1
|
Kashiri F, Sarbakhsh P, Mohammadpoorasl A, Seyedghasemi NS, Bagheri A, Akbari H. Survival, mortality and epidemic risk status of COVID-19: a population-based Study in Golestan province, Iran. Arch Public Health 2024; 82:105. [PMID: 38978085 PMCID: PMC11229216 DOI: 10.1186/s13690-024-01330-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Appreciating the various dimensions of the coronavirus disease 2019 (COVID-19) pandemic can improve health systems and prepare them to deal better with future pandemics and public health events. This study was conducted to investigate the association between the survival of hospitalized patients with COVID-19 and the epidemic risk stratification of the disease in Golestan province, Iran. METHODS In this study, all patients with COVID-19 who were hospitalized in the hospitals of Golestan province of Iran from February 20, 2020, to December 19, 2022, and were registered in the Medical Care Monitoring Center (MCMC) system (85,885 individuals) were examined.The community's epidemic risk status (ERS) was determined based on the daily incidence statistics of COVID-19. The survival distribution and compare Survival in different subgroups was investigated using Kaplan-Meier and log-rank test and association between the survival and ERS by multiple Cox regression modeling. RESULTS Out of 68,983 individuals whose data were correctly recorded, the mean age was 49 (SD = 23.98) years, and 52.8% were women. In total, 11.1% eventually died. The length of hospital stay was varying significantly with age, gender, ERS, underlying diseases, and COVID-19 severity (P < 0.001 for all). The adjusted hazard ratio of death for the ERS at medium, high, and very high-risk status compared to the low-risk status increased by 19%, 26%, and 56%, respectively (P < 0.001 for all). CONCLUSIONS Enhancing preparedness, facilitating rapid rises in hospital capacities, and developing backup healthcare capacities can prevent excessive hospital referrals during health crises and further deaths.
Collapse
Affiliation(s)
- Fatemeh Kashiri
- Department of Statistics and Epidemiology, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Sarbakhsh
- Department of Statistics and Epidemiology, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asghar Mohammadpoorasl
- Department of Statistics and Epidemiology, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Navisa Sadat Seyedghasemi
- Department of Biostatistics and Epidemiology, Faculty of Health, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Bagheri
- Communicable Disease Control of Health Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hossein Akbari
- Department of Statistics and Epidemiology, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Brendle SA, Li JJ, Walter V, Schell TD, Kozak M, Balogh KK, Lu S, Christensen ND, Zhu Y, El-Bayoumy K, Hu J. Immune Responses in Oral Papillomavirus Clearance in the MmuPV1 Mouse Model. Pathogens 2023; 12:1452. [PMID: 38133335 PMCID: PMC10745854 DOI: 10.3390/pathogens12121452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Human papillomavirus (HPV)-induced oropharyngeal cancer now exceeds HPV-induced cervical cancer, with a noticeable sex bias. Although it is well established that women have a more proficient immune system, it remains unclear whether immune control of oral papillomavirus infections differs between sexes. In the current study, we use genetically modified mice to target CCR2 and Stat1 pathways, with the aim of investigating the role of both innate and adaptive immune responses in clearing oral papillomavirus, using our established papillomavirus (MmuPV1) infection model. Persistent oral MmuPV1 infection was detected in Rag1ko mice with T and B cell deficiencies. Meanwhile, other tested mice were susceptible to MmuPV1 infections but were able to clear the virus. We found sex differences in key myeloid cells, including macrophages, neutrophils, and dendritic cells in the infected tongues of wild type and Stat1ko mice but these differences were not observed in CCR2ko mice. Intriguingly, we also observed a sex difference in anti-MmuPV1 E4 antibody levels, especially for two IgG isotypes: IgG2b and IgG3. However, we found comparable numbers of interferon-gamma-producing CD8 T cells stimulated by E6 and E7 in both sexes. These findings suggest that males and females may use different components of innate and adaptive immune responses to control papillomavirus infections in the MmuPV1 mouse model. The observed sex difference in immune responses, especially in myeloid cells including dendritic cell (DC) subsets, may have potential diagnostic and prognostic values for HPV-associated oropharyngeal cancer.
Collapse
Affiliation(s)
- Sarah A. Brendle
- The Jake Gittlen Laboratories for Cancer Research, College of Medicine, Pennsylvania State University, Hershey, State College, PA 17033, USA; (S.A.B.); (J.J.L.); (M.K.); (K.K.B.); (N.D.C.)
- Department of Pathology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA; (S.L.); (Y.Z.)
| | - Jingwei J. Li
- The Jake Gittlen Laboratories for Cancer Research, College of Medicine, Pennsylvania State University, Hershey, State College, PA 17033, USA; (S.A.B.); (J.J.L.); (M.K.); (K.K.B.); (N.D.C.)
- Department of Pathology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA; (S.L.); (Y.Z.)
| | - Vonn Walter
- Department of Biochemistry & Molecular Biology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA; (V.W.); (K.E.-B.)
- Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Todd D. Schell
- Department of Microbiology and Immunology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA;
| | - Michael Kozak
- The Jake Gittlen Laboratories for Cancer Research, College of Medicine, Pennsylvania State University, Hershey, State College, PA 17033, USA; (S.A.B.); (J.J.L.); (M.K.); (K.K.B.); (N.D.C.)
- Department of Pathology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA; (S.L.); (Y.Z.)
| | - Karla K. Balogh
- The Jake Gittlen Laboratories for Cancer Research, College of Medicine, Pennsylvania State University, Hershey, State College, PA 17033, USA; (S.A.B.); (J.J.L.); (M.K.); (K.K.B.); (N.D.C.)
