1
|
Baral H, Kaundal RK. Novel insights into neuroinflammatory mechanisms in traumatic brain injury: Focus on pattern recognition receptors as therapeutic targets. Cytokine Growth Factor Rev 2025:S1359-6101(25)00041-3. [PMID: 40169306 DOI: 10.1016/j.cytogfr.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/14/2025] [Indexed: 04/03/2025]
Abstract
Traumatic brain injury (TBI) is a major global health concern and a leading cause of morbidity and mortality. Neuroinflammation is a pivotal driver of both the acute and chronic phases of TBI, with pattern recognition receptors (PRRs) playing a central role in detecting damage-associated molecular patterns (DAMPs) and initiating immune responses. Key PRR subclasses, including Toll-like receptors (TLRs), NOD-like receptors (NLRs), and cGAS-like receptors (cGLRs), are abundantly expressed in central nervous system (CNS) cells and infiltrating immune cells, where they mediate immune activation, amplify neuroinflammatory cascades, and exacerbate secondary injury mechanisms. This review provides a comprehensive analysis of these PRR subclasses, detailing their distinct structural characteristics, expression patterns, and roles in post-TBI immune responses. We critically examine the molecular mechanisms underlying PRR-mediated signaling and explore their contributions to neuroinflammatory pathways and secondary injury processes. Additionally, preclinical and clinical evidence supporting the therapeutic potential of targeting PRRs to mitigate neuroinflammation and improve neurological outcomes is discussed. By integrating recent advancements, this review offers an in-depth understanding of the role of PRRs in TBI pathobiology and underscores the potential of PRR-targeted therapies in mitigating TBI-associated neurological deficits.
Collapse
Affiliation(s)
- Harapriya Baral
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Ravinder K Kaundal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India.
| |
Collapse
|
2
|
Meyer SP, Bauer R, Brüne B, Schmid T. The role of type I interferon signaling in myeloid anti-tumor immunity. Front Immunol 2025; 16:1547466. [PMID: 40098954 PMCID: PMC11911529 DOI: 10.3389/fimmu.2025.1547466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/14/2025] [Indexed: 03/19/2025] Open
Abstract
Tumors often arise in chronically inflamed, and thus immunologically highly active niches. While immune cells are able to recognize and remove transformed cells, tumors eventually escape the control of the immune system by shaping their immediate microenvironment. In this context, macrophages are of major importance, as they initially exert anti-tumor functions before they adopt a tumor-associated phenotype that instead inhibits anti-tumor immune responses and even allows for sustaining a smoldering inflammatory, growth promoting tumor microenvironment (TME). Type I interferons (IFNs) are well established modulators of inflammatory reactions. While they have been shown to directly inhibit tumor growth, there is accumulating evidence that they also play an important role in altering immune cell functions within the TME. In the present review, we focus on the impact of type I IFNs on anti-tumor responses, driven by monocytes and macrophages. Specifically, we will provide an overview of tumor-intrinsic factors, which impinge on IFN-stimulated gene (ISG) expression, like the presence of nucleic acids, metabolites, or hypoxia. We will further summarize the current understanding of the consequences of altered IFN responses on macrophage phenotypes, i.e., differentiation, polarization, and functions. For the latter, we will focus on macrophage-mediated tumor cell killing and phagocytosis, as well as on how macrophages affect their environment by secreting cytokines and directly interacting with immune cells. Finally, we will discuss how type I IFN responses in macrophages might affect and should be considered for current and future tumor therapies.
Collapse
Affiliation(s)
- Sofie Patrizia Meyer
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Rebekka Bauer
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt, Germany
| | - Tobias Schmid
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany
| |
Collapse
|
3
|
Cyr B, de Rivero Vaccari JP. Sex Differences in the Inflammatory Profile in the Brain of Young and Aged Mice. Cells 2023; 12:1372. [PMID: 37408205 DOI: 10.3390/cells12101372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 07/07/2023] Open
Abstract
Neurodegenerative diseases are a leading cause of death worldwide with no cures identified. Thus, there is a critical need for preventative measures and treatments as the number of patients is expected to increase. Many neurodegenerative diseases have sex-biased prevalence, indicating a need to examine sex differences when investigating prevention and treatment strategies. Inflammation is a key contributor to many neurodegenerative diseases and is a promising target for prevention since inflammation increases with age, which is known as inflammaging. Here, we analyzed the protein expression levels of cytokines, chemokines, and inflammasome signaling proteins in the cortex of young and aged male and female mice. Our results show an increase in caspase-1, interleukin (IL)-1β, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), and ASC specks in females compared to males. Additionally, there was an increase in IL-1α, VEGF-A, CCL3, CXCL1, CCL4, CCL17, and CCL22 in aging females and an increase in IL-8, IL-17a, IL-7, LT-α, and CCL22 in aging males. IL-12/IL-23p40, CCL13, and IL-10 were increased in females compared to males but not with age. These results indicate that there are sex differences in cortical inflammaging and provide potential targets to attenuate inflammation to prevent the development of neurodegenerative disease.
