1
|
Sanner A, Hardt R, Matzner U, Winter D. Data-Independent Acquisition-Parallel Reaction Monitoring Acquisition Reveals Age-Dependent Alterations of the Lysosomal Proteome in a Mouse Model of Metachromatic Leukodystrophy. Anal Chem 2024; 96:19567-19575. [PMID: 39620638 DOI: 10.1021/acs.analchem.4c04378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
For the reproducible analysis of peptides by mass spectrometry-based proteomics, data-independent acquisition (DIA) and parallel/multiple reaction monitoring (PRM/MRM) deliver unrivalled performance with respect to sensitivity and reproducibility. Both approaches, however, come with distinct advantages and shortcomings. While DIA enables unbiased whole proteome analysis, it shows limitations with respect to dynamic range and the quantification of low-abundant proteins. PRM, on the other hand, is ideally suited to reproducibly quantify selected proteins even if they are low-abundant, but no knowledge of the remaining sample is obtained. Here, we combine both methods into a mixed DIA-PRM acquisition approach, merging their benefits while operating at reduced machine run times and needed sample amounts. We demonstrate the feasibility of DIA-PRM by merging a scheduled PRM assay for 103 peptides, representing 59 low-abundant lysosomal hydrolases, with a DIA data acquisition scheme. After benchmarking DIA-PRM with mouse embryonic fibroblast (MEF) whole cell lysates, we use the approach to investigate age-related proteomic changes in brain tissues of a mouse model of metachromatic leukodystrophy (MLD). This revealed an MLD-related progressive increase in distinct classes of lysosomal hydrolases as well as alterations of proteins related to myelin and cellular metabolism. All data are available via ProteomeXchange with PXD052313.
Collapse
Affiliation(s)
- Anne Sanner
- Institute for Biochemistry and Molecular Biology, University of Bonn, Bonn 53115, Germany
| | - Robert Hardt
- Institute for Biochemistry and Molecular Biology, University of Bonn, Bonn 53115, Germany
| | - Ulrich Matzner
- Institute for Biochemistry and Molecular Biology, University of Bonn, Bonn 53115, Germany
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, University of Bonn, Bonn 53115, Germany
| |
Collapse
|
2
|
Phulara NR, Rege A, Bieberich CJ, Seneviratne HK. Mass Spectrometry Imaging Reveals Region-Specific Lipid Alterations in the Mouse Brain in Response to Efavirenz Treatment. ACS Pharmacol Transl Sci 2024; 7:2379-2390. [PMID: 39156742 PMCID: PMC11326009 DOI: 10.1021/acsptsci.4c00228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 08/20/2024]
Abstract
Efavirenz (EFV) is a commonly used drug to treat human immunodeficiency virus infection and is known to exert adverse effects on the brain. Although it is known that EFV is associated with abnormal plasma lipid levels, the changes in the spatial localization of individual lipid molecules in brain tissue following EFV treatment are yet to be explored. In this study, we employed a matrix-assisted laser desorption/ionization mass spectrometry imaging approach to determine region-specific lipid alterations in mouse brains following EFV treatment. We detected unique spatial localization patterns of phosphatidylcholine (PC), sphingomyelin (SM), ceramide phosphoinositol (PI-Cer), and hexosylceramide (HexCer) molecules in the mouse brain. Interestingly, PC(32:0), PC(38:5), and SM(36:1;O2) showed high abundance in the hippocampus region, whereas PI-Cer(38:8) exhibited low abundance in the hippocampus region of the EFV-treated mouse brains. Additionally, we observed low abundance of PC(38:6), PC(40:6), and PI-Cer(40:3) in the thalamus region of the EFV-treated mouse brains. Furthermore, SM(40:1;O2), SM(42:2;O2), SM(42:1;O2), SM(43:2;O2), and SM(43:1;O2) exhibited their accumulation in the corpus callosum region of the EFV-treated mouse brains as compared to controls. However, HexCer(42:1;O3) exhibited depletion in the corpus callosum region in response to EFV treatment. To characterize the expression patterns of proteins, including lipid metabolizing enzymes, in response to EFV treatment, mass spectrometry-based proteomics was utilized. From these, the expression levels of 12 brain proteins were found to be significantly decreased following EFV treatment. Taken together, these multiomics data provide important insights into the effects of EFV on brain lipid metabolism.