- Department of Pathology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA; (S.L.); (Y.Z.)
| | - Song Lu
- Department of Pathology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA; (S.L.); (Y.Z.)
| | - Neil D. Christensen
- The Jake Gittlen Laboratories for Cancer Research, College of Medicine, Pennsylvania State University, Hershey, State College, PA 17033, USA; (S.A.B.); (J.J.L.); (M.K.); (K.K.B.); (N.D.C.)
- Department of Pathology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA; (S.L.); (Y.Z.)
- Department of Microbiology and Immunology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA;
| | - Yusheng Zhu
- Department of Pathology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA; (S.L.); (Y.Z.)
| | - Karam El-Bayoumy
- Department of Biochemistry & Molecular Biology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA; (V.W.); (K.E.-B.)
| | - Jiafen Hu
- The Jake Gittlen Laboratories for Cancer Research, College of Medicine, Pennsylvania State University, Hershey, State College, PA 17033, USA; (S.A.B.); (J.J.L.); (M.K.); (K.K.B.); (N.D.C.)
- Department of Pathology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA; (S.L.); (Y.Z.)
| |
Collapse
|
3
|
Ramos-Hernández WM, Soto LF, Del Rosario-Trinidad M, Farfan-Morales CN, De Jesús-González LA, Martínez-Mier G, Osuna-Ramos JF, Bastida-González F, Bernal-Dolores V, Del Ángel RM, Reyes-Ruiz JM. Leukocyte glucose index as a novel biomarker for COVID-19 severity. Sci Rep 2022; 12:14956. [PMID: 36056114 PMCID: PMC9438363 DOI: 10.1038/s41598-022-18786-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 08/19/2022] [Indexed: 12/03/2022] Open
Abstract
The severity of coronavirus disease 2019 (COVID-19) quickly progresses with unfavorable outcomes due to the host immune response and metabolism alteration. Hence, we hypothesized that leukocyte glucose index (LGI) is a biomarker for severe COVID-19. This study involved 109 patients and the usefulness of LGI was evaluated and compared with other risk factors to predict COVID 19 severity. LGI was identified as an independent risk factor (odds ratio [OR] = 1.727, 95% confidence interval [CI]: 1.026-3.048, P = 0.041), with an area under the curve (AUC) of 0.749 (95% CI: 0.642-0.857, P < 0.0001). Interestingly, LGI was a potential risk factor (OR = 2.694, 95% CI: 1.575-5.283, Pcorrected < 0.05) for severe COVID-19 in female but not in male patients. In addition, LGI proved to be a strong predictor of the severity in patients with diabetes (AUC = 0.915 (95% CI: 0.830-1), sensitivity = 0.833, and specificity = 0.931). The AUC of LGI, together with the respiratory rate (LGI + RR), showed a considerable improvement (AUC = 0.894, 95% CI: 0.835-0.954) compared to the other biochemical and respiratory parameters analyzed. Together, these findings indicate that LGI could potentially be used as a biomarker of severity in COVID-19 patients.
Collapse
Affiliation(s)
- Wendy Marilú Ramos-Hernández
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional "Adolfo Ruiz Cortines", Instituto Mexicano del Seguro Social (IMSS), 91897, Veracruz, México
| | - Luis F Soto
- Escuela Profesional de Genética y Biotecnología, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, 15081, Perú
| | - Marcos Del Rosario-Trinidad
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional "Adolfo Ruiz Cortines", Instituto Mexicano del Seguro Social (IMSS), 91897, Veracruz, México
| | - Carlos Noe Farfan-Morales
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), 07360, Mexico City, Mexico
| | - Luis Adrián De Jesús-González
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), 07360, Mexico City, Mexico
| | - Gustavo Martínez-Mier
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional "Adolfo Ruiz Cortines", Instituto Mexicano del Seguro Social (IMSS), 91897, Veracruz, México
| | - Juan Fidel Osuna-Ramos
- Escuela de Medicina, Universidad Autónoma de Durango Campus Culiacán, 80050, Culiacán Rosales, México
| | - Fernando Bastida-González
- Laboratorio de Biología Molecular, Laboratorio Estatal de Salud Pública del Estado de México, 50130, Mexico City, State of Mexico, Mexico
| | - Víctor Bernal-Dolores
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional "Adolfo Ruiz Cortines", Instituto Mexicano del Seguro Social (IMSS), 91897, Veracruz, México
| | - Rosa María Del Ángel
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), 07360, Mexico City, Mexico.
| | - José Manuel Reyes-Ruiz
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional "Adolfo Ruiz Cortines", Instituto Mexicano del Seguro Social (IMSS), 91897, Veracruz, México.
- Facultad de Medicina, Región Veracruz, Universidad Veracruzana, 91700, Veracruz, Mexico.
| |
Collapse
|
4
|
Khare K, Pandey R. Cellular heterogeneity in disease severity and clinical outcome: Granular understanding of immune response is key. Front Immunol 2022; 13:973070. [PMID: 36072602 PMCID: PMC9441806 DOI: 10.3389/fimmu.2022.973070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/26/2022] [Indexed: 12/15/2022] Open
Abstract
During an infectious disease progression, it is crucial to understand the cellular heterogeneity underlying the differential immune response landscape that will augment the precise information of the disease severity modulators, leading to differential clinical outcome. Patients with COVID-19 display a complex yet regulated immune profile with a heterogeneous array of clinical manifestation that delineates disease severity sub-phenotypes and worst clinical outcomes. Therefore, it is necessary to elucidate/understand/enumerate the role of cellular heterogeneity during COVID-19 disease to understand the underlying immunological mechanisms regulating the disease severity. This article aims to comprehend the current findings regarding dysregulation and impairment of immune response in COVID-19 disease severity sub-phenotypes and relate them to a wide array of heterogeneous populations of immune cells. On the basis of the findings, it suggests a possible functional correlation between cellular heterogeneity and the COVID-19 disease severity. It highlights the plausible modulators of age, gender, comorbidities, and hosts' genetics that may be considered relevant in regulating the host response and subsequently the COVID-19 disease severity. Finally, it aims to highlight challenges in COVID-19 disease that can be achieved by the application of single-cell genomics, which may aid in delineating the heterogeneity with more granular understanding. This will augment our future pandemic preparedness with possibility to identify the subset of patients with increased diseased severity.