Collapse
Affiliation(s)
- Brianna Cyr
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Center for Cognitive Neuroscience and Aging, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
4
|
Urabe A, Doi S, Nakashima A, Ike T, Morii K, Sasaki K, Doi T, Arihiro K, Masaki T. Klotho deficiency intensifies hypoxia-induced expression of IFN-α/β through upregulation of RIG-I in kidneys. PLoS One 2021; 16:e0258856. [PMID: 34673800 PMCID: PMC8530307 DOI: 10.1371/journal.pone.0258856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 10/06/2021] [Indexed: 12/29/2022] Open
Abstract
Hypoxia is a common pathway to the progression of end-stage kidney disease. Retinoic acid-inducible gene I (RIG-I) encodes an RNA helicase that recognizes viruses including SARS-CoV2, which is responsible for the production of interferon (IFN)-α/β to prevent the spread of viral infection. Recently, RIG-I activation was found under hypoxic conditions, and klotho deficiency was shown to intensify the activation of RIG-I in mouse brains. However, the roles of these functions in renal inflammation remain elusive. Here, for in vitro study, the expression of RIG-I and IFN-α/β was examined in normal rat kidney (NRK)-52E cells incubated under hypoxic conditions (1% O2). Next, siRNA targeting RIG-I or scramble siRNA was transfected into NRK52E cells to examine the expression of RIG-I and IFN-α/β under hypoxic conditions. We also investigated the expression levels of RIG-I and IFN-α/β in 33 human kidney biopsy samples diagnosed with IgA nephropathy. For in vivo study, we induced renal hypoxia by clamping the renal artery for 10 min in wild-type mice (WT mice) and Klotho-knockout mice (Kl−/− mice). Incubation under hypoxic conditions increased the expression of RIG-I and IFN-α/β in NRK52E cells. Their upregulation was inhibited in NRK52E cells transfected with siRNA targeting RIG-I. In patients with IgA nephropathy, immunohistochemical staining of renal biopsy samples revealed that the expression of RIG-I was correlated with that of IFN-α/β (r = 0.57, P<0.001, and r = 0.81, P<0.001, respectively). The expression levels of RIG-I and IFN-α/β were upregulated in kidneys of hypoxic WT mice and further upregulation was observed in hypoxic Kl−/− mice. These findings suggest that hypoxia induces the expression of IFN-α/β through the upregulation of RIG-I, and that klotho deficiency intensifies this hypoxia-induced expression in kidneys.
Collapse
Affiliation(s)
- Asako Urabe
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Shigehiro Doi
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
- * E-mail: (SD); (TM)
| | - Ayumu Nakashima
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
- Department of Stem Cell Biology and Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takeshi Ike
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Kenichi Morii
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Kensuke Sasaki
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Toshiki Doi
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Koji Arihiro
- Department of Anatomical Pathology, Hiroshima University Hospital, Hiroshima, Japan
| | - Takao Masaki
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
- * E-mail: (SD); (TM)
| |
Collapse
|
5
|
Weng R, Liu S, Gu X, Zhong Z. Clonal diversity of the B cell receptor repertoire in patients with coronary in-stent restenosis and type 2 diabetes. Open Life Sci 2021; 16:884-898. [PMID: 34522782 PMCID: PMC8402935 DOI: 10.1515/biol-2021-0091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 05/23/2021] [Accepted: 07/20/2021] [Indexed: 01/01/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is known as a risk factor for coronary in-stent restenosis (ISR) in patients with coronary artery disease (CAD). Evidence suggests that B cells play a functional role in the progression of atherosclerotic lesions. However, the B cell receptor (BCR) repertoire in patients with ISR remains unclear. This study aims to profile the BCR repertoire in patients with coronary ISR/T2DM. A total of 21 CAD patients with or without ISR/T2DM were enrolled. PBMCs were isolated and examined for BCR repertoire profiles using DNA-seq. Our results showed that the diversity of amino acid sequences in ISR DM patients was higher than that in ISR -DM patients. The frequencies of 21 V/J paired genes differed between ISR DM and -ISR DM patients, while frequencies of 5 V/J paired genes differed between ISR DM and ISR -DM. The -ISR -DM group presented the highest clonotype overlap rate, while ISR DM patients presented the lowest overlap rate. Our study presented the BCR repertoires in patients with ISR/T2DM. The data suggested different BCR signatures between patients with ISR and T2DM. Further analysis of BCR profiles would enhance understanding of ISR.