Collapse
Affiliation(s)
- Nav Raj Phulara
- Department
of Chemistry and Biochemistry, University
of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Apurv Rege
- Department
of Biological Sciences, University of Maryland,
Baltimore County, Baltimore, Maryland 21250, United States
| | - Charles J. Bieberich
- Department
of Biological Sciences, University of Maryland,
Baltimore County, Baltimore, Maryland 21250, United States
| | - Herana Kamal Seneviratne
- Department
of Chemistry and Biochemistry, University
of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| |
Collapse
|
3
|
Tsugawa H, Ishihara T, Ogasa K, Iwanami S, Hori A, Takahashi M, Yamada Y, Satoh-Takayama N, Ohno H, Minoda A, Arita M. A lipidome landscape of aging in mice. NATURE AGING 2024; 4:709-726. [PMID: 38609525 DOI: 10.1038/s43587-024-00610-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 03/07/2024] [Indexed: 04/14/2024]
Abstract
Understanding the molecular mechanisms of aging is crucial for enhancing healthy longevity. We conducted untargeted lipidomics across 13 biological samples from mice at various life stages (2, 12, 19 and 24 months) to explore the potential link between aging and lipid metabolism, considering sex (male or female) and microbiome (specific pathogen-free or germ-free) dependencies. By analyzing 2,704 molecules from 109 lipid subclasses, we characterized common and tissue-specific lipidome alterations associated with aging. For example, the levels of bis(monoacylglycero)phosphate containing polyunsaturated fatty acids increased in various organs during aging, whereas the levels of other phospholipids containing saturated and monounsaturated fatty acids decreased. In addition, we discovered age-dependent sulfonolipid accumulation, absent in germ-free mice, correlating with Alistipes abundance determined by 16S ribosomal RNA gene amplicon sequencing. In the male kidney, glycolipids such as galactosylceramides, galabiosylceramides (Gal2Cer), trihexosylceramides (Hex3Cer), and mono- and digalactosyldiacylglycerols were detected, with two lipid classes-Gal2Cer and Hex3Cer-being significantly enriched in aged mice. Integrated analysis of the kidney transcriptome revealed uridine diphosphate galactosyltransferase 8A (UGT8a), alkylglycerone phosphate synthase and fatty acyl-coenzyme A reductase 1 as potential enzymes responsible for the male-specific glycolipid biosynthesis in vivo, which would be relevant to sex dependency in kidney diseases. Inhibiting UGT8 reduced the levels of these glycolipids and the expression of inflammatory cytokines in the kidney. Our study provides a valuable resource for clarifying potential links between lipid metabolism and aging.
Collapse
Affiliation(s)
- Hiroshi Tsugawa
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan.
- Metabolome Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan.
- Molecular and Cellular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan.
| | - Tomoaki Ishihara
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Pharmacy, Nagasaki International University, Sasebo, Japan
| | - Kota Ogasa
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Seigo Iwanami
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Aya Hori
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Mikiko Takahashi
- Metabolome Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Yutaka Yamada
- Metabolome Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Naoko Satoh-Takayama
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Aki Minoda
- Laboratory for Cellular Epigenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- Molecular and Cellular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan.
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan.
- Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo, Japan.
| |
Collapse
|
4
|
Pascuali N, Pu Y, Waye AA, Pearl S, Martin D, Sutton A, Shikanov A, Veiga-Lopez A. Evaluation of Lipids and Lipid-Related Transcripts in Human and Ovine Theca Cells and an in Vitro Mouse Model Exposed to the Obesogen Chemical Tributyltin. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:47009. [PMID: 38630605 PMCID: PMC11023052 DOI: 10.1289/ehp13955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/22/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Exposure to obesogenic chemicals has been reported to result in enhanced adipogenesis, higher adipose tissue accumulation, and reduced ovarian hormonal synthesis and follicular function. We have reported that organotins [tributyltin (TBT) and triphenyltin (TPT)] dysregulate cholesterol trafficking in ovarian theca cells, but, whether organotins also exert lipogenic effects on ovarian cells remains unexplored. OBJECTIVE We investigated if environmentally relevant exposures to organotins [TBT, TPT, or dibutyltin (DBT)] induce lipid dysregulation in ovarian theca cells and the role of the liver X receptor (LXR) in this effect. We also tested the effect of TBT on oocyte maturation and neutral lipid accumulation, and lipid-related transcript expression in cumulus cells and preimplantation embryos. METHODS Primary theca cell cultures derived from human and ovine ovaries were exposed to TBT, TPT, or DBT (1, 10, or 50 ng / ml ). The effect of these chemical exposures on neutral lipid accumulation, lipid abundance and composition, lipid homeostasis-related gene expression, and cytokine secretion was evaluated using liquid chromatography-mass spectrometry (LC-MS), inhibitor-based methods, cytokine secretion, and lipid ontology analyses. We also exposed murine cumulus-oocyte complexes to TBT and evaluated oocyte maturation, embryo development, and lipid homeostasis-related mRNA expression in cumulus cells and blastocysts. RESULTS Exposure to TBT resulted in higher intracellular neutral lipids in human and ovine primary theca cells. In ovine theca cells, this effect was dose-dependent, independent of cell stage, and partially mediated by LXR. DBT and TPT resulted in higher intracellular neutral lipids but to a lesser extent in comparison with TBT. More than 140 lipids and 9 cytokines were dysregulated in TBT-exposed human theca cells. Expression of genes involved in lipogenesis and fatty acid synthesis were higher in theca cells, as well as in cumulus cells and blastocysts exposed to TBT. However, TBT did not impact the rates of oocyte maturation or blastocyst development. DISCUSSION TBT induced dyslipidemia in primary human and ovine theca cells, which may be responsible for some of the TBT-induced fertility dysregulations reported in rodent models of TBT exposure. https://doi.org/10.1289/EHP13955.
Collapse
Affiliation(s)
- Natalia Pascuali
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Yong Pu
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Anita A. Waye
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Sarah Pearl
- Department of Obstetrics and Gynecology, Sparrow Health System, Lansing, Michigan, USA
| | - Denny Martin
- Department of Obstetrics and Gynecology, Sparrow Health System, Lansing, Michigan, USA
| | - Allison Sutton
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Ariella Shikanov
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Almudena Veiga-Lopez
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois, USA
- The Chicago Center for Health and Environment, University of Illinois Chicago, Chicago, Illinois, USA
| |
Collapse
|
5
|
Perpiñá-Clérigues C, Mellado S, Galiana-Roselló C, Fernández-Regueras M, Marcos M, García-García F, Pascual M. Novel insight into the lipid network of plasma extracellular vesicles reveal sex-based differences in the lipidomic profile of alcohol use disorder patients. Biol Sex Differ 2024; 15:10. [PMID: 38273378 PMCID: PMC10809459 DOI: 10.1186/s13293-024-00584-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Alcohol use disorder (AUD) is one of the most common psychiatric disorders, with the consumption of alcohol considered a leading cause of preventable deaths worldwide. Lipids play a crucial functional role in cell membranes; however, we know little about the role of lipids in extracellular vesicles (EVs) as regulatory molecules and disease biomarkers. METHODS We employed a sensitive lipidomic strategy to characterize lipid species from the plasma EVs of AUD patients to evaluate functional roles and enzymatic activity networks to improve the knowledge of lipid metabolism after alcohol consumption. We analyzed plasma EV lipids from AUD females and males and healthy individuals to highlight lipids with differential abundance and biologically interpreted lipidomics data using LINEX2, which evaluates enzymatic dysregulation using an enrichment algorithm. RESULTS Our results show, for the first time, that AUD females exhibited more significant substrate-product changes in lysophosphatidylcholine/phosphatidylcholine lipids and phospholipase/acyltransferase activity, which are potentially linked to cancer progression and neuroinflammation. Conversely, AUD males suffer from dysregulated ceramide and sphingomyelin lipids involving sphingomyelinase, sphingomyelin phosphodiesterase, and sphingomyelin synthase activity, which relates to hepatotoxicity. Notably, the analysis of plasma EVs from AUD females and males demonstrates enrichment of lipid ontology terms associated with "negative intrinsic curvature" and "positive intrinsic curvature", respectively. CONCLUSIONS Our methodological developments support an improved understanding of lipid metabolism and regulatory mechanisms, which contribute to the identification of novel lipid targets and the discovery of sex-specific clinical biomarkers in AUD.