Collapse
Affiliation(s)
- Kriti Khare
- Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rajesh Pandey
- Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
5
|
Ballering AV, Oertelt-Prigione S, olde Hartman TC, Rosmalen JG. Sex and Gender-Related Differences in COVID-19 Diagnoses and SARS-CoV-2 Testing Practices During the First Wave of the Pandemic: The Dutch Lifelines COVID-19 Cohort Study. J Womens Health (Larchmt) 2021; 30:1686-1692. [PMID: 34473580 PMCID: PMC8721498 DOI: 10.1089/jwh.2021.0226] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background: Although sex differences are described in Coronavirus Disease 2019 (COVID-19) diagnoses and testing, many studies neglect possible gender-related influences. Additionally, research is often performed in clinical populations, while most COVID-19 patients are not hospitalized. Therefore, we investigated associations between sex and gender-related variables, and COVID-19 diagnoses and testing practices in a large general population cohort during the first wave of the pandemic when testing capacity was limited. Methods: We used data from the Lifelines COVID-19 Cohort (N = 74,722; 60.8% female). We applied bivariate and multiple logistic regression analyses. The outcomes were a COVID-19 diagnosis (confirmed by SARS-CoV-2 PCR testing or physician's clinical diagnosis) and PCR testing. Independent variables included among others participants' sex, age, somatic comorbidities, occupation, and smoking status. Sex-by-comorbidity and sex-by-occupation interaction terms were included to investigate sex differences in associations between the presence of comorbidities or an occupation with COVID-19 diagnoses or testing practices. Results: In bivariate analyses female sex was significantly associated with COVID-19 diagnoses and testing, but significance did not persist in multiple logistic regression analyses. However, a gender-related variable, being a health care worker, was significantly associated with COVID-19 diagnoses (OR = 1.68; 95%CI = 1.30-2.17) and testing (OR = 12.5; 95%CI = 8.55-18.3). Female health care workers were less often diagnosed and tested than male health care workers (ORinteraction = 0.54; 95%CI = 0.32-0.92, ORinteraction = 0.53; 95%CI = 0.29-0.97, respectively). Conclusions: We found no sex differences in COVID-19 diagnoses and testing in the general population. Among health care workers, a male preponderance in COVID-19 diagnoses and testing was observed. This could be explained by more pronounced COVID-19 symptoms in males or by gender inequities.
Collapse
Affiliation(s)
- Aranka Viviënne Ballering
- Interdisciplinary Center Psychopathology and Emotion Regulation (ICPE), University Medical Center of Groningen, University of Groningen, Groningen, the Netherlands
| | - Sabine Oertelt-Prigione
- Department of Primary and Community Care, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tim C. olde Hartman
- Department of Primary and Community Care, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Judith G.M. Rosmalen
- Interdisciplinary Center Psychopathology and Emotion Regulation (ICPE), University Medical Center of Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
6
|
Ranjan J, Ravindra A, Mishra B. Gender and genetic factors impacting COVID-19 severity. J Family Med Prim Care 2021; 10:3956-3963. [PMID: 35136752 PMCID: PMC8797126 DOI: 10.4103/jfmpc.jfmpc_769_21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 11/04/2022] Open
Abstract
COVID-19 pandemic is a cause of global concern and is impacting lives and economy globally. Infection due to SARS-CoV-2 leads to varied clinical manifestations, which can vary from asymptomatic to severe acute respiratory syndrome and death. The clinical features are proposed to depend upon various host factors, namely, gender and genetic factors. The significantly high mortality among males has revealed the role of gender, androgens, age, genetics, and risk factors in determining the severity of COVID-19 among the population. The interplay of various host factors and their association with clinically severe infections is crucial for our understanding of COVID-19 pathogenesis. A PubMed and Google scholar search was made using keywords such as "COVID-19 + sex differences," "COVID-19 + androgens," "COVID-19 + ACE2 receptor," and "COVID-19 + smoking alcoholism pregnancy." The articles which highlight the association of gender and genetic factors to COVID-19 were selected and included in our study. It is mainly the primary care or family physicians who act as the first contact of COVID-19 patients. With the recent increase in SARS-CoV-2 infections in the Indian subcontinent and probability of upcoming surges, it has become imperative to understand its interaction with the various gender and genetic factors to devise effective triage and management protocols. Our review highlights the possible mechanisms by which these factors impact the severity of COVID-19. A better understanding of these factors will be of immense help to primary care physicians.