Collapse
Affiliation(s)
- Ruiqiang Weng
- Research Experimental Center, Meizhou People’s Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-Sen University, Meizhou 514031, People’s Republic of China
- Guangdong Provincial Engineering and Technological Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou 514031, People’s Republic of China
- Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou 514031, People’s Republic of China
- Center for Precision Medicine, Meizhou People’s Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou 514031, People’s Republic of China
| | - Sudong Liu
- Research Experimental Center, Meizhou People’s Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-Sen University, Meizhou 514031, People’s Republic of China
- Guangdong Provincial Engineering and Technological Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou 514031, People’s Republic of China
- Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou 514031, People’s Republic of China
- Center for Precision Medicine, Meizhou People’s Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou 514031, People’s Republic of China
| | - Xiaodong Gu
- Research Experimental Center, Meizhou People’s Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-Sen University, Meizhou 514031, People’s Republic of China
- Guangdong Provincial Engineering and Technological Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou 514031, People’s Republic of China
- Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou 514031, People’s Republic of China
- Center for Precision Medicine, Meizhou People’s Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou 514031, People’s Republic of China
| | - Zhixiong Zhong
- Guangdong Provincial Engineering and Technological Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou 514031, People’s Republic of China
- Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou 514031, People’s Republic of China
- Center for Precision Medicine, Meizhou People’s Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou 514031, People’s Republic of China
- Center for Cardiovascular Diseases, Meizhou People’s Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou 514031, People’s Republic of China
| |
Collapse
|
6
|
Barrett JP, Knoblach SM, Bhattacharya S, Gordish-Dressman H, Stoica BA, Loane DJ. Traumatic Brain Injury Induces cGAS Activation and Type I Interferon Signaling in Aged Mice. Front Immunol 2021; 12:710608. [PMID: 34504493 PMCID: PMC8423402 DOI: 10.3389/fimmu.2021.710608] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/05/2021] [Indexed: 12/21/2022] Open
Abstract
Aging adversely affects inflammatory processes in the brain, which has important implications in the progression of neurodegenerative disease. Following traumatic brain injury (TBI), aged animals exhibit worsened neurological function and exacerbated microglial-associated neuroinflammation. Type I Interferons (IFN-I) contribute to the development of TBI neuropathology. Further, the Cyclic GMP-AMP Synthase (cGAS) and Stimulator of Interferon Genes (STING) pathway, a key inducer of IFN-I responses, has been implicated in neuroinflammatory activity in several age-related neurodegenerative diseases. Here, we set out to investigate the effects of TBI on cGAS/STING activation, IFN-I signaling and neuroinflammation in young and aged C57Bl/6 male mice. Using a controlled cortical impact model, we evaluated transcriptomic changes in the injured cortex at 24 hours post-injury, and confirmed activation of key neuroinflammatory pathways in biochemical studies. TBI induced changes were highly enriched for transcripts that were involved in inflammatory responses to stress and host defense. Deeper analysis revealed that TBI increased expression of IFN-I related genes (e.g. Ifnb1, Irf7, Ifi204, Isg15) and IFN-I signaling in the injured cortex of aged compared to young mice. There was also a significant age-related increase in the activation of the DNA-recognition pathway, cGAS, which is a key mechanism to propagate IFN-I responses. Finally, enhanced IFN-I signaling in the aged TBI brain was confirmed by increased phosphorylation of STAT1, an important IFN-I effector molecule. This age-related activation of cGAS and IFN-I signaling may prove to be a mechanistic link between microglial-associated neuroinflammation and neurodegeneration in the aged TBI brain.
