1
|
Ali YB, Hasan NM, El-Maadawy EA, Bassyouni IH, El-Shahat M, Talaat RM. Association between IL-6, miRNA-146a, MALAT1 genetic polymorphisms and risk of rheumatoid arthritis. Per Med 2024; 21:277-294. [PMID: 39263956 DOI: 10.1080/17410541.2024.2393072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/14/2022] [Indexed: 09/13/2024]
Abstract
Aim: This study aimed to investigate the associations between single nucleotide polymorphisms (SNPs) of IL-6 (-174G/C), microRNA146a (rs2910164C/G) and MALAT1 (rs619586A/G) and susceptibility to rheumatoid arthritis (RA) in Egyptians.Methods: SNPs were genotyped in 101 RA patients and 104 controls. Expression levels were evaluated either by Enzyme-linked immunosorbent assay (ELISA) for IL-6 or quantitative real-time PCR (qRT-PCR) for miR-146a and MALAT1.Results: IL-6-174 GC (OR = 3.422) genotype, IL-6-174 C allele (OR = 2.565), miR-146a (rs2910164) CG (OR = 2.190) and MALAT1 (rs619586) AA (OR = 4.125) genotypes and A allele (OR = 6.122) could be considered as risk factors for RA. An increase in the expression of IL-6, miR-146a and MALAT1 was detected in RA patients, which was independent of any SNP.Conclusion: SNPs of IL-6, miR-146a and MALAT1were linked to RA predisposition in Egyptians.
Collapse
Affiliation(s)
- Yasser Bm Ali
- Molecular Biology Department, Genetic Engineering & Biotechnology Research Institute (GEBRI), University of Sadat City, 32958, Egypt
| | - Noura Ma Hasan
- Molecular Biology Department, Genetic Engineering & Biotechnology Research Institute (GEBRI), University of Sadat City, 32958, Egypt
| | - Eman A El-Maadawy
- Molecular Biology Department, Genetic Engineering & Biotechnology Research Institute (GEBRI), University of Sadat City, 32958, Egypt
| | - Iman H Bassyouni
- Rheumatology & Rehabilitation Department, Faculty of Medicine, Cairo University, Cairo, 32958, Egypt
| | - Mohamed El-Shahat
- Molecular Biology Department, Genetic Engineering & Biotechnology Research Institute (GEBRI), University of Sadat City, 32958, Egypt
| | - Roba M Talaat
- Molecular Biology Department, Genetic Engineering & Biotechnology Research Institute (GEBRI), University of Sadat City, 32958, Egypt
| |
Collapse
|
2
|
Khoshnam SE, Moalemnia A, Anbiyaee O, Farzaneh M, Ghaderi S. LncRNA MALAT1 and Ischemic Stroke: Pathogenesis and Opportunities. Mol Neurobiol 2024; 61:4369-4380. [PMID: 38087169 DOI: 10.1007/s12035-023-03853-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/21/2023] [Indexed: 07/11/2024]
Abstract
Ischemic stroke (IS) stands as a prominent cause of mortality and long-term disability around the world. It arises primarily from a disruption in cerebral blood flow, inflicting severe neural injuries. Hence, there is a pressing need to comprehensively understand the intricate mechanisms underlying IS and identify novel therapeutic targets. Recently, long noncoding RNAs (lncRNAs) have emerged as a novel class of regulatory molecules with the potential to attenuate pathogenic mechanisms following IS. Among these lncRNAs, MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) has been extensively studied due to its involvement in the pathophysiological processes of IS. In this review, we provide an in-depth analysis of the essential role of MALAT1 in the development and progression of both pathogenic and protective mechanisms following IS. These mechanisms include oxidative stress, neuroinflammation, cell death signaling, blood brain barrier dysfunction, and angiogenesis. Furthermore, we summarize the impact of MALAT1 on the susceptibility and severity of IS. This review highlights the potential risks associated with the therapeutic use of MALAT1 for IS, which are attributable to the stimulatory action of MALAT1 on ischemia/reperfusion injury. Ultimately, this review sheds light on the potential molecular mechanisms and associated signaling pathways underlying MALAT1 expression post-IS, with the aim of uncovering potential therapeutic targets.