Collapse
Affiliation(s)
- Jai Ranjan
- Department of Microbiology, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Akshatha Ravindra
- Department of Microbiology, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Baijayantimala Mishra
- Department of Microbiology, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
- Address for correspondence: Dr. Baijayantimala Mishra, Department of Microbiology, All India Institute of Medical Sciences, Bhubaneswar - 751 019, Odisha, India. E-mail:
| |
Collapse
|
7
|
Kaneko S, Takasawa K, Asada K, Shinkai N, Bolatkan A, Yamada M, Takahashi S, Machino H, Kobayashi K, Komatsu M, Hamamoto R. Epigenetic Mechanisms Underlying COVID-19 Pathogenesis. Biomedicines 2021; 9:1142. [PMID: 34572329 PMCID: PMC8466119 DOI: 10.3390/biomedicines9091142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022] Open
Abstract
In 2019, a novel severe acute respiratory syndrome called coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was reported and was declared a pandemic by the World Health Organization (WHO) in March 2020. With the advancing development of COVID-19 vaccines and their administration globally, it is expected that COVID-19 will converge in the future; however, the situation remains unpredictable because of a series of reports regarding SARS-CoV-2 variants. Currently, there are still few specific effective treatments for COVID-19, as many unanswered questions remain regarding the pathogenic mechanism of COVID-19. Continued elucidation of COVID-19 pathogenic mechanisms is a matter of global importance. In this regard, recent reports have suggested that epigenetics plays an important role; for instance, the expression of angiotensin I converting enzyme 2 (ACE2) receptor, an important factor in human infection with SARS-CoV-2, is epigenetically regulated; further, DNA methylation status is reported to be unique to patients with COVID-19. In this review, we focus on epigenetic mechanisms to provide a new molecular framework for elucidating the pathogenesis of SARS-CoV-2 infection in humans and of COVID-19, along with the possibility of new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Syuzo Kaneko
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (K.T.); (K.A.); (N.S.); (A.B.); (M.Y.); (S.T.); (H.M.); (K.K.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Ken Takasawa
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (K.T.); (K.A.); (N.S.); (A.B.); (M.Y.); (S.T.); (H.M.); (K.K.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Ken Asada
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (K.T.); (K.A.); (N.S.); (A.B.); (M.Y.); (S.T.); (H.M.); (K.K.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Norio Shinkai
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (K.T.); (K.A.); (N.S.); (A.B.); (M.Y.); (S.T.); (H.M.); (K.K.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
- Department of NCC Cancer Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Amina Bolatkan
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (K.T.); (K.A.); (N.S.); (A.B.); (M.Y.); (S.T.); (H.M.); (K.K.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Masayoshi Yamada
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (K.T.); (K.A.); (N.S.); (A.B.); (M.Y.); (S.T.); (H.M.); (K.K.); (M.K.)
- National Cancer Center Hospital, Department of Endoscopy, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Satoshi Takahashi
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (K.T.); (K.A.); (N.S.); (A.B.); (M.Y.); (S.T.); (H.M.); (K.K.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Hidenori Machino
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (K.T.); (K.A.); (N.S.); (A.B.); (M.Y.); (S.T.); (H.M.); (K.K.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Kazuma Kobayashi
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (K.T.); (K.A.); (N.S.); (A.B.); (M.Y.); (S.T.); (H.M.); (K.K.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Masaaki Komatsu
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (K.T.); (K.A.); (N.S.); (A.B.); (M.Y.); (S.T.); (H.M.); (K.K.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Ryuji Hamamoto
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (K.T.); (K.A.); (N.S.); (A.B.); (M.Y.); (S.T.); (H.M.); (K.K.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
- Department of NCC Cancer Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
8
|
Vadakedath S, Kandi V, Mohapatra RK, Pinnelli VBK, Yegurla RR, Shahapur PR, Godishala V, Natesan S, Vora KS, Sharun K, Tiwari R, Bilal M, Dhama K. Immunological aspects and gender bias during respiratory viral infections including novel Coronavirus disease-19 (COVID-19): A scoping review. J Med Virol 2021; 93:5295-5309. [PMID: 33990972 PMCID: PMC8242919 DOI: 10.1002/jmv.27081] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/19/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023]
Abstract
The human immune system is not adequately equipped to eliminate new microbes and could result in serious damage on first exposure. This is primarily attributed to the exaggerated immune response (inflammatory disease), which may prove detrimental to the host, as evidenced by SARS-CoV-2 infection. From the experiences of Novel Coronavirus Disease-19 to date, male patients are likely to suffer from high-intensity inflammation and disease severity than the female population. Hormones are considered the significant pillars of sex differences responsible for the discrepancy in immune response exhibited by males and females. Females appear to be better equipped to counter invading respiratory viral pathogens, including the novel SARS-CoV-2, than males. It can be hypothesized that females are more shielded from disease severity, probably owing to the diverse action/influence of estrogen and other sex hormones on both cellular (thymus-derived T lymphocytes) and humoral immunity (antibodies).
