was evaluated using the Morris water maze and novel object recognition tests. The apotosis of model mice hippocampus' were determined by TUNEL analysis. The antioxidant capacity of the JYL capsule was evaluated by determining the activities of antioxidant enzymes and expressions of oxidative products. The regulation of the Nrf2/HO-1 signaling pathway of the JYL capsule was evaluated by determining the expressions of related proteins via western blotting analysis. In vitro, H2O2-treated mouse hippocampal HT22 cells were used to evaluate the antioxidant capacity of JYL-containing rat serum by determining the cell viability, apoptotic level and expressions of related proteins. RESULTS JYL capsules enhanced the learning and memory abilities of model mice according to behavioral tests. The results of TUNEL analysis showed that the JYL capsule ameliorated hippocampal apoptosis in model mice. JYL capsules also exerted significant antioxidant capacity by increasing the activities of antioxidant enzymes while decreasing the levels of oxidative products both in the hippocampus and serum. The regulation of Nrf2/HO-1 pathway might contribute to the antioxidant function. In vitro, JYL-containing rat serum protected HT22 cells from H2O2 induced oxidative stress. The apoptosis of HT22 cells was also attenuated by regulating the caspase and Nrf2/HO-1 signaling pathways. CONCLUSIONS The amelioration of neuronal oxidative stress of hippocampus might contribute to the D-galactose-induced cognition impairment of senescence mice. These findings provide evidence for the application of JYL capsules to enhance cognition in aging individuals.
Collapse
Affiliation(s)
- Qianyin Lou
- Nanjing University of Chinese Medicine, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing, 210023, China.
| | - Xue-Er Meng
- Nanjing University of Chinese Medicine, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing, 210023, China.
| | - Chongqi Wei
- Nanjing University of Chinese Medicine, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing, 210023, China.
| | - Jiaxiang Tong
- Nanjing University of Chinese Medicine, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing, 210023, China.
| | - Yang Chen
- Nanjing University of Chinese Medicine, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing, 210023, China.
| | - Mengting Li
- Nanjing University of Chinese Medicine, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing, 210023, China.
| | - Qingqing Wang
- Nanjing University of Chinese Medicine, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing, 210023, China.
| | - Sheng Guo
- Nanjing University of Chinese Medicine, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing, 210023, China.
| | - Jin-Ao Duan
- Nanjing University of Chinese Medicine, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing, 210023, China.
| | - Er-Xin Shang
- Nanjing University of Chinese Medicine, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing, 210023, China.
| | - Yue Zhu
- Nanjing University of Chinese Medicine, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing, 210023, China.
| |
Collapse
|
6
|
Hu Y, Wang C, Fei Z, Zhou M, Yu H, Sun Z. Potential biomarkers screening of Polygonum multiflorum radix-induced liver injury based on metabonomics analysis of clinical samples. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116217. [PMID: 36758914 DOI: 10.1016/j.jep.2023.116217] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/28/2022] [Accepted: 01/26/2023] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygonum multiflorum Radix (PMR) is the dried root tuber of Polygonum multiflorum Thunb., which has been used in the clinic for a variety of pharmacological activities. However, Polygonum multiflorum Radix-induced liver injury (PMR-ILI) has been reported in recent years, which has limited its clinical use to some extent. The occurrence of PMR-ILI is not universal, so finding the different metabolic characteristics between PMR-ILI and Polygonum multiflorum Radix-tolerance group (PMR-T) is very important for the PMR rational clinical application and PMR-ILI early clinical diagnosis. METHODS In this study, 6 clinical plasma samples of PMR-ILI and 13 PMR-T were collected and analyzed by high-resolution liquid chromatography-mass spectrometry. Firstly, the differential metabolites of the two groups were screened by conventional screening methods such as multivariate statistical analysis. Secondly, the characteristic metabolites with greater contribution, correlation with liver injury and high sensitivity were screened by correlation analysis with clinical liver injury indicators, random forest analysis, and receiver operating characteristic curve (ROC). RESULTS After multivariate statistical analysis and screening analysis, 29 differential metabolites were identified. Compared with PMR-T group, the metabolism of glycerol and phospholipid, glutamine and glutamate, phenylalanine, sphingolipid and tryptophan in PMR-ILI group were disturbed. After correlation analysis with liver injury indexes and random forest screening, 8 potential biomarkers closely related to clinical liver injury were obtained. Finally, 3 potential biomarkers with high expression in PMR-ILI, hypoxanthine, LysoPC(P-16:0/0:0) and taurochenodesoxycholic acid, were screened out through the analysis of ROC, which can provide a basis for the early clinical diagnosis. CONCLUSION Based on the analysis of the PMR-ILI and PMR-T plasma samples by LC-MS, three biomarkers of clinical liver injury of Polygonum multiflorum Radix were selected: hypoxanthine, LysoPC(P-16:0/0:0) and taurochenodeoxycholic acid.