Collapse
Affiliation(s)
- Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Arash Moalemnia
- Faculty of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Omid Anbiyaee
- School of Medicine, Cardiovascular Research Center, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Shahab Ghaderi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
3
|
Weng YH, Chen J, Yu WT, Luo YP, Liu C, Yang J, Liu HB. lncRNA-MIAT rs9625066 polymorphism could be a potential biomarker for ischemic stroke. BMC Med Genomics 2024; 17:58. [PMID: 38383415 PMCID: PMC10882908 DOI: 10.1186/s12920-024-01830-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/10/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Ischemic stroke (IS) is a common and serious neurological condition that is highly fatal but so far no early diagnostic markers are available. Myocardial infarction-associated transcript (MIAT) is a long non-coding RNA (lncRNA) that could lead to IS by inducing autophagy and apoptosis in neuronal cells. However, there has been no report on the link between susceptibility to IS and the single-nucleotide polymorphisms (SNPs) of MIAT. This study aimed to investigate the association between MIAT gene polymorphisms and IS risk. METHODS A total of 320 IS patients and 310 age-, sex- and race-matched controls were included in this study. Four polymorphisms (rs2157598, rs5761664, rs1894720, and rs9625066) were genotyped by using SNPscan technique. RESULTS Among the 4 polymorphisms of MIAT, only rs9625066 was associated with IS risk (CA vs. CC: adjusted OR = 0.55, 95% CI, 0.37-0.85, P = 0.006; AA vs. CC: adjusted OR = 0.39, 95% CI, 0.16-0.94, P = 0.036; (AA + CA vs. CC: adjusted OR = 0.53, 95% CI, 0.35-0.80, P = 0.002; A vs. C adjusted OR = 0.59, 95% CI, 0.42-0.82, P = 0.002). Haplotype analysis showed a 1.32-fold increase (95% CI, 1.05-1.67, P = 0.017) in IS risk for rs2157598-rs5761664-rs1894720-rs9625066 (A-C-G-C). Logistic regression analysis identified some independent impact factors for IS including rs9625066 AA/AC, TC, TG, HDL-C (P < 0.05). CONCLUSION The rs9625066 polymorphism of MIAT might be associated with IS susceptibility in Chinese population, in which AA/CA plays a protective role in IS, whereas the CC genotype increases the risk of developing IS, suggesting it might be a marker predictive of IS risk.
Collapse
Affiliation(s)
- Yin-Hua Weng
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
- School of Clinical Medicine, Guilin Medical University, Guilin, China
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Jie Chen
- Department of Laboratory Medicine, Affiliated Hospital of Guilin Medical University, Guilin, China
- School of Clinical Medicine, Guilin Medical University, Guilin, China
| | - Wen-Tao Yu
- School of Clinical Medicine, Guilin Medical University, Guilin, China
| | - Yan-Ping Luo
- Department of Laboratory Medicine, Affiliated Hospital of Guilin Medical University, Guilin, China
- School of Clinical Medicine, Guilin Medical University, Guilin, China
| | - Chao Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
- School of Clinical Medicine, Guilin Medical University, Guilin, China
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Jun Yang
- Department of Laboratory Medicine, Affiliated Hospital of Guilin Medical University, Guilin, China.
| | - Hong-Bo Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China.
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China.
- Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Guangxi Clinical Research Center for Diabetes and Metabolic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, China.
| |
Collapse
|
4
|
Sabaghi F, Sadat SY, Mirsaeedi Z, Salahi A, Vazifehshenas S, Kesh NZ, Balavar M, Ghoraeian P. The Role of Long Noncoding RNAs in Progression of Leukemia: Based on Chromosomal Location. Microrna 2024; 13:14-32. [PMID: 38275047 DOI: 10.2174/0122115366265540231201065341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/29/2023] [Accepted: 10/12/2023] [Indexed: 01/27/2024]
Abstract
Long non-coding RNA [LncRNA] dysregulation has been seen in many human cancers, including several kinds of leukemia, which is still a fatal disease with a poor prognosis. LncRNAs have been demonstrated to function as tumor suppressors or oncogenes in leukemia. This study covers current research findings on the role of lncRNAs in the prognosis and diagnosis of leukemia. Based on recent results, several lncRNAs are emerging as biomarkers for the prognosis, diagnosis, and even treatment outcome prediction of leukemia and have been shown to play critical roles in controlling leukemia cell activities, such as proliferation, cell death, metastasis, and drug resistance. As a result, lncRNA profiles may have superior predictive and diagnostic potential in leukemia. Accordingly, this review concentrates on the significance of lncRNAs in leukemia progression based on their chromosomal position.