Collapse
Affiliation(s)
- Sabitha Vadakedath
- Department of BiochemistryPrathima Institute of Medical SciencesKarimnagarTelanganaIndia
| | - Venkataramana Kandi
- Department of MicrobiologyPrathima Institute of Medical SciencesKarimnagarTelanganaIndia
| | | | - Venkata B. K. Pinnelli
- Department of BiochemistryVydehi Institute of Medical Sciences and Research CentreBangaloreKarnatakaIndia
| | | | | | - Vikram Godishala
- Department of BiotechnologyGanapthi Degree CollegeParakalTelanganaIndia
| | - Senthilkumar Natesan
- Department of Infectious DiseasesIndian Institute of Public Health GandhinagarGanghinagarGujaratIndia
| | - Kranti S. Vora
- Department of Infectious DiseasesIndian Institute of Public Health GandhinagarGanghinagarGujaratIndia
| | - Khan Sharun
- Division of SurgeryICAR‐Indian Veterinary Research InstituteBareillyUttar PradeshIndia
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and ImmunologyCollege of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU)MathuraIndia
| | - Muhammad Bilal
- School of Life Science and Food EngineeringHuaiyin Institute of TechnologyHuaianChina
| | - Kuldeep Dhama
- Division of PathologyICAR‐Indian Veterinary Research InstituteBareillyUttar PradeshIndia
| |
Collapse
|
9
|
Marimuthu Y, Kunnavil R, Anil NS, Nagaraja SB, Satyanarayana N, Kumar J, Ramya B. Clinical profile and risk factors for mortality among COVID-19 inpatients at a tertiary care centre in Bengaluru, India. Monaldi Arch Chest Dis 2021; 91. [PMID: 34006039 DOI: 10.4081/monaldi.2021.1724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/21/2021] [Indexed: 12/15/2022] Open
Abstract
COVID-19 is an emerging viral disease affecting more than 200 countries worldwide and it present with varied clinical profile throughout the world. Without effective drugs to cure COVID-19, early identification and control of risk factors are important measures to combat COVID-19. This study was conducted to determine the clinical profile and risk factors associated with mortality among COVID-19 patients in a tertiary care hospital in South India. This record-based longitudinal study was conducted by reviewing the case records of COVID-19 patients admitted for treatment from June 2020 to September 2020 in a tertiary care centre in South India. The clinical details, discharge/death details, were collected and entered in MS Excel. Potential risk factors for COVID-19 mortality were analysed using univariate binomial logistic regression, generalized linear models (GLM) with Poisson distribution. Survival curves were made using the Kaplan-Meier method. Log-rank test was used to test the equality of survivor functions between the groups. Out of 854 COVID-19 patients, 56.6% were men and the mean (standard deviation) age was 45.3(17.2) years. The median survival time was significantly lesser in male COVID-19 patients (16 days) as compared to female patients (20 days). Increasing age, male gender, patients presenting with symptoms of fever, cough, breathlessness, smoking, alcohol consumption, comorbidities were significantly associated with mortality among COVID-19 patients. Patients with older age, male gender, breathlessness, fever, cough, smoking and alcohol and comorbidities need careful observation and early intervention. Public health campaigns aimed at reducing the prevalence of risk factors like diabetes, hypertension, smoking and alcohol use are also needed.
Collapse
Affiliation(s)
- Yamini Marimuthu
- Department of Community Medicine, ESIC Medical College & Post Graduate Institute of Medical Sciences and Research, Rajajinagar, Bengaluru .
| | - Radhika Kunnavil
- Department of Community Medicine, ESIC Medical College & Post Graduate Institute of Medical Sciences and Research, Rajajinagar, Bengaluru .
| | - N S Anil
- Department of Community Medicine, ESIC Medical College & Post Graduate Institute of Medical Sciences and Research, Rajajinagar, Bengaluru .
| | - Sharath Burugina Nagaraja
- Department of Community Medicine, ESIC Medical College & Post Graduate Institute of Medical Sciences and Research, Rajajinagar, Bengaluru .
| | - N Satyanarayana
- Department of General Medicine, ESIC Medical College & Post Graduate Institute of Medical Sciences and Research, Rajajinagar, Bengaluru.
| | - Jeetendra Kumar
- ESIC Medical College & Post Graduate Institute of Medical Sciences and Research, Rajajinagar, Bengaluru.
| | - Bojja Ramya
- ESIC Medical College & Post Graduate Institute of Medical Sciences and Research, Rajajinagar, Bengaluru.
| |
Collapse
|
10
|
Gao F, Zheng KI, Yan HD, Sun QF, Pan KH, Wang TY, Chen YP, Targher G, Byrne CD, George J, Zheng MH. Association and Interaction Between Serum Interleukin-6 Levels and Metabolic Dysfunction-Associated Fatty Liver Disease in Patients With Severe Coronavirus Disease 2019. Front Endocrinol (Lausanne) 2021; 12:604100. [PMID: 33763027 PMCID: PMC7982673 DOI: 10.3389/fendo.2021.604100] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/11/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND AIM Circulating levels of interleukin (IL)-6, a well-known inflammatory cytokine, are often elevated in coronavirus disease-2019 (COVID-19). Elevated IL-6 levels are also observed in patients with metabolic dysfunction-associated fatty liver disease (MAFLD). Our study aimed to describe the association between circulating IL-6 levels and MAFLD at hospital admission with risk of severe COVID-19. METHODS A total of 167 patients with laboratory-confirmed COVID-19 from three Chinese hospitals were enrolled. Circulating levels of IL-2, IL-4, IL-6, IL-10, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ were measured at admission. All patients were screened for fatty liver by computed tomography. Forty-six patients were diagnosed as MAFLD. RESULTS Patients with MAFLD (n = 46) had higher serum IL-6 levels (median 7.1 [interquartile range, 4.3-20.0] vs. 4.8 [2.6-11.6] pg/mL, p = 0.030) compared to their counterparts without MAFLD (n = 121). After adjustment for age and sex, patients with MAFLD had a ~2.6-fold higher risk of having severe COVID-19 than those without MAFLD. After adjustment for age, sex and metabolic co-morbidities, increased serum IL-6 levels remained associated with higher risk of severe COVID-19, especially among infected patients with MAFLD (adjusted-odds ratio 1.14, 95% CI 1.05-1.23; p = 0.002). There was a significant interaction effect between serum IL-6 levels and MAFLD for risk of severe COVID-19 (p for interaction = 0.008). CONCLUSIONS Patients with MAFLD and elevated serum IL-6 levels at admission are at higher risk for severe illness from COVID-19.