Collapse
Affiliation(s)
- James P Barrett
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Susan M Knoblach
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, Washington, DC, United States.,Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Surajit Bhattacharya
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, Washington, DC, United States
| | - Heather Gordish-Dressman
- Center for Translational Science, Children's Research Institute, Children's National Health System, Washington, DC, United States.,Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Bogdan A Stoica
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, United States.,Veterans Affairs (VA) Maryland Health Care System, Baltimore VA Medical Center, Baltimore, MD, United States
| | - David J Loane
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, United States.,School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
7
|
The RIG-I Signal Pathway Mediated Panax notoginseng Saponin Anti-Inflammatory Effect in Ischemia Stroke. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8878428. [PMID: 34462642 PMCID: PMC8403041 DOI: 10.1155/2021/8878428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/09/2021] [Accepted: 08/07/2021] [Indexed: 01/10/2023]
Abstract
Panax notoginseng saponins (PNS), the main bioactive constituents of a traditional Chinese herb Panax notoginseng, were commonly used for ischemic stroke in China. However, the associated cellular and molecular mechanisms of PNS have not been well examined. This study aimed to decipher the underlying molecular target of PNS in the treatment of cerebral ischemia. The oxygen-glucose-deprived (OGD) model of rat brain microvascular endothelial cells (BMECs) was used in this study. The alteration of gene expression in rat BMECs after PNS treatment was measured by microarray and indicated that there were 38 signaling pathways regulated by PNS. Among them, RIG-I receptor and related signaling molecules TNF receptor-associated factor 2 (Traf2) and nuclear factor-kappa B (NF-κB) were significantly suppressed by PNS, which was verified again in OGD-induced BMECs measured by FQ-PCR and western blotting and in middle cerebral artery occlusion (MCAO) rats measured by immunohistochemistry. The levels of TNF-α, IL-8, and the downstream cytokines regulated by RIG-I receptor pathway were also decreased by PNS. Meanwhile, the neurological evaluation, hematoxylin and eosin (HE) staining, and Evans blue staining were conducted to evaluate the effect of PNS in MCAO rats. Results showed PNS significantly improved functional outcome and cerebral vascular leakage. Flow cytometry showed the number of the inflammatory cells infiltrated in brain tissue was decreased in PNS treatment. Our results identified that RIG-I signaling pathway mediated anti-inflammatory properties of PNS in cerebral ischemia, which provided the novel insights of PNS application in clinics.
Collapse
|
8
|
Secreted Extracellular Vesicle Molecular Cargo as a Novel Liquid Biopsy Diagnostics of Central Nervous System Diseases. Int J Mol Sci 2021; 22:ijms22063267. [PMID: 33806874 PMCID: PMC8004928 DOI: 10.3390/ijms22063267] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 12/11/2022] Open
Abstract
Secreted extracellular vesicles (EVs) are heterogeneous cell-derived membranous granules which carry a large diversity of molecules and participate in intercellular communication by transferring these molecules to target cells by endocytosis. In the last decade, EVs’ role in several pathological conditions, from etiology to disease progression or therapy evasion, has been consolidated, including in central nervous system (CNS)-related disorders. For this review, we performed a systematic search of original works published, reporting the presence of molecular components expressed in the CNS via EVs, which have been purified from plasma, serum or cerebrospinal fluid. Our aim is to provide a list of molecular EV components that have been identified from both nonpathological conditions and the most common CNS-related disorders. We discuss the methods used to isolate and enrich EVs from specific CNS-cells and the relevance of its components in each disease context.
Collapse
|
9
|
Rahman Z, Dandekar MP. Crosstalk between gut microbiome and immunology in the management of ischemic brain injury. J Neuroimmunol 2021; 353:577498. [PMID: 33607506 DOI: 10.1016/j.jneuroim.2021.577498] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/30/2020] [Accepted: 01/21/2021] [Indexed: 02/06/2023]
Abstract
Ischemic brain injury is a serious neurological complication, which accrues an immense activation of neuroinflammatory responses. Several lines of research suggested the interconnection of gut microbiota perturbation with the activation of proinflammatory mediators. Intestinal microbial communities also interchange information with the brain through various afferent and efferent channels and microbial by-products. Herein, we discuss the different microelements of gut microbiota and its connection with the host immune system and how change in immune-microbial signatures correlates with the stroke incidence and post-injury neurological sequelae. The activated inflammatory cells increase the production of proinflammatory cytokines, chemokines, proteases and adhesive proteins that are involved in the systemic inflammation, blood brain barrier disruption, gut dysbiosis and aggravation of ischemic brain injury. We suggest that fine-tuning of commensal gut microbiota (eubiosis) may regulate the activation of CNS resident cells like microglial, astrocytes, mast cells and natural killer cells.
Collapse
Affiliation(s)
- Ziaur Rahman
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Manoj P Dandekar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India.
| |
Collapse
|
10
|
Chen SH, Scott XO, Ferrer Marcelo Y, Almeida VW, Blackwelder PL, Yavagal DR, Peterson EC, Starke RM, Dietrich WD, Keane RW, de Rivero Vaccari JP. Netosis and Inflammasomes in Large Vessel Occlusion Thrombi. Front Pharmacol 2021; 11:607287. [PMID: 33569001 PMCID: PMC7868597 DOI: 10.3389/fphar.2020.607287] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/18/2020] [Indexed: 12/20/2022] Open
Abstract
The inflammatory response appears to play a critical role in clotting in which neutrophil extracellular traps (NETs) are the major drivers of thrombosis in acute ischemic stroke (AIS). The inflammasome is an innate immune complex involved in the activation of interleukin (IL)-18 and IL-1β through caspase-1, but whether the inflammasome plays a role in NETosis in AIS remains poorly understood. Here we assessed the levels of inflammasome signaling proteins in NETs and their association with clinical and procedural outcomes of mechanical thrombectomy for AIS. Electron microscopy and immunofluorescence indicate the presence of NETs in thrombi of patients with AIS. Moreover, the inflammasome signaling proteins caspase-1 and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) were also present in clots associated with the marker of NETosis citrullinated histone 3H (CitH3). Analysis of protein levels by a simple plex assay show that caspase-1, ASC and interleukin (IL)-1β were significantly elevated in clots when compared to plasma of AIS patients and healthy controls, while IL-18 levels were lower. Moreover, multivariate analyses show that IL-1β levels in clots contribute to the number of passes to achieve complete recanalization, and that ASC, caspase-1 and IL-18 are significant contributors to time to recanalization. Thus, inflammasome proteins are elevated in NETs present in thrombi of patients with AIS that contribute to poor outcomes following stroke.
