1
|
Zhao X, Wang S, Wang J, Bai X, Yang Z, Guo H, Wu L, Liu C, Yu X, Du J. Construction of a thiophene-based conjugated polymer/TP-PCN S-scheme to enhance visible-light-driven photocatalytic activity: Promotion of wound healing in super-resistant bacterial infections. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137429. [PMID: 39892129 DOI: 10.1016/j.jhazmat.2025.137429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/18/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
S-scheme heterojunctions have garnered significant attention in the field of photocatalytic antimicrobials due to their superior charge separation efficiency and higher redox capacity. In this study, an innovative linear conjugated polymer (PCO) was combined with fragmented carbon nitride (TP-PCN) to create PCO/TP-PCN organic-organic S-scheme heterojunctions, which markedly enhanced the photocatalytic antimicrobial performance. The composite (PCO-7/TP-PCN) demonstrated the ability to combat bacterial infections under visible light irradiation, effectively eradicating approximately 2.16 × 107 cfu/ml MRSA within 6 min. This exceptional photocatalytic performance can be attributed to the successful formation of an S-scheme heterojunction between PCO and TP-PCN, as well as the interaction of surface functional groups of PCO-7/TP-PCN with bacteria. Results from UV-Vis-NIR DRS and in situ-XPS experiments indicated a significant enhancement in carrier transport rate through the establishment of a built-in electric field and energy band bending at the interface. In vitro and in vivo experiments further demonstrated that PCO-7/TP-PCN not only exhibited potent antimicrobial activity under visible light irradiation but also promoted angiogenesis to inhibit inflammatory responses. Therefore, it can be concluded that this organic-organic S-scheme heterojunction photocatalyst holds great potential for development as a promising new generation of efficient antimicrobial materials, which could aid in preventing bacterial infection of wounds and ensuring effective wound healing.
Collapse
Affiliation(s)
- Xin Zhao
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun 130103, PR China; College of Chemistry, Jilin Normal University, Siping 136000, PR China
| | - Simiao Wang
- College of Chemistry, Jilin Normal University, Siping 136000, PR China
| | - Jiayu Wang
- Department of Biological Science, School of Life Science, Jilin Normal University, Siping, Jilin 136000, PR China
| | - Xinyue Bai
- College of Chemistry, Jilin Normal University, Siping 136000, PR China
| | - Zhongwei Yang
- Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, PR China
| | - Haiyong Guo
- Department of Biological Science, School of Life Science, Jilin Normal University, Siping, Jilin 136000, PR China
| | - Lina Wu
- College of Chemistry, Baicheng Normal University, Baicheng 137000, PR China.
| | - Chunbo Liu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun 130103, PR China; College of Engineering, Jilin Normal University, Siping 136000, PR China.
| | - Xin Yu
- Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, PR China.
| | - Juan Du
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun 130103, PR China; College of Chemistry, Jilin Normal University, Siping 136000, PR China.
| |
Collapse
|
2
|
Anggraini F, Fatimah I, Ramanda GD, Nurlaela N, Wijayanti HK, Sagadevan S, Oh WC, Doong RA. Unveiling the green synthesis of WO 3 nanoparticles by using beetroot (Beta vulgaris) extract for photocatalytic oxidation of rhodamine B. CHEMOSPHERE 2025; 370:143890. [PMID: 39653190 DOI: 10.1016/j.chemosphere.2024.143890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/09/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
Tungsten oxide (WO3) nanoparticles (WO3NPs) were prepared using beetroot (Beta vulgaris) extract. The synthesis was optimized by evaluating the effect of pH during the reduction of the WO3 precursor and sintering temperature. Physicochemical characterization of the formed nanoparticles was performed using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and UV-visible diffuse reflectance UV-visible spectroscopy. Furthermore, the prepared WO3NPs were employed as photocatalyst for rhodamine B removal over the photocatalytic oxidation mechanism. Synthesis optimization revealed that a single phase of WO3NPs obtained by reduction at pH 4 and a sintering temperature of 550 °C. XRD and XPS measurements revealed that the single-phase WO3NPs was obtained with a crystallite size of 26.4 nm. SEM and transmission electron microscopy (TEM) indicated polymorphic forms, predominantly as nanorods, with a mean particle size of 24 nm. The WO3NPs have a band gap energy of 2.9 eV, supporting their performance as a photocatalyst. Evaluation of the photocatalytic activities of WO3NPs represents high activity and reusability of the material. A removal efficiency of 99.67% was achieved during 30 min of treatment under UV light illumination. A study on the effect of scavengers revealed the important role of hydroxy radicals in the photocatalysis mechanism. WO3NPs can be recycled and reused for photocatalysis, maintaining photoactivity for five cycles.