Collapse
Affiliation(s)
- Feng Gao
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kenneth I. Zheng
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hua-Dong Yan
- Department of Hepatology, Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Hwamei Hospital, Ningbo No.2 Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Qing-Feng Sun
- Department of Infectious Diseases, Ruian People’s Hospital, Wenzhou, China
| | - Ke-Hua Pan
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ting-Yao Wang
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yong-Ping Chen
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Christopher D. Byrne
- Southampton National Institute for Health Research Biomedical Research Centre, University Hospital Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Hepatology, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| |
Collapse
|
11
|
Al-Bari MAA, Hossain S, Zahan MKE. Exploration of sex-specific and age-dependent COVID-19 fatality rate in Bangladesh population. World J Radiol 2021; 13:1-18. [PMID: 33574990 PMCID: PMC7852349 DOI: 10.4329/wjr.v13.i1.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/20/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease-2019 (COVID-19), a respiratory tract infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global health emergency and a threat the entire world. The COVID-19 shows a wide spectrum of clinical presentations, severity, and fatality rates. Although the fatal outcomes of the COVID-19 pandemic are evident in all age groups, the most devastating impact on the health consequences and death from COVID-19 are associated with older adults, especially older men. COVID-19 pandemic is affecting different countries in the world especially in the 65+ years age male group. In fact, several genes involved into the regulation of the immune system are strategically placed on the X-chromosome and trigger a gendered mediated antiviral fight. The aim of this study is to explore and exploit whether a relationship exists between male sex and COVID-19 mortality and the relationship is age dependent. Herein we discuss the possible role of physiological and immunological sex differences into the higher morbidity and mortality of SARS-CoV-2 between females and males. Deciphering gender differences in COVID-19 offers a window into the principles of immunity against SARS-CoV-2 infection and this information on ageing dependent gender disparity might contribute to our current understanding of COVID-19 infection and disease treatment.
Collapse
Affiliation(s)
| | - Showna Hossain
- Department of Pharmacy, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md Kudrat-E Zahan
- Department of Chemistry, University of Rajshahi, Rajshahi 6205, Bangladesh
| |
Collapse
|
12
|
Baiardo Redaelli M, Landoni G, Di Napoli D, Morselli F, Sartorelli M, Sartini C, Ruggeri A, Salonia A, Dagna L, Zangrillo A. Novel Coronavirus Disease (COVID-19) in Italian Patients: Gender Differences in Presentation and Severity. SAUDI JOURNAL OF MEDICINE & MEDICAL SCIENCES 2021; 9:59-62. [PMID: 33519345 PMCID: PMC7839571 DOI: 10.4103/sjmms.sjmms_542_20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/06/2020] [Accepted: 11/19/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND In the first wave of the novel coronavirus (severe acute respiratory syndrome coronavirus 2) infections, Italy experienced a heavy burden of hospital admissions for acute respiratory distress syndromes associated with the novel coronavirus disease (COVID-19). Early evidence suggested that females are less affected than males. OBJECTIVE This study aimed to assess the gender-related differences in presentation and severity among COVID-19 patients admitted to IRCCS San Raffaele Hospital, Milan, Italy. MATERIALS AND METHODS This prospective observational study included all patients admitted to the hospital between February 25 and April 19, 2020, with a positive real-time reverse-transcriptase polymerase chain reaction for COVID-19. The following data were collected: date of admission, gender, age and details of intensive care unit admission and outcomes. RESULTS A total of 901 patients with COVID-19 were admitted to the hospital and provided consent for the study. Of these, 284 were female (31.5%). The percentage of admitted female patients significantly increased over time (25.9% of all admissions in the first half of the study period vs. 37.1% in the second half; P < 0.001). Females accounted for 14.4% of all COVID-19 intensive care unit admissions. There was no gender-based difference in the overall hospital mortality: 20.1% for females and 19.2% for males (P = 0.8). CONCLUSIONS In our hospital, which was in the epicenter of the first wave of COVID-19 pandemic in Italy, female patients were few, presented late and were less critical than male patients.
Collapse
Affiliation(s)
| | - Giovanni Landoni
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Hospital, Milan, Italy
- Department of Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Davide Di Napoli
- Department of Health Directorate, IRCCS San Raffaele Hospital, Milan, Italy
| | - Federica Morselli
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Hospital, Milan, Italy
| | - Marianna Sartorelli
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Hospital, Milan, Italy
| | - Chiara Sartini
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Hospital, Milan, Italy
| | - Annalisa Ruggeri
- Department of Hematology and Stem Cell Transplantation, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Salonia
- Department of Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Lorenzo Dagna
- Department of Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, Milan, Italy
| | - Alberto Zangrillo
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Hospital, Milan, Italy
- Department of Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
13
|
Karaderi T, Bareke H, Kunter I, Seytanoglu A, Cagnan I, Balci D, Barin B, Hocaoglu MB, Rahmioglu N, Asilmaz E, Taneri B. Host Genetics at the Intersection of Autoimmunity and COVID-19: A Potential Key for Heterogeneous COVID-19 Severity. Front Immunol 2020; 11:586111. [PMID: 33414783 PMCID: PMC7783411 DOI: 10.3389/fimmu.2020.586111] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
COVID-19 presentation is very heterogeneous across cases, and host factors are at the forefront for the variables affecting the disease manifestation. The immune system has emerged as a key determinant in shaping the outcome of SARS-CoV-2 infection. It is mainly the deleterious unconstrained immune response, rather than the virus itself, which leads to severe cases of COVID-19 and the associated mortality. Genetic susceptibility to dysregulated immune response is highly likely to be among the host factors for adverse disease outcome. Given that such genetic susceptibility has also been observed in autoimmune diseases (ADs), a number of critical questions remain unanswered; whether individuals with ADs have a significantly different risk for COVID-19-related complications compared to the general population, and whether studies on the genetics of ADs can shed some light on the host factors in COVID-19. In this perspective, we discuss the host genetic factors, which have been under investigation in association with COVID-19 severity. We touch upon the intricate link between autoimmunity and COVID-19 pathophysiology. We put forth a number of autoimmune susceptibility genes, which have the potential to be additional host genetic factors for modifying the severity of COVID-19 presentation. In summary, host genetics at the intersection of ADs and COVID-19 may serve as a source for understanding the heterogeneity of COVID-19 severity, and hence, potentially holds a key in achieving effective strategies in risk group identification, as well as effective treatments.