Collapse
Affiliation(s)
- Yinghuan Hu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Chengyu Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhanyang Fei
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Ming Zhou
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Hao Yu
- Capital Medical University Affiliated Beijing Ditan Hospital, Beijing, 100015, China.
| | - Zhenxiao Sun
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
7
|
Peptide-Calcium Chelate from Antler ( Cervus elaphus) Bone Enhances Calcium Absorption in Intestinal Caco-2 Cells and D-gal-Induced Aging Mouse Model. Nutrients 2022; 14:nu14183738. [PMID: 36145113 PMCID: PMC9504974 DOI: 10.3390/nu14183738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 11/24/2022] Open
Abstract
Antler bone calcium (AB−Ca) and bioactive peptides (ABPs) were extracted from antler bones (Cervus elaphus) to maximize their value. In this study, 0.14 g calcium was obtained from 1 g antler bone. The peptide−calcium chelate rate was 53.68 ± 1.80%, and the Gly, Pro, and Glu in ABPs were identified to donate most to the increased calcium affinity through the mass spectrometry. Fourier transform infrared spectroscopy showed that calcium predominantly interacted with amino nitrogen atoms and carboxyl oxygen atoms, thereby generating a peptide–calcium chelate. The peptide−calcium chelates were characterized using scanning electron microscopy. A Caco-2 cell monolayer model showed that ABPs significantly increased calcium transport. Furthermore, the D-gal-induced aging mouse model indicated that the ABPs + AB−Ca group showed higher Ca and PINP levels, lower P, ALP, and CTX-1content in serum, and considerably higher tibia index and tibia calcium content. Results showed that ABPs + AB-Ca increased bone formation and inhibited bone resorption, thereby providing calcium supplements for ameliorating senile osteoporosis (SOP).
Collapse
|
8
|
Separation of three flavonoid glycosides from Polygonum multiflorum Thunb. leaves using HSCCC and their antioxidant activities. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03865-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
9
|
Teka T, Wang L, Gao J, Mou J, Pan G, Yu H, Gao X, Han L. Polygonum multiflorum: Recent updates on newly isolated compounds, potential hepatotoxic compounds and their mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113864. [PMID: 33485980 DOI: 10.1016/j.jep.2021.113864] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/04/2021] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygonum multiflorum Thunb.(PM), (known as Heshouwu () in China) is one of the most important and well mentioned Chinese medicinal herbs in the literature for its use in blackening hair, nourishing liver and kidney, anti-aging, anti-hyperlipidemia, antioxidant, anti-inflammatory, anticancer, hepatoprotection, cardio-protection and improving age-related cognitive dysfunction. The purpose of this review is to give a comprehensive and recent update on PM: new compounds or isolated for the first time, potential hepatotoxic compounds and their mechanisms. Moreover, future perspectives and challenges in the future study of this plant are conversed which will make a new base for further study on PM. MATERIALS AND METHODS A comprehensive review of relevant published literature on PM using the scientific databases SCOPUS, PubMed, and Science Direct was done. RESULTS PM is broadly produced in many provinces of China and well known in other Eastern Asian Countries for its ethno-medical uses. Previous phytochemical investigation of PM had led to the isolation of more than 175 compounds including recently isolated 70 new compounds. Most of the new compounds isolated after 2015 are majorly dianthrone glycosides and stilbene glycosides. Processing has also a significant effect on chemical composition, pharmacological activities, and toxicity of PM. PM-induced liver injury is increasing after the first report in Hong Kong in 1996. Hepatotoxicity of PM was constantly reported in Japan, Korea, China, Australia, Britain, Italy, and other countries although its toxicity is related to idiosyncratic hepatotoxicity. More interestingly, although there is indispensable interest to predict idiosyncratic hepatotoxicity of PM and understand its mechanisms, the responsible hepatotoxic compounds and mechanisms of liver damage induced by PM are still not clear. There is a big controversy on the identification of the most responsible constituent. Anthraquinone and stilbene compounds in PM, mainly emodine and TSG are mentioned in the literature to be the main responsible hepatotoxic compounds. However, comparing the two compounds, which one is the more critical toxic agent for PM-induced hepatotoxicity is not well answered. Affecting different physiological and metabolic pathways such as oxidative phosphorylation and TCA cycle pathway, metabolic pathways, bile acid excretion pathway and genetic polymorphisms are among the mechanisms of hepatotoxicity of PM. CONCLUSION Deeper and effective high throughput experimental studies are still research hotspots to know the most responsible constituent and the mechanism of PM-induced hepatotoxicity.