Collapse
Affiliation(s)
- Fadhila Anggraini
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Jl. Kaliurang Km 14, Sleman, Yogyakarta, Indonesia
| | - Is Fatimah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Jl. Kaliurang Km 14, Sleman, Yogyakarta, Indonesia; Nanomaterial and Sustainable Chemistry Research Center, Universitas Islam Indonesia, Laboratory of Chemistry Building, Integrated Campus of UII, Jl. Kaliurang Km 14, Sleman, Yogyakarta, Indonesia.
| | - Galih Dwiki Ramanda
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Jl. Kaliurang Km 14, Sleman, Yogyakarta, Indonesia; Nanomaterial and Sustainable Chemistry Research Center, Universitas Islam Indonesia, Laboratory of Chemistry Building, Integrated Campus of UII, Jl. Kaliurang Km 14, Sleman, Yogyakarta, Indonesia
| | - Nunung Nurlaela
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Jl. Kaliurang Km 14, Sleman, Yogyakarta, Indonesia; Nanomaterial and Sustainable Chemistry Research Center, Universitas Islam Indonesia, Laboratory of Chemistry Building, Integrated Campus of UII, Jl. Kaliurang Km 14, Sleman, Yogyakarta, Indonesia
| | - Hiroko Kawaii Wijayanti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Jl. Kaliurang Km 14, Sleman, Yogyakarta, Indonesia; Nanomaterial and Sustainable Chemistry Research Center, Universitas Islam Indonesia, Laboratory of Chemistry Building, Integrated Campus of UII, Jl. Kaliurang Km 14, Sleman, Yogyakarta, Indonesia
| | - Suresh Sagadevan
- Nanotechnology & Catalysis Research Centre, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Won-Chun Oh
- Department of Advanced Materials Science and Engineering, Hanseo University, Seosan-si, 356-706, South Korea
| | - Ruey-An Doong
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan
| |
Collapse
|
3
|
Tahir S, Iqbal M, Shad S, Nisa S, Ibrar A, Nadeem A, Attia SM, Thebo KH, Ullah K. Biosynthesis of Zr-doped WO 3 nanoparticles: Evaluation of antibacterial, antioxidant, and enzymatic activities. Microb Pathog 2025; 198:107192. [PMID: 39622481 DOI: 10.1016/j.micpath.2024.107192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 12/15/2024]
Abstract
Herein, biocompatible pure tungsten oxide (WO3) and zirconium-doped tungsten oxide (Zr-doped WO3) nanoparticles (NPs) were prepared via a green approach from moringa plants with different doping concentrations (3, 5, and 7 %). The as-synthesized materials were morphologically and optically characterized using scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD), Fourier-transform infrared (FTIR), and ultraviolet-visible (UV-Vis) spectroscopy. The FTIR spectra clearly showed that two distinguishing bands at 603 and 674 cm-1 of WO3 were shifted to a higher wavenumber upon doping with zirconium. EDX analysis confirmed the successful synthesis of pure WO3 and Zr-doped WO3 by the green approach. The UV-Vis study exhibited that the bandgap of pure WO3 is blue-shifted upon Zr doping due to the Burstein-Moss effect. The XRD pattern revealed that the crystalline nature of WO3 is increased by increasing the Zr content. Further, the as-synthesized materials were evaluated for enzymatic, antibacterial, and antioxidant activities. The enzymatic results showed that 7 % of Zr-doped WO3 NPs have a higher activity for the α-amylase enzyme. Additionally, 7 % Zr-doped WO3 also showed better antioxidant activity, up to 85 % for free radical scavenging. The antibacterial performance of 7 % Zr-doped WO3 is higher as compared to other corresponding samples for different strains of bacteria. These results demonstrated that this facile and novel synthetic route will open a new door for designing an efficient nanomaterial for biomedical applications.
Collapse
Affiliation(s)
- Sana Tahir
- Department of Chemistry, Faculty of Physical and Applied Sciences, The University of Haripur, Haripur, 22620, KPK, Pakistan
| | - Muzaffar Iqbal
- Department of Chemistry, Faculty of Physical and Applied Sciences, The University of Haripur, Haripur, 22620, KPK, Pakistan.
| | - Salma Shad
- Department of Chemistry, Faculty of Physical and Applied Sciences, The University of Haripur, Haripur, 22620, KPK, Pakistan
| | - Sobia Nisa
- Department of Microbiology, Faculty of Biological and Biomedical Science, The University of Haripur, Haripur, 22620, KPK, Pakistan
| | - Aliya Ibrar
- Department of Chemistry, Faculty of Physical and Applied Sciences, The University of Haripur, Haripur, 22620, KPK, Pakistan.