Collapse
Affiliation(s)
- Fatemeh Sabaghi
- Department of Molecular cell biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saina Yousefi Sadat
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zohreh Mirsaeedi
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Aref Salahi
- Department of Molecular cell biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sara Vazifehshenas
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Neda Zahmat Kesh
- Department of Genetics, Zanjan Branch Islamic Azad University, Zanjan, Iran
| | - Mahdieh Balavar
- Department of Genetics, Falavarjan Branch Islamic Azad University, Falavarjan, Iran
| | - Pegah Ghoraeian
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
5
|
Li D, Liu L, He X, Wang N, Sun R, Li X, Yu T, Chu XM. Roles of long non-coding RNAs in angiogenesis-related diseases: Focusing on non-neoplastic aspects. Life Sci 2023; 330:122006. [PMID: 37544376 DOI: 10.1016/j.lfs.2023.122006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/28/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Angiogenesis is a key process in organ and tissue morphogenesis, as well as growth during human development, and is coordinated by pro- and anti-angiogenic factors. When this balance is affected, the related physiological and pathological changes lead to disease. Long non-coding RNAs (lncRNAs) are an important class of non-coding RNAs that do not encode proteins, but play a dynamic role in regulating gene expression. LncRNAs have been reported to be extensively involved in angiogenesis, particularly tumor angiogenesis. The non-tumor aspects have received relatively little attention and summary, but there is a broad space for research and exploration on lncRNA-targeted angiogenesis in this area. In this review, we focus on lncRNAs in angiogenesis-related diseases other than tumors, such as atherosclerosis, myocardial infarction, stroke, diabetic complications, hypertension, osteoporosis, dermatosis, as well as, endocrine, neurological, and other systemic disorders. Moreover, multiple cell types have been implicated in lncRNA-targeted angiogenesis, but only endothelial cells have attracted widespread attention. Thus, we explore the roles of other cells. Finally, we summarize the potential research directions in the area of lncRNAs and angiogenesis that can be undertaken by combining cutting-edge technology and interdisciplinary research, which will provide new insights into the involvement of lncRNAs in angiogenesis-related diseases.
Collapse
Affiliation(s)
- Daisong Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao 266100, People's Republic of China
| | - Lili Liu
- School of Basic Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao, People's Republic of China
| | - Xiangqin He
- Department of Echocardiography, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Ni Wang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao 266100, People's Republic of China
| | - Ruicong Sun
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao 266100, People's Republic of China
| | - Xiaolu Li
- Department of Echocardiography, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Tao Yu
- Institute for Translational Medicine, Qingdao University, No. 38 Dengzhou Road, 266021, People's Republic of China.
| | - Xian-Ming Chu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao 266100, People's Republic of China; Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, No. 5 Zhiquan Road, Qingdao 266000, People's Republic of China.
| |
Collapse
|
6
|
Moruno-Manchon J, Noh B, McCullough L. Sex-biased autophagy as a potential mechanism mediating sex differences in ischemic stroke outcome. Neural Regen Res 2023; 18:31-37. [PMID: 35799505 PMCID: PMC9241419 DOI: 10.4103/1673-5374.340406] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Stroke is the second leading cause of death and a major cause of disability worldwide, and biological sex is an important determining factor in stroke incidence and pathology. From childhood through adulthood, men have a higher incidence of stroke compared with women. Abundant research has confirmed the beneficial effects of estrogen in experimental ischemic stroke but genetic factors such as the X-chromosome complement can also play an important role in determining sex differences in stroke. Autophagy is a self-degrading cellular process orchestrated by multiple core proteins, which leads to the engulfment of cytoplasmic material and degradation of cargo after autophagy vesicles fuse with lysosomes or endosomes. The levels and the activity of components of these signaling pathways and of autophagy-related proteins can be altered during ischemic insults. Ischemic stroke activates autophagy, however, whether inhibiting autophagy after stroke is beneficial in the brain is still under a debate. Autophagy is a potential mechanism that may contribute to differences in stroke progression between the sexes. Furthermore, the effects of manipulating autophagy may also differ between the sexes. Mechanisms that regulate autophagy in a sex-dependent manner in ischemic stroke remain unexplored. In this review, we summarize clinical and pre-clinical evidence for sex differences in stroke. We briefly introduce the autophagy process and summarize the effects of gonadal hormones in autophagy in the brain and discuss X-linked genes that could potentially regulate brain autophagy. Finally, we review pre-clinical studies that address the mechanisms that could mediate sex differences in brain autophagy after stroke.