Collapse
Affiliation(s)
- Carla Perpiñá-Clérigues
- Computational Biomedicine Laboratory, Príncipe Felipe Research Center, C/Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
- Department of Physiology, School of Medicine and Dentistry, University of Valencia, Avda. Blasco Ibáñez, 15, 46010, Valencia, Spain
| | - Susana Mellado
- Department of Physiology, School of Medicine and Dentistry, University of Valencia, Avda. Blasco Ibáñez, 15, 46010, Valencia, Spain
| | - Cristina Galiana-Roselló
- Department of Inorganic Chemistry, Institute of Molecular Science, University of Valencia, 46980, Paterna, Spain
| | - María Fernández-Regueras
- Hospital Universitario de Burgos, 09006, Burgos, Spain
- Hospital Universitario de Salamanca, 37007, Salamanca, Spain
| | - Miguel Marcos
- Department of Internal Medicine, University Hospital of Salamanca, University of Salamanca, Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain
| | - Francisco García-García
- Computational Biomedicine Laboratory, Príncipe Felipe Research Center, C/Eduardo Primo Yúfera, 3, 46012, Valencia, Spain.
| | - María Pascual
- Department of Physiology, School of Medicine and Dentistry, University of Valencia, Avda. Blasco Ibáñez, 15, 46010, Valencia, Spain.
| |
Collapse
|
6
|
Chaiyarit S, Thongboonkerd V. Mitochondria-derived vesicles and their potential roles in kidney stone disease. J Transl Med 2023; 21:294. [PMID: 37131163 PMCID: PMC10152607 DOI: 10.1186/s12967-023-04133-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/14/2023] [Indexed: 05/04/2023] Open
Abstract
Recent evidence has shown significant roles of mitochondria-derived vesicles (MDVs) in mitochondrial quality control (MQC) system. Under mild stress condition, MDVs are formed to carry the malfunctioned mitochondrial components, such as mitochondrial DNA (mtDNA), peptides, proteins and lipids, to be eliminated to restore normal mitochondrial structure and functions. Under severe oxidative stress condition, mitochondrial dynamics (fission/fusion) and mitophagy are predominantly activated to rescue mitochondrial structure and functions. Additionally, MDVs generation can be also triggered as the major MQC machinery to cope with unhealthy mitochondria when mitophagy is unsuccessful for eliminating the damaged mitochondria or mitochondrial fission/fusion fail to recover the mitochondrial structure and functions. This review summarizes the current knowledge on MDVs and discuss their roles in physiologic and pathophysiologic conditions. In addition, the potential clinical relevance of MDVs in therapeutics and diagnostics of kidney stone disease (KSD) are emphasized.