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Khalid Hussain Thebo
- Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, China.
| | - Kamran Ullah
- Department of Biology, Faculty of Biological and Biomedical Science, The University of Haripur, Haripur, 22620, KPK, Pakistan
| |
Collapse
|
4
|
Ouyang B, Wei D, Wu B, Yan L, Gang H, Cao Y, Chen P, Zhang T, Wang H. In the View of Electrons Transfer and Energy Conversion: The Antimicrobial Activity and Cytotoxicity of Metal-Based Nanomaterials and Their Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303153. [PMID: 37721195 DOI: 10.1002/smll.202303153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/28/2023] [Indexed: 09/19/2023]
Abstract
The global pandemic and excessive use of antibiotics have raised concerns about environmental health, and efforts are being made to develop alternative bactericidal agents for disinfection. Metal-based nanomaterials and their derivatives have emerged as promising candidates for antibacterial agents due to their broad-spectrum antibacterial activity, environmental friendliness, and excellent biocompatibility. However, the reported antibacterial mechanisms of these materials are complex and lack a comprehensive understanding from a coherent perspective. To address this issue, a new perspective is proposed in this review to demonstrate the toxic mechanisms and antibacterial activities of metal-based nanomaterials in terms of energy conversion and electron transfer. First, the antimicrobial mechanisms of different metal-based nanomaterials are discussed, and advanced research progresses are summarized. Then, the biological intelligence applications of these materials, such as biomedical implants, stimuli-responsive electronic devices, and biological monitoring, are concluded based on trappable electrical signals from electron transfer. Finally, current improvement strategies, future challenges, and possible resolutions are outlined to provide new insights into understanding the antimicrobial behaviors of metal-based materials and offer valuable inspiration and instructional suggestions for building future intelligent environmental health.
Collapse
Affiliation(s)
- Baixue Ouyang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Dun Wei
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Bichao Wu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Lvji Yan
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Haiying Gang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Yiyun Cao
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Peng Chen
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Tingzheng Zhang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Haiying Wang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
- School of Metallurgy and Environment and Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Central South, University, Changsha, 410083, China
| |
Collapse
|
5
|
Sarani M, Hamidian K, Barani M, Adeli‐Sardou M, Khonakdar HA. α-Fe 2 O 3 @Ag and Fe 3 O 4 @Ag Core-Shell Nanoparticles: Green Synthesis, Magnetic Properties and Cytotoxic Performance. ChemistryOpen 2023; 12:e202200250. [PMID: 37260410 PMCID: PMC10235882 DOI: 10.1002/open.202200250] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/22/2023] [Indexed: 06/02/2023] Open
Abstract
This work provides the synthetic route for the arrangement of Fe3 O4 @Ag and α-Fe2 O3 @Ag core-shell nanoparticles (NPs) with cytotoxic capabilities. The production of Fe3 O4 @Ag and α-Fe2 O3 @Ag core-shell NPs was facilitated utilizing S. persica bark extracts. The results of Powder X-ray Diffraction (PXRD), Ultraviolet-visible (UV-Vis) spectroscopy, Vibrating Sample Magnetometry (VSM), Energy Dispersive X-ray (EDX) analysis, Field Emission Scanning Electron Microscopy (FESEM), and Transmission Electron Microscopy (TEM) supported the green synthesis and characterization of Fe3 O4 @Ag and α-Fe2 O3 @Ag NPs. The particle size was measured by the TEM analysis to be about 30 and 50 nm, respectively; while the results of FESEM showed that α-Fe2 O3 @Ag and Fe3 O4 @Ag particles contained multifaceted particles with a size of 50-60 nm and 20-25 nm, respectively. The outcomes of VSM were indicative of a saturation magnetization of 37 and 0.18 emu/g at room temperature, respectively. The potential cytotoxicity of the synthesized core-shell nanoparticles towards breast cancer (MCF-7) and human umbilical vein endothelial (HUVEC) cells was evaluated by an MTT assay. α-Fe2 O3 @Ag NPs were able to destroy 100 % of MCF-7 cell at doses above 80 μg/mL, and it was confirmed that Fe3 O4 @Ag NPs at a volume of 160 μg/mL can destroy 90 % of MCF-7 cells. Thus, the applicability of the prepared nanoparticles of these nanoparticles in biological and medical fields has been demonstrated.