Collapse
|
7
|
Wang L, Li S, Stone SS, Liu N, Gong K, Ren C, Sun K, Zhang C, Shao G. The Role of the lncRNA MALAT1 in Neuroprotection against Hypoxic/Ischemic Injury. Biomolecules 2022; 12:146. [PMID: 35053294 PMCID: PMC8773505 DOI: 10.3390/biom12010146] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
Hypoxic and ischemic brain injury can cause neurological disability and mortality, and has become a serious public health problem worldwide. Long-chain non-coding RNAs are involved in the regulation of many diseases. Metastasis-related lung adenocarcinoma transcript 1 (MALAT1) is a type of long non-coding RNA (lncRNA), known as long intergenic non-coding RNA (lincRNA), and is highly abundant in the nervous system. The enrichment of MALAT1 in the brain indicates that it may be associated with important functions in pathophysiological processes. Accordingly, the role of MALAT1 in neuronal cell hypoxic/ischemic injury has been gradually discovered over recent years. In this article, we summarize recent research regarding the neuroprotective molecular mechanism of MALAT1 and its regulation of pathophysiological processes of brain hypoxic/ischemic injury. MALAT1 may function as a regulator through interaction with proteins or RNAs to perform its role, and may therefore serve as a therapeutic target in cerebral hypoxia/ischemia.
Collapse
Affiliation(s)
- Liping Wang
- Center for Translational Medicine, The Third People’s Hospital of Longgang District, Shenzhen 518112, China; (L.W.); (N.L.)
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou 014060, China
- Institute for Neuroscience, Baotou Medical College, Baotou 014060, China
| | - Sijie Li
- Department of Emergency, Xuanwu Hospital, Capital Medical University, Beijing 100053, China;
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Sara Saymuah Stone
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48021, USA;
| | - Na Liu
- Center for Translational Medicine, The Third People’s Hospital of Longgang District, Shenzhen 518112, China; (L.W.); (N.L.)
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou 014060, China
- Institute for Neuroscience, Baotou Medical College, Baotou 014060, China
| | - Kerui Gong
- Department of Oral and Maxillofacial Surgery, University of California San Francisco, San Francisco, CA 94143, USA;
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China;
| | - Kai Sun
- Center for Translational Medicine, The Third People’s Hospital of Longgang District, Shenzhen 518112, China; (L.W.); (N.L.)
| | - Chunyang Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Baotou Medical College, Baotou 014010, China
| | - Guo Shao
- Center for Translational Medicine, The Third People’s Hospital of Longgang District, Shenzhen 518112, China; (L.W.); (N.L.)
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou 014060, China
- Institute for Neuroscience, Baotou Medical College, Baotou 014060, China
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China;
- Department of Neurosurgery, The First Affiliated Hospital of Baotou Medical College, Baotou 014010, China
| |
Collapse
|
8
|
Huang G, Liang D, Luo L, Lan C, Luo C, Xu H, Lai J. Significance of the lncRNAs MALAT1 and ANRIL in occurrence and development of glaucoma. J Clin Lab Anal 2022; 36:e24215. [PMID: 35028972 PMCID: PMC8842314 DOI: 10.1002/jcla.24215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/06/2021] [Accepted: 12/14/2021] [Indexed: 11/19/2022] Open
Abstract
Background Primary open‐angle glaucoma (POAG) is the commonest form of glaucoma which is estimated to cause bilaterally blind within 11.1 million people by 2020. Therefore, the primary objectives of this study were to investigate the clinical significance of single‐nucleotide polymorphisms (SNPs) in the lncRNAs MALAT1 and ANRIL in a Chinese Han POAG cohort. Methods Three hundred and forty‐six glaucoma patients and 263 healthy controls were recruited, and totally 14 SNPs in MALAT1 and ANRIL were genotyped between the two populations. Results The MALAT1 SNPs rs619586 (A>G), rs3200401 (C>T), and rs664589 (C>G) were associated with POAG risk, and the ANRIL SNPs rs2383207 (A>G), rs564398 (A>G), rs2157719 (A>G), rs7865618 (G>A), and rs4977574 (A>G) were associated with POAG (p < 0.05). The MALAT1 haplotypes ACG and ATC, comprised rs619586, rs3200401, and rs664589, increased POAG risk, and the ANRIL haplotype AAGAA, made up of rs2383207, rs7865618, rs4977574, rs564398, and rs2157719, show a significantly increased risk of POAG. In addition, rs619586 (A>G) of MALAT1 and rs564398/rs2157719 of ANRIL were associated with a smaller vertical cup‐to‐disc ratio, while rs619586 of MALAT1 and rs2383207/rs4977574 of ANRIL were associated with higher intraocular pressure in the POAG population. Conclusion Single‐nucleotide polymorphisms and haplotypes in ANRIL and MALAT1 were associated with POAG onset in our study population, which provide more possibilities to POAG diagnosis and treatment.