Collapse
Affiliation(s)
- Sakdithep Chaiyarit
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor, SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor, SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand.
| |
Collapse
|
7
|
Hegeman CV, de Jong OG, Lorenowicz MJ. A kaleidoscopic view of extracellular vesicles in lysosomal storage disorders. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2022; 3:393-421. [PMID: 39697359 PMCID: PMC11651879 DOI: 10.20517/evcna.2022.41] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/16/2022] [Accepted: 12/26/2022] [Indexed: 12/20/2024]
Abstract
Extracellular vesicles (EVs) are a heterogeneous population of stable lipid membrane particles that play a critical role in the regulation of numerous physiological and pathological processes. EV cargo, which includes lipids, proteins, and RNAs including miRNAs, is affected by the metabolic status of the parental cell. Concordantly, abnormalities in the autophagic-endolysosomal pathway, as seen in lysosomal storage disorders (LSDs), can affect EV release as well as EV cargo. LSDs are a group of over 70 inheritable diseases, characterized by lysosomal dysfunction and gradual accumulation of undigested molecules. LSDs are caused by single gene mutations that lead to a deficiency of a lysosomal protein or lipid. Lysosomal dysfunction sets off a cascade of alterations in the endolysosomal pathway that can affect autophagy and alter calcium homeostasis, leading to energy imbalance, oxidative stress, and apoptosis. The pathophysiology of these diseases is very heterogenous, complex, and currently incompletely understood. LSDs lead to progressive multisystemic symptoms that often include neurological deficits. In this review, a kaleidoscopic overview will be given on the roles of EVs in LSDs, from their contribution to pathology and diagnostics to their role as drug delivery vehicles. Furthermore, EV cargo and surface engineering strategies will be discussed to show the potential of EVs in future LSD treatment, both in the context of enzyme replacement therapy, as well as future gene editing strategies like CRISPR/Cas. The use of engineered EVs as drug delivery vehicles may mask therapeutic cargo from the immune system and protect it from degradation, improving circulation time and targeted delivery.
Collapse
Affiliation(s)
- Charlotte V. Hegeman
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, The Netherlands
| | - Olivier G. de Jong
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, The Netherlands
- Authors contributed equally
| | - Magdalena J. Lorenowicz
- Regenerative Medicine Center, Uppsalalaan 8, Utrecht 3584 CT, The Netherlands
- Biomedical Primate Research Centre, Lange Kleinweg 161, Rijswijk 2288 GJ, The Netherlands
- Authors contributed equally
| |
Collapse
|
8
|
Wu Y, Chen W, Guo M, Tan Q, Zhou E, Deng J, Li M, Chen J, Yang Z, Jin Y. Metabolomics of Extracellular Vesicles: A Future Promise of Multiple Clinical Applications. Int J Nanomedicine 2022; 17:6113-6129. [PMID: 36514377 PMCID: PMC9741837 DOI: 10.2147/ijn.s390378] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) can contain DNA, RNA, proteins and metabolic molecules from primary origins; they are coated with a phospholipid bilayer membrane and released by cells into the extracellular matrix. EVs can be obtained from various body liquids, including the blood, saliva, cerebrospinal fluid, and urine. As has been proved, EVs-mediated transfer of biologically active molecules is crucial for various physiological and pathological processes. Extensive investigations have already begun to explore the diagnosis and prognosis potentials for EVs. Furthermore, research has continued to recognize the critical role of nucleic acids and proteins in EVs. However, our understanding of the comprehensive effects of metabolites in these nanoparticles is currently limited and in its infancy. Therefore, we have attempted to summarize the recent research into the metabolomics of EVs in relation to potential clinical applications and discuss the problems and challenges that have occurred, to provide more guidance for the future development in this field.
Collapse
Affiliation(s)
- YaLi Wu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Diseases of National Health Commission, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - WenJuan Chen
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Diseases of National Health Commission, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Mengfei Guo
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Diseases of National Health Commission, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Qi Tan
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Diseases of National Health Commission, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - E Zhou
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Diseases of National Health Commission, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Jingjing Deng
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Diseases of National Health Commission, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Minglei Li
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Diseases of National Health Commission, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Jiangbin Chen
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Diseases of National Health Commission, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Zimo Yang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Diseases of National Health Commission, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Diseases of National Health Commission, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China,Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China,Clinical Research Center for Major Respiratory Diseases in Hubei Province, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China,Correspondence: Yang Jin, Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China, Email
| |
Collapse
|