Collapse
Affiliation(s)
- Tekleab Teka
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China; Department of Pharmacy, College of Medicine and Health Sciences, Wollo University, P. O. Box 1145, Dessie, Ethiopia
| | - Liming Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Jian Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Jiajia Mou
- Department of Medicinal Chemistry, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Guixiang Pan
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, 69 Zengchan Road, Hebei District, Tianjin, 300250, PR China
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Xiumei Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China.
| |
Collapse
|
10
|
Azman KF, Safdar A, Zakaria R. D-galactose-induced liver aging model: Its underlying mechanisms and potential therapeutic interventions. Exp Gerontol 2021; 150:111372. [PMID: 33905879 DOI: 10.1016/j.exger.2021.111372] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 01/02/2023]
Abstract
Aging is associated with a variety of morphological and functional changes in the liver. Oxidative stress and inflammation are now widely accepted as the main mechanisms involved in the aging process that may subsequently cause severe injury to mitochondrial DNA which leads to apoptosis. As aging may increase the risks for various liver diseases and plays as an adverse prognostic factor increasing the mortality rate, knowledge regarding the mechanisms of age-related liver susceptibility and the possible therapeutic interventions is imperative. Due to cost and time constraints, a mimetic aging model is generally preferred to naturally aged animals to study the underlying mechanisms of aging liver. The use of D-galactose in aging research is dated back to 1962 and has since been used widely. This review aims to comprehensively summarize the effects of D-galactose-induced aging on the liver and the underlying mechanisms involved. Its potential therapeutic interventions are also discussed. It is hoped that this invaluable information may facilitate researchers in choosing the appropriate aging model and provide a valuable platform for testing potential therapeutic strategies for the prevention and treatment of age-related liver diseases.
Collapse
Affiliation(s)
- Khairunnuur Fairuz Azman
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kota Bharu, Kelantan, Malaysia.
| | - Afifa Safdar
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kota Bharu, Kelantan, Malaysia
| | - Rahimah Zakaria
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kota Bharu, Kelantan, Malaysia
| |
Collapse
|
11
|
Meng J, Liu J, Chen D, Kang J, Huang Y, Li D, Duan Y, Wang J. Integration of lncRNA and mRNA profiles to reveal the protective effects of Codonopsis pilosula extract on the gastrointestinal tract of mice subjected to D‑galactose‑induced aging. Int J Mol Med 2021; 47:1. [PMID: 33448313 PMCID: PMC7834956 DOI: 10.3892/ijmm.2020.4834] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
Codonopsis pilosula is a type of traditional Chinese medicine that exerts an anti‑aging effect and can regulate the gastrointestinal (GI) system. The aim of the present study was to investigate the underlying molecular mechanisms responsible for the anti‑aging effects of Codonopsis pilosula in the GI tract of mice with D‑galactose‑induced aging. First, a successful mouse model of aging was established, and Codonopsis pilosula water extract was then used for treatment. The anti‑aging effects of Codonopsis pilosula on the GI tract were then detected from the perspectives of tissue structure, physiological function and cell ultrastructure. Finally, in order to explore the underlying molecular mechanisms, the expression profiles of lncRNAs and mRNAs in the stomach and intestine were examined using microarray technology. A total of 117 (41 lncRNAs and 76 mRNAs) and 168 (85 lncRNA sand 83 mRNAs) differentially expressed genes associated with the anti‑aging effects of Codonopsis pilosula were identified in the stomach and intestine, respectively. Through integrated analysis of the stomach and intestine, 4 hub RNAs, including 1 lncRNA (LOC105243318) and 3 mRNAs (Fam132a, Rorc and 1200016E24Rik) were identified, which may be associated with the anti‑aging effects of Codonopsis pilosula in the GI tract of aging mice. The Kyoto Encyclopedia of Genes and Genomes analysis revealed that the metabolic pathway was an important pathway underlying the anti‑aging effects of Codonopsis pilosula in the GI tract. On the whole, in the present study, 4 hub RNAs associated with these effects and their regulatory networks were found in the GI tract of aging mice. In addition, the metabolic pathway was found to play an important role in these anti‑aging effects in the GI tract.