Collapse
Affiliation(s)
- Guoqiang Huang
- Department of Ophthalmology, Meizhou People's Hospital, Meizhou City, China
| | - Dong Liang
- Department of Ophthalmology, Meizhou People's Hospital, Meizhou City, China
| | - Lidan Luo
- Department of Ophthalmology, Meizhou People's Hospital, Meizhou City, China
| | - Chenghong Lan
- Department of Ophthalmology, Meizhou People's Hospital, Meizhou City, China
| | - Chengfeng Luo
- Department of Ophthalmology, Meizhou People's Hospital, Meizhou City, China
| | - Hongwang Xu
- Department of Ophthalmology, Meizhou People's Hospital, Meizhou City, China
| | - Jiangfeng Lai
- Department of Ophthalmology, Meizhou People's Hospital, Meizhou City, China
| |
Collapse
|
9
|
Yao J, Du Y, Liu J, Gareev I, Yang G, Kang X, Wang X, Beylerli O, Chen X. Hypoxia related long non-coding RNAs in ischemic stroke. Noncoding RNA Res 2021; 6:153-158. [PMID: 34703955 PMCID: PMC8511691 DOI: 10.1016/j.ncrna.2021.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/02/2021] [Accepted: 10/02/2021] [Indexed: 12/22/2022] Open
Abstract
With high rates of mortality and disability, stroke has caused huge social burden, and 85% of which is ischemic stroke. In recent years, it is a progressive discovery of long non-coding RNA (lncRNA) playing an important regulatory role throughout ischemic stroke. Hypoxia, generated from reduction or interruption of cerebral blood flow, leads to changes in lncRNA expression, which then influence disease progression. Therefore, we reviewed studies on expression of hypoxia-related lncRNAs and relevant molecular mechanism in ischemic stroke. Considering that hypoxia-inducible factor (HIF) is a crucial regulator in hypoxic progress, we mainly focus on the HIF-related lncRNA which regulates the expression of HIF or is regulated by HIF, further reveal their pathogenesis and adaption after brain ischemia and hypoxia, so as to find effective biomarker and therapeutic targets.
Collapse
Affiliation(s)
- Jiawei Yao
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China.,Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
| | - Yiming Du
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China.,Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
| | - Junsi Liu
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China.,Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
| | - Ilgiz Gareev
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Guang Yang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China.,Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
| | - Xiaohui Kang
- Department of Pharmacy, Rizhao People's Hospital, Rizhao, 276826, Shandong Province, China
| | - Xiaoxiong Wang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China.,Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
| | - Ozal Beylerli
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Xin Chen
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China.,Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
| |
Collapse
|
10
|
Rezaei M, Mokhtari MJ, Bayat M, Safari A, Dianatpuor M, Tabrizi R, Asadabadi T, Borhani-Haghighi A. Long non-coding RNA H19 expression and functional polymorphism rs217727 are linked to increased ischemic stroke risk. BMC Neurol 2021; 21:54. [PMID: 33541284 PMCID: PMC7860182 DOI: 10.1186/s12883-021-02081-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/26/2021] [Indexed: 12/23/2022] Open
Abstract
Background Efforts to identify potential biomarkers for the diagnosis of ischemic stroke (IS) are valuable. The H19 gene plays a functional role in increasing the prevalence of IS risk factors. We evaluated the correlation between H19 rs217727 polymorphism and the expression level of H19 lncRNA with susceptibility to IS among the Iranian population. Methods Blood samples were collected from IS patients (n = 114) and controls (n = 114). We concentrated on the expression pattern of H19 at different time points (i.e., 0–24, 24–48, and 48–72 h after stroke). The tetra-amplification refractory mutation system-polymerase chain reaction (T-ARMS-PCR) method was applied for DNA genotyping. We used the quantitative real-time PCR to evaluate H19 expression levels. We used the receiver operating characteristic (ROC) curve to evaluate the diagnosis and prognosis of IS. Results The rs217727polymorphism of H19 was related with IS susceptibility in the co-dominant (OR = 2.92, 95% CI = 0.91–10.92, P = 0.04) and recessive models (OR = 2.80, 95% CI = 0.96–8.15, P = 0.04). H19 expression was significantly upregulated in IS and remained high for 72 h after stroke. ROC curves showed that H19 expression within the first 24 h from stroke onset might serve as a biomarker for the early diagnosis of IS with 79.49% sensitivity and 80.00% specificity. H19 expression in small vessel occlusion (SVO) and large-artery atherosclerosis (LAA) patients were 3.74 and 3.34 times higher than the undetermined (UD) subtype, respectively [OR = 3.74 95% CL (1.14–12.27) P = 0.030 and OR = 3.34 95% CL (1.13–9.85) P = 0.029]. Conclusion The rs217727 polymorphism of the H19 is correlated with IS susceptibility, and H19 expression levels were higher in SVO and LAA patients. The upregulation of H19 may be considered as a diagnostic biomarker in IS among the Iranian population, but it cannot serve as a useful prognostic marker.