Collapse
Affiliation(s)
- Stephanie H Chen
- Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Xavier O Scott
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Yoandy Ferrer Marcelo
- Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Vania W Almeida
- Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Patricia L Blackwelder
- University of Miami Center for Advanced Microscopy (UMCAM) and Department of Chemistry, University of Miami, Coral Gables, FL, United States
| | - Dileep R Yavagal
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Eric C Peterson
- Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Robert M Starke
- Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - W Dalton Dietrich
- Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Robert W Keane
- Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States.,Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States.,Center for Cognitive Neuroscience and Aging University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
11
|
Vanpouille-Box C, Hoffmann JA, Galluzzi L. Pharmacological modulation of nucleic acid sensors - therapeutic potential and persisting obstacles. Nat Rev Drug Discov 2019; 18:845-867. [PMID: 31554927 DOI: 10.1038/s41573-019-0043-2] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2019] [Indexed: 02/08/2023]
Abstract
Nucleic acid sensors, primarily TLR and RLR family members, as well as cGAS-STING signalling, play a critical role in the preservation of cellular and organismal homeostasis. Accordingly, deregulated nucleic acid sensing contributes to the origin of a diverse range of disorders, including infectious diseases, as well as cardiovascular, autoimmune and neoplastic conditions. Accumulating evidence indicates that normalizing aberrant nucleic acid sensing can mediate robust therapeutic effects. However, targeting nucleic acid sensors with pharmacological agents, such as STING agonists, presents multiple obstacles, including drug-, target-, disease- and host-related issues. Here, we discuss preclinical and clinical data supporting the potential of this therapeutic paradigm and highlight key limitations and possible strategies to overcome them.
Collapse
Affiliation(s)
- Claire Vanpouille-Box
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Jules A Hoffmann
- University of Strasbourg Institute for Advanced Studies, Strasbourg, France.,CNRS UPR 9022, Institute for Molecular and Cellular Biology, Strasbourg, France.,Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA. .,Sandra and Edward Meyer Cancer Center, New York, NY, USA. .,Department of Dermatology, Yale School of Medicine, New Haven, CT, USA. .,Université Paris Descartes, Paris, France.
| |
Collapse
|
12
|
Xu M, Liu PP, Li H. Innate Immune Signaling and Its Role in Metabolic and Cardiovascular Diseases. Physiol Rev 2019; 99:893-948. [PMID: 30565509 DOI: 10.1152/physrev.00065.2017] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The innate immune system is an evolutionarily conserved system that senses and defends against infection and irritation. Innate immune signaling is a complex cascade that quickly recognizes infectious threats through multiple germline-encoded cell surface or cytoplasmic receptors and transmits signals for the deployment of proper countermeasures through adaptors, kinases, and transcription factors, resulting in the production of cytokines. As the first response of the innate immune system to pathogenic signals, inflammatory responses must be rapid and specific to establish a physical barrier against the spread of infection and must subsequently be terminated once the pathogens have been cleared. Long-lasting and low-grade chronic inflammation is a distinguishing feature of type 2 diabetes and cardiovascular diseases, which are currently major public health problems. Cardiometabolic stress-induced inflammatory responses activate innate immune signaling, which directly contributes to the development of cardiometabolic diseases. Additionally, although the innate immune elements are highly conserved in higher-order jawed vertebrates, lower-grade jawless vertebrates lack several transcription factors and inflammatory cytokine genes downstream of the Toll-like receptors (TLRs) and retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) pathways, suggesting that innate immune signaling components may additionally function in an immune-independent way. Notably, recent studies from our group and others have revealed that innate immune signaling can function as a vital regulator of cardiometabolic homeostasis independent of its immune function. Therefore, further investigation of innate immune signaling in cardiometabolic systems may facilitate the discovery of new strategies to manage the initiation and progression of cardiometabolic disorders, leading to better treatments for these diseases. In this review, we summarize the current progress in innate immune signaling studies and the regulatory function of innate immunity in cardiometabolic diseases. Notably, we highlight the immune-independent effects of innate immune signaling components on the development of cardiometabolic disorders.