Collapse
Affiliation(s)
- Jie Meng
- College of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, P.R. China
| | - Jiajia Liu
- College of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, P.R. China
| | - Dongmei Chen
- College of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, P.R. China
| | - Jiachao Kang
- College of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, P.R. China
| | - Yong Huang
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, P.R. China
| | - Dandan Li
- College of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, P.R. China
| | - Yongqiang Duan
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, P.R. China
| | - Jing Wang
- College of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
12
|
Zhou M, Hu N, Liu M, Deng Y, He L, Guo C, Zhao X, Li Y. A Candidate Drug for Nonalcoholic Fatty Liver Disease: A Review of Pharmacological Activities of Polygoni Multiflori Radix. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5462063. [PMID: 32382557 PMCID: PMC7193283 DOI: 10.1155/2020/5462063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/06/2020] [Indexed: 11/30/2022]
Abstract
Nonalcoholic fatty liver disease, a type of metabolic syndrome, continues to rise globally. Currently, there is no approved drug for its treatment. Improving lifestyle and exercise can alleviate symptoms, but patients' compliance is poor. More and more studies have shown the potential of Polygoni Multiflori Radix (PMR) in the treatment of NAFLD and metabolic syndrome. Therefore, this paper reviews the pharmacological effects of PMR and its main chemical components (tetrahydroxystilbene glucoside, emodin, and resveratrol) on NAFLD. PMR can inhibit the production of fatty acids and promote the decomposition of triglycerides, reduce inflammation, and inhibit the occurrence of liver fibrosis. At the same time, it maintains an oxidation equilibrium status in the body, to achieve the therapeutic purpose of NAFLD and metabolic syndrome. Although more standardized studies and clinical trials are needed to confirm its efficacy, PMR may be a potential drug for the treatment of NAFLD and its complications. However, the occurrence of adverse reactions of PMR has affected its extensive clinical application. Therefore, it is necessary to further study its toxicity mechanism, enhance efficacy and control toxicity, and even reduce toxicity, which will contribute to the safe clinical use of PMR.
Collapse
Affiliation(s)
- Mengting Zhou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
- National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu 611137, China
| | - Naihua Hu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
- National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu 611137, China
| | - Meichen Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
- National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu 611137, China
| | - Ying Deng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
- National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu 611137, China
| | - Linfeng He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
- National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu 611137, China
| | - Chaocheng Guo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
- National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu 611137, China
| | - Xingtao Zhao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
- National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu 611137, China
| | - Yunxia Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
- National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu 611137, China
| |
Collapse
|
13
|
D-Galactose-induced accelerated aging model: an overview. Biogerontology 2019; 20:763-782. [PMID: 31538262 DOI: 10.1007/s10522-019-09837-y] [Citation(s) in RCA: 267] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023]
Abstract
To facilitate the process of aging healthily and prevent age-related health problems, efforts to properly understand aging mechanisms and develop effective and affordable anti-aging interventions are deemed necessary. Systemic administration of D-galactose has been established to artificially induce senescence in vitro and in vivo as well as for anti-aging therapeutic interventions studies. The aim of this article is to comprehensively discuss the use of D-galactose to generate a model of accelerated aging and its possible underlying mechanisms involved in different tissues/organs.
Collapse
|