Collapse
Affiliation(s)
- Tugce Karaderi
- Center for Health Data Science, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Disease Systems Biology Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Halin Bareke
- Department of Biological Sciences, Faculty of Arts and Sciences, Eastern Mediterranean University, Famagusta, Cyprus
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Institute of Health Sciences, Marmara University, Istanbul, Turkey
| | - Imge Kunter
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, Cyprus
| | - Adil Seytanoglu
- Department of Biological Sciences, Faculty of Arts and Sciences, Eastern Mediterranean University, Famagusta, Cyprus
| | - Ilgin Cagnan
- Department of Biological Sciences, Faculty of Arts and Sciences, Eastern Mediterranean University, Famagusta, Cyprus
| | - Deniz Balci
- Department of Biological Sciences, Faculty of Arts and Sciences, Eastern Mediterranean University, Famagusta, Cyprus
| | - Burc Barin
- Vaccines and Infectious Diseases Therapeutic Research Area, The Emmes Company, Rockville, MD, United States
| | - Mevhibe B. Hocaoglu
- Cicely Saunders Institute of Palliative Care, Policy & Rehabilitation, Florence Nightingale Faculty of Nursing, Midwifery & Palliative Care, King’s College London, London, United Kingdom
- Dr Fazil Kucuk Faculty of Medicine, Eastern Mediterranean University, Famagusta, Cyprus
| | - Nilufer Rahmioglu
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Esra Asilmaz
- Department of Gastroenterology, Homerton University Hospital, Clapton, United Kingdom
| | - Bahar Taneri
- Department of Biological Sciences, Faculty of Arts and Sciences, Eastern Mediterranean University, Famagusta, Cyprus
- Department of Genetics and Cell Biology, Faculty of Health, Medicine & Life Sciences, Institute for Public Health Genomics, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
14
|
Harnessing Cellular Immunity for Vaccination against Respiratory Viruses. Vaccines (Basel) 2020. [DOI: 10.3390/vaccines8040783
expr 839529059 + 832255227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Severe respiratory viral infections, such as influenza, metapneumovirus (HMPV), respiratory syncytial virus (RSV), rhinovirus (RV), and coronaviruses, including severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), cause significant mortality and morbidity worldwide. These viruses have been identified as important causative agents of acute respiratory disease in infants, the elderly, and immunocompromised individuals. Clinical signs of infection range from mild upper respiratory illness to more serious lower respiratory illness, including bronchiolitis and pneumonia. Additionally, these illnesses can have long-lasting impact on patient health well beyond resolution of the viral infection. Aside from influenza, there are currently no licensed vaccines against these viruses. However, several research groups have tested various vaccine candidates, including those that utilize attenuated virus, virus-like particles (VLPs), protein subunits, and nanoparticles, as well as recent RNA vaccines, with several of these approaches showing promise. Historically, vaccine candidates have advanced, dependent upon the ability to activate the humoral immune response, specifically leading to strong B cell responses and neutralizing antibody production. More recently, it has been recognized that the cellular immune response is also critical in proper resolution of viral infection and protection against detrimental immunopathology associated with severe disease and therefore, must also be considered when analyzing the efficacy and safety of vaccine candidates. These candidates would ideally result in robust CD4+ and CD8+ T cell responses as well as high-affinity neutralizing antibody. This review will aim to summarize established and new approaches that are being examined to harness the cellular immune response during respiratory viral vaccination.
Collapse
|
15
|
Lukacs NW, Malinczak CA. Harnessing Cellular Immunity for Vaccination against Respiratory Viruses. Vaccines (Basel) 2020; 8:783. [PMID: 33371275 PMCID: PMC7766447 DOI: 10.3390/vaccines8040783] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Severe respiratory viral infections, such as influenza, metapneumovirus (HMPV), respiratory syncytial virus (RSV), rhinovirus (RV), and coronaviruses, including severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), cause significant mortality and morbidity worldwide. These viruses have been identified as important causative agents of acute respiratory disease in infants, the elderly, and immunocompromised individuals. Clinical signs of infection range from mild upper respiratory illness to more serious lower respiratory illness, including bronchiolitis and pneumonia. Additionally, these illnesses can have long-lasting impact on patient health well beyond resolution of the viral infection. Aside from influenza, there are currently no licensed vaccines against these viruses. However, several research groups have tested various vaccine candidates, including those that utilize attenuated virus, virus-like particles (VLPs), protein subunits, and nanoparticles, as well as recent RNA vaccines, with several of these approaches showing promise. Historically, vaccine candidates have advanced, dependent upon the ability to activate the humoral immune response, specifically leading to strong B cell responses and neutralizing antibody production. More recently, it has been recognized that the cellular immune response is also critical in proper resolution of viral infection and protection against detrimental immunopathology associated with severe disease and therefore, must also be considered when analyzing the efficacy and safety of vaccine candidates. These candidates would ideally result in robust CD4+ and CD8+ T cell responses as well as high-affinity neutralizing antibody. This review will aim to summarize established and new approaches that are being examined to harness the cellular immune response during respiratory viral vaccination.