Collapse
Affiliation(s)
- Meng Xu
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan , China ; Medical Research Center, Zhongnan Hospital of Wuhan University , Wuhan , China ; Animal Experiment Center, Wuhan University , Wuhan , China ; Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Ontario , Canada
| | - Peter P Liu
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan , China ; Medical Research Center, Zhongnan Hospital of Wuhan University , Wuhan , China ; Animal Experiment Center, Wuhan University , Wuhan , China ; Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Ontario , Canada
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan , China ; Medical Research Center, Zhongnan Hospital of Wuhan University , Wuhan , China ; Animal Experiment Center, Wuhan University , Wuhan , China ; Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Ontario , Canada
| |
Collapse
|
13
|
Mejias NH, Martinez CC, Stephens ME, de Rivero Vaccari JP. Contribution of the inflammasome to inflammaging. JOURNAL OF INFLAMMATION-LONDON 2018; 15:23. [PMID: 30473634 PMCID: PMC6240324 DOI: 10.1186/s12950-018-0198-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/05/2018] [Indexed: 01/14/2023]
Abstract
Background Inflammation is a natural part of the aging process. This process is referred to as inflammaging. Inflammaging has been associated with deleterious outcomes in the aging brain in diseases such as Alzheimer’s disease and Parkinson’s disease. The inflammasome is a multi-protein complex of the innate immune response involved in the activation of caspase-1 and the processing of the inflammatory cytokines interleukin (IL)-1β and IL-18. We have previously shown that the inflammasome plays a role in the aging process in the brain. In this study, we analyzed the brain of young (3 months old) and aged (18 months old) mice for the expression of inflammasome proteins. Results Our findings indicate that the inflammasome proteins NLRC4, caspase-1, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), and IL-18 are elevated in the cytosol of cortical lysates in aged mice when compared to young. In addition, in the cytosolic fraction of hippocampal lysates in aged mice, we found an increase in NLRC4, caspase-1, caspase-11, ASC and IL-1β. Moreover, we found higher levels of ASC in the mitochondrial fraction of aged mice when compared to young, consistent with higher levels of the substrate of pyroptosis gasdermin-D (GSDM-D) and increased pyroptosome formation (ASC oligomerization). Importantly, in this study we obtained fibroblasts from a subject that donated his cells at three different ages (49, 52 and 64 years old (y/o)) and found that the protein levels of caspase-1 and ASC were higher at 64 than at 52 y/o. In addition, the 52 y/o cells were more susceptible to oxidative stress as determined by lactose dehydrogenase (LDH) release levels. However, this response was ameliorated by inhibition of the inflammasome with Ac-Tyr-Val-Ala-Asp-Chloromethylketone (Ac-YVAD-CMK). In addition, we found that the protein levels of ASC and IL-18 are elevated in the serum of subjects over the age of 45 y/o when compared to younger subjects, and that ASC was higher in Caucasians than Blacks and Hispanics, whereas IL-18 was higher in Caucasians than in blacks, regardless of age. Conclusions Taken together, our data indicate that the inflammasome contributes to inflammaging and that the inflammasome-mediated cell death mechanism of pyroptosis contributes to cell demise in the aging brain.
Collapse
Affiliation(s)
- Nancy H Mejias
- Department of Neurological Surgery, Lois Pope LIFE Center, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, 1095 NW 14th Terrace, 3-25, Miami, FL 33136-1060 USA
| | - Camila C Martinez
- Department of Neurological Surgery, Lois Pope LIFE Center, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, 1095 NW 14th Terrace, 3-25, Miami, FL 33136-1060 USA
| | - Marisa E Stephens
- Department of Neurological Surgery, Lois Pope LIFE Center, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, 1095 NW 14th Terrace, 3-25, Miami, FL 33136-1060 USA
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery, Lois Pope LIFE Center, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, 1095 NW 14th Terrace, 3-25, Miami, FL 33136-1060 USA
| |
Collapse
|
14
|
Kerr N, García-Contreras M, Abbassi S, Mejias NH, Desousa BR, Ricordi C, Dietrich WD, Keane RW, de Rivero Vaccari JP. Inflammasome Proteins in Serum and Serum-Derived Extracellular Vesicles as Biomarkers of Stroke. Front Mol Neurosci 2018; 11:309. [PMID: 30233311 PMCID: PMC6131639 DOI: 10.3389/fnmol.2018.00309] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/14/2018] [Indexed: 12/19/2022] Open
Abstract
The inflammasome is a key contributor to the inflammatory innate immune response after stroke. We have previously shown that inflammasome proteins are released in extracellular vesicles (EV) after brain and spinal cord injury. In addition, we have shown that inflammasome proteins offer great promise as biomarkers of central nervous system (CNS) injury following brain trauma. In the present study, we used a Simple Plex Assay (Protein Simple), a novel multi-analyte automated microfluidic immunoassay platform, to analyze serum and serum-derived EV samples from stroke patients and control subjects for inflammasome protein levels of caspase-1, apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC), Interleukins (IL)-1β, and (IL)-18. Receiver operator characteristic (ROC) curves with associated confidence intervals obtained from the analysis of serum samples revealed that the area under the curve (AUC) for ASC was 0.99 with a confidence interval between 0.9914 and 1.004, whereas the AUC for caspase-1, IL-1β, and IL-18 were 0.75, 0.61, and 0.67, respectively. Thus, these data indicate that ASC is a potential biomarker of stroke and highlight the role of the inflammasome in the inflammatory response after brain ischemia.