Collapse
Affiliation(s)
- Mohadese Rezaei
- Department of Biology, Zarghan Branch, Islamic Azad University, 4341617184, Zarghan, Iran
| | | | - Mahnaz Bayat
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Anahid Safari
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Dianatpuor
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Tabrizi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Tahereh Asadabadi
- Department of Biology, Zarghan Branch, Islamic Azad University, 4341617184, Zarghan, Iran
| | | |
Collapse
|
11
|
Liao H, Chen Q, Xiao J. Reflections on the Role of Malat1 in Gynecological Cancer. Cancer Manag Res 2020; 12:13489-13500. [PMID: 33408521 PMCID: PMC7779295 DOI: 10.2147/cmar.s286804] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/01/2020] [Indexed: 12/26/2022] Open
Abstract
Non-coding RNAs (ncRNAs) have received significant attention over the last few years. Malat1, as one of the most extensively studied ncRNAs, is believed to be not only a potential biomarker for disease diagnosis and prognosis, but also a candidate drug target for gynecological cancers. This potential is supported by a growing body of experimental evidence demonstrating that Malat1 participates in the occurrence, progression, and metastasis of tumors. Research has also shown that Malat1 can influence patient survival by regulating a range of target genes and signaling pathways. However, previous review articles have generally failed to consider the role of Malat1 in gynecological cancer in detail. In the present review, we summarize recent progress in research relating to the clinical relevance of Malat1 and the molecular mechanisms underlying the action of this ncRNA. Besides, we put forward some action points for further research after taking into consideration the sub-location and other essential properties of Malat1, which might enable us to have a better understanding of the potential of this molecule regarding clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Huiyan Liao
- The 2nd Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, People's Republic of China
| | - Qi Chen
- The 6th Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, People's Republic of China
| | - Jing Xiao
- Department of Gynecology, the University Town Branch, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510120, People's Republic of China
| |
Collapse
|
12
|
Fan J, Saft M, Sadanandan N, Gonzales-Portillo B, Park YJ, Sanberg PR, Borlongan CV, Luo Y. LncRNAs Stand as Potent Biomarkers and Therapeutic Targets for Stroke. Front Aging Neurosci 2020; 12:594571. [PMID: 33192490 PMCID: PMC7604318 DOI: 10.3389/fnagi.2020.594571] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
Stroke is a major public health problem worldwide with a high burden of neurological disability and mortality. Long noncoding RNAs (lncRNAs) have attracted much attention in the past decades because of their newly discovered roles in pathophysiological processes in many diseases. The abundance of lncRNAs in the nervous system indicates that they may be part of a complex regulatory network governing physiology and pathology of the brain. In particular, lncRNAs have been shown to play pivotal roles in the pathogenesis of stroke. In this article, we provide a review of the multifaceted functions of lncRNAs in the pathogenesis of ischemic stroke and intracerebral hemorrhage, highlighting their promising use as stroke diagnostic biomarkers and therapeutics. To this end, we discuss the potential of stem cells in aiding lncRNA applications in stroke.
Collapse
Affiliation(s)
- Junfen Fan
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Madeline Saft
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Nadia Sadanandan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Bella Gonzales-Portillo
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - You Jeong Park
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Paul R Sanberg
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Cesario V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|