Collapse
Affiliation(s)
- Nicholas W. Lukacs
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA;
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
16
|
Escobar AL, Rodriguez TDM, Monteiro JC. Lethality and characteristics of deaths due to COVID-19 in Rondônia: an observational study. ACTA ACUST UNITED AC 2020; 30:e2020763. [PMID: 33331602 DOI: 10.1590/s1679-49742021000100019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To describe the characteristics of deaths due to COVID-19 in the state of Rondônia. METHODS This was a descriptive study, with data from the Brazilian National Health System Epidemiological Surveillance System Computerization Strategy (E-SUS-VE, notified between January 1 and August 20, 2020. Statistical tests (Chi-square and Marascuilo procedure) were applied, where differences were considered to be significant when p< 0.05. RESULTS 184,146 suspected cases were reported, of which 49,804 were confirmed as COVID-19, and 1,020 died (lethality 2.1%). Statistically significant differences were observed between age groups and lethality (p-value <0.001); lethality was greater as age increased (Marascuilo procedure, significant in the comparison between the over 60s and the other age groups); death was higher among males (2.7% lethality); and lethality was higher among Black people (3.0%). CONCLUSION Lethality was greater among the elderly, males and people of brown and black skin color in Rondônia.
Collapse
Affiliation(s)
- Ana Lúcia Escobar
- Universidade Federal de Rondônia, Departamento de Medicina, Porto Velho, Rondônia, Brasil
| | | | | |
Collapse
|
17
|
Osman AM, Farouk S, Osman NM, Abdrabou AM. Longitudinal assessment of chest computerized tomography and oxygen saturation for patients with COVID-19. EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2020. [PMCID: PMC7724780 DOI: 10.1186/s43055-020-00376-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background COVID-19 is a pandemic disease and is important to know the nature of the disease during follow-up. We aimed to study different imaging signs and changes that occurred during the initial scan, follow-up, and complications. Moreover, to study the CT severity score and its relation to the patients’ clinical condition using oxygen saturation as a parameter. This was a retrospective study conducted on 125 patients, including 293 CT studies, from March till the end of August 2020. The mean age was 47.4 ± 15.7 years and 64.8% of the patients were males. All patients proved to have COVID-19 by the RT-PCR test. The CT studies of the patients were divided into four stages according to the timing after the onset of symptoms. The incidence of different CT features, patterns, complications, CT severity score, and oxygen saturation were recorded in different stages. Results During follow-up studies, GGOs were the most constant and common CT features. Consolidation and crazy paving showed gradual progression to reach the peak at the 3rd stage. Mixed attenuation pattern was the commonest pattern at the 3rd stage while a pure GGO pattern was the commonest feature in other stages. The complications occurred mostly in the 3rd stage. Nevertheless, the CT severity score showed an inverse relation with oxygen saturation. Conclusion Radiological evaluation of COVID-19 pneumonia showed gradual progression till the peak critical stage at 8-14 days from the onset of symptoms. Consolidation and mixed attenuation pattern can be considered as CT signs of disease severity.
Collapse
|
18
|
Daniel BS, Murrell DF. The role of women as past and present advocates for vaccinations: Relevance in the COVID-19 setting. Int J Womens Dermatol 2020; 7:228-229. [PMID: 33195788 PMCID: PMC7648508 DOI: 10.1016/j.ijwd.2020.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/29/2020] [Accepted: 10/15/2020] [Indexed: 01/31/2023] Open
Affiliation(s)
- Benjamin S Daniel
- Department of Dermatology, St George Hospital, Kogarah, New South Wales, Australia.,Faculty of Medicine, University of New South Wales, New South Wales, Australia
| | - Dedee F Murrell
- Department of Dermatology, St George Hospital, Kogarah, New South Wales, Australia.,Faculty of Medicine, University of New South Wales, New South Wales, Australia
| |
Collapse
|
19
|
Salinas-Escudero G, Carrillo-Vega MF, Granados-García V, Martínez-Valverde S, Toledano-Toledano F, Garduño-Espinosa J. A survival analysis of COVID-19 in the Mexican population. BMC Public Health 2020; 20:1616. [PMID: 33109136 PMCID: PMC7588954 DOI: 10.1186/s12889-020-09721-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/16/2020] [Indexed: 01/02/2023] Open
Abstract
Background At present, the Americas report the largest number of cases of COVID-19 worldwide. In this region, Mexico is the third country with most deaths (20,781 total deaths). A sum that may be explained by the high proportion of people over 50 and the high rate of chronic diseases. The aim of this analysis is to investigate the risk factors associated with COVID-19 deaths in Mexican population using survival analysis. Methods Our analysis includes all confirmed COVID-19 cases contained in the dataset published by the Epidemiological Surveillance System for Viral Respiratory Diseases of the Mexican Ministry of Health. We applied survival analysis to investigate the impact of COVID-19 on the Mexican population. From this analysis, we plotted Kaplan-Meier curves, and constructed a Cox proportional hazard model. Results The analysis included the register of 16,752 confirmed cases of COVID-19 with mean age 46.55 ± 15.55 years; 58.02% (n = 9719) men, and 9.37% (n = 1569) deaths. Male sex, older age, chronic kidney disease, pneumonia, hospitalization, intensive care unit admission, intubation, and health care in public health services, were independent factors increasing the risk of death due to COVID-19 (p < 0.001). Conclusions The risk of dying at any time during follow-up was clearly higher for men, individuals in older age groups, people with chronic kidney disease, and people hospitalized in public health services. Supplementary Information The online version contains supplementary material available at 10.1186/s12889-020-09721-2.
Collapse
Affiliation(s)
- Guillermo Salinas-Escudero
- Center for Economic and Social Studies in Health, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - María Fernanda Carrillo-Vega
- Geriatric Epidemiology Unit, Research Department, Instituto Nacional de Geriatría, Av. Contreras 428, Col. San Jerónimo Lídice, Alcaldía Magdalena Contreras, Mexico City, Mexico.
| | - Víctor Granados-García
- Epidemiological and Health Services Research Unit Aging Area, Centro Médico Nacional, Siglo XXI, Mexico City, Mexico
| | - Silvia Martínez-Valverde
- Center for Economic and Social Studies in Health, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | | | - Juan Garduño-Espinosa
- Research Department, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| |
Collapse
|