Collapse
Affiliation(s)
- Nadine Kerr
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami, Miami, FL, United States
| | - Marta García-Contreras
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Sam Abbassi
- Department of Physiology and Biophysics, University of Miami, Miami, FL, United States
| | - Nancy H Mejias
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami, Miami, FL, United States
| | - Brandon R Desousa
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami, Miami, FL, United States
| | - Camillo Ricordi
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - W Dalton Dietrich
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami, Miami, FL, United States.,InflamaCORE, LLC, Miami, FL, United States
| | - Robert W Keane
- Department of Physiology and Biophysics, University of Miami, Miami, FL, United States.,InflamaCORE, LLC, Miami, FL, United States
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami, Miami, FL, United States.,InflamaCORE, LLC, Miami, FL, United States
| |
Collapse
|
15
|
Li L, Yang R, Feng M, Guo Y, Wang Y, Guo J, Lu X. Rig-I is involved in inflammation through the IPS-1/TRAF 6 pathway in astrocytes under chemical hypoxia. Neurosci Lett 2018; 672:46-52. [PMID: 29474875 DOI: 10.1016/j.neulet.2018.02.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/13/2018] [Accepted: 02/15/2018] [Indexed: 12/26/2022]
Abstract
The retinoic acid-inducible gene I (RIG-I) is a crucial cytoplasmic pathogen recognition receptor involved in neuroinflammation in degenerative diseases. In the present study, in vitro human astrocytes were subjected to a chemical hypoxia model using cobalt chloride pretreatment. Chemical hypoxia induces the up-regulation of RIG-I in astrocytes and results in the expression of inflammatory cytokines IL-1β, IL-6, and TNF-α in an NF-κB dependent manner. Elevated RIG-I modulates the interaction of interferon-β promoter stimulator-1 (IPS-1) and TNF receptor-associated factor 6 (TRAF6) following chemical hypoxia. Inhibition of IPS-1 or TRAF6 suppresses RIG-I-induced NF-κB activation and inflammatory cytokines in response to chemical hypoxia. These data suggest that chemical hypoxia leads to RIG-I activation and the expression of inflammatory cytokines through the NF-κB pathway. Blocking IPS-1/TRAF6 pathway relieves RIG-I-induced neuroinflammation in astrocytes subjected to hypoxia.
Collapse
Affiliation(s)
- Lei Li
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China; Department of Geriatrics, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Rongli Yang
- Department of Geriatrics, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Meijiang Feng
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China
| | - YiChen Guo
- School of medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - YuXuan Wang
- School of medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun Guo
- School of medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiang Lu
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China.
| |
Collapse
|
16
|
De Luna N, Suárez-Calvet X, Lleixà C, Diaz-Manera J, Olivé M, Illa I, Gallardo E. Hypoxia triggers IFN-I production in muscle: Implications in dermatomyositis. Sci Rep 2017; 7:8595. [PMID: 28819164 PMCID: PMC5561123 DOI: 10.1038/s41598-017-09309-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/25/2017] [Indexed: 12/21/2022] Open
Abstract
Dermatomyositis is an inflammatory myopathy characterized by symmetrical proximal muscle weakness and skin changes. Muscle biopsy hallmarks include perifascicular atrophy, loss of intramuscular capillaries, perivascular and perimysial inflammation and the overexpression of IFN-inducible genes. Among them, the retinoic-acid inducible gene 1 (RIG-I) is specifically overexpressed in perifascicular areas of dermatomyositis muscle. The aim of this work was to study if RIG-I expression may be modulated by hypoxia using an in vitro approach. We identified putative hypoxia response elements (HRE) in RIG-I regulatory regions and luciferase assays confirmed that RIG-I is a new HIF-inducible gene. We observed an increase expression of RIG-I both by Real time PCR and Western blot in hypoxic conditions in human muscle cells. Cell transfection with a constitutive RIG-I expression vector increased levels of phospho-IRF-3, indicating that RIG-I promotes binding of transcription factors to the enhancer sequence of IFN. Moreover, release of IFN-β was observed in hypoxic conditions. Finally, HIF-1α overexpression was confirmed in the muscle biopsies and in some RIG-I positive perifascicular muscle fibres but not in controls. Our results indicate that hypoxia triggers the production of IFN-I in vitro, and may contribute to the pathogenesis of DM together with other inflammatory factors.
Collapse
Affiliation(s)
- Noemí De Luna
- Neuromuscular Diseases Unit, Neurology Department, Hospital de la Santa Creu I Sant Pau, Universitat Autònoma de Barcelona, Institut de Recerca Sant Pau, (Barcelona) and Biomedical Network Research Centre on Rare Diseases (CIBERER), Sant Pau, Spain
| | - Xavier Suárez-Calvet
- Neuromuscular Diseases Unit, Neurology Department, Hospital de la Santa Creu I Sant Pau, Universitat Autònoma de Barcelona, Institut de Recerca Sant Pau, (Barcelona) and Biomedical Network Research Centre on Rare Diseases (CIBERER), Sant Pau, Spain
| | - Cinta Lleixà
- Neuromuscular Diseases Unit, Neurology Department, Hospital de la Santa Creu I Sant Pau, Universitat Autònoma de Barcelona, Institut de Recerca Sant Pau, (Barcelona) and Biomedical Network Research Centre on Rare Diseases (CIBERER), Sant Pau, Spain
| | - Jordi Diaz-Manera
- Neuromuscular Diseases Unit, Neurology Department, Hospital de la Santa Creu I Sant Pau, Universitat Autònoma de Barcelona, Institut de Recerca Sant Pau, (Barcelona) and Biomedical Network Research Centre on Rare Diseases (CIBERER), Sant Pau, Spain
| | - Montse Olivé
- Department of Pathology and Neuromuscular Unit, IDIBELL-Hospital Universitari de Bellvitge, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Isabel Illa
- Neuromuscular Diseases Unit, Neurology Department, Hospital de la Santa Creu I Sant Pau, Universitat Autònoma de Barcelona, Institut de Recerca Sant Pau, (Barcelona) and Biomedical Network Research Centre on Rare Diseases (CIBERER), Sant Pau, Spain.
| | - Eduard Gallardo
- Neuromuscular Diseases Unit, Neurology Department, Hospital de la Santa Creu I Sant Pau, Universitat Autònoma de Barcelona, Institut de Recerca Sant Pau, (Barcelona) and Biomedical Network Research Centre on Rare Diseases (CIBERER), Sant Pau, Spain.
| |
Collapse
|
17
|
Wilhelm I, Nyúl-Tóth Á, Kozma M, Farkas AE, Krizbai IA. Role of pattern recognition receptors of the neurovascular unit in inflamm-aging. Am J Physiol Heart Circ Physiol 2017; 313:H1000-H1012. [PMID: 28801521 DOI: 10.1152/ajpheart.00106.2017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 08/09/2017] [Accepted: 08/09/2017] [Indexed: 01/18/2023]
Abstract
Aging is associated with chronic inflammation partly mediated by increased levels of damage-associated molecular patterns, which activate pattern recognition receptors (PRRs) of the innate immune system. Furthermore, many aging-related disorders are associated with inflammation. PRRs, such as Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain-like receptors (NLRs), are expressed not only in cells of the innate immune system but also in other cells, including cells of the neurovascular unit and cerebral vasculature forming the blood-brain barrier. In this review, we summarize our present knowledge about the relationship between activation of PRRs expressed by cells of the neurovascular unit-blood-brain barrier, chronic inflammation, and aging-related pathologies of the brain. The most important damage-associated molecular pattern-sensing PRRs in the brain are TLR2, TLR4, and NLR family pyrin domain-containing protein-1 and pyrin domain-containing protein-3, which are activated during physiological and pathological aging in microglia, neurons, astrocytes, and possibly endothelial cells and pericytes.
Collapse
Affiliation(s)
- Imola Wilhelm
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary; and .,Institute of Life Sciences, Vasile Goldiş Western University of Arad, Arad, Romania
| | - Ádám Nyúl-Tóth
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary; and
| | - Mihály Kozma
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary; and
| | - Attila E Farkas
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary; and
| | - István A Krizbai
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary; and.,Institute of Life Sciences, Vasile Goldiş Western University of Arad, Arad, Romania
| |
Collapse
|