Collapse
Affiliation(s)
- Mina Sarani
- Zabol Medicinal Plants Research CenterZabol University of Medical SciencesShahid Rajaei StreetZabolIran
| | - Khadijeh Hamidian
- Department of PharmaceuticsFaculty of PharmacyZabol University of Medical SciencesShahid Rajaei StreetZabolIran
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research CenterKerman University of Medical SciencesHaft-Bagh HighwayKermanIran
| | - Mahboubeh Adeli‐Sardou
- Herbal and Traditional Medicines Research CenterKerman University of Medical SciencesHaft-Bagh HighwayKermanIran
- Department of BiotechnologyInstitute of Science and High Technology and Environmental SciencesGraduate University of Advanced TechnologyThe end of Haft Bagh Alavi HighwayKermanIran
| | - Hossein Ali Khonakdar
- Department of Polymer ProcessingIran Polymer and Petrochemical InstituteKaraj HighwayTehranIran
| |
Collapse
|
6
|
Eghbalifam N, Shojaosadati SA, Hashemi-Najafabadi S. Role of bioactive magnetic nanoparticles in the prevention of wound pathogenic biofilm formation using smart nanocomposites. J Nanobiotechnology 2023; 21:161. [PMID: 37211593 DOI: 10.1186/s12951-023-01905-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/19/2023] [Indexed: 05/23/2023] Open
Abstract
BACKGROUND Biofilm formation and its resistance to various antibiotics is a serious health problem in the treatment of wound infections. An ideal wound dressing should have characteristics such as protection of wound from microbial infection, suitable porosity (to absorb wound exudates), proper permeability (to maintain wound moisture), nontoxicity, and biocompatibility. Although silver nanoparticles (AgNPs) have been investigated as antimicrobial agents, their limitations in penetrating into the biofilm, affecting their efficiency, have consistently been an area for further research. RESULTS Consequently, in this study, the optimal amounts of natural and synthetic polymers combination, along with AgNPs, accompanied by iron oxide nanoparticles (IONPs), were utilized to fabricate a smart bionanocomposite that meets all the requirements of an ideal wound dressing. Superparamagnetic IONPs (with the average size of 11.8 nm) were synthesized through co-precipitation method using oleic acid to improve their stability. It was found that the addition of IONPs to bionanocomposites had a synergistic effect on their antibacterial and antibiofilm properties. Cytotoxicity assay results showed that nanoparticles does not considerably affect eukaryotic cells compared to prokaryotic cells. Based on the images obtained by confocal laser scanning microscopy (CLSM), significant AgNPs release was observed when an external magnetic field (EMF) was applied to the bionanocomposites loaded with IONPs, which increased the antibacterial activity and inhibited the formation of biofilm significantly. CONCLUSION These finding indicated that the nanocomposite recommended can have an efficient properties for the management of wounds through prevention and treatment of antibiotic-resistant biofilm.
Collapse
Affiliation(s)
- Naeimeh Eghbalifam
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, 14155-4838, Tehran, Iran
| | - Seyed Abbas Shojaosadati
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, 14155-4838, Tehran, Iran.
| | - Sameereh Hashemi-Najafabadi
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
7
|
Ningsih LA, Yoshida M, Sakai A, Andrew Lin KY, Wu KCW, Catherine HN, Ahamad T, Hu C. Ag-modified TiO 2/SiO 2/Fe 3O 4 sphere with core-shell structure for photo-assisted reduction of 4-nitrophenol. ENVIRONMENTAL RESEARCH 2022; 214:113690. [PMID: 35718164 DOI: 10.1016/j.envres.2022.113690] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/01/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Nitrogen-containing contaminants, such as 4-nitrophenol (4-NP), cause detrimental effects when discharged into the environment and thus should be reduced or removed from ecosystems. In this study, an Ag-loaded TiO2-SiO2-Fe3O4 (TSF) with a core-shell structure was employed for the photo-assisted reduction of 4-NP. Fe3O4, SiO2, and TiO2 in the core-shell structure served as a magnetic center, protective layer, and light absorber, respectively. To improve the reduction activity of 4-NP, Ag was loaded onto TSF under stirring, with a variation of the temperature (2-130 °C) and reaction time (1, 2, and 4 h). Under the optimized conditions, 5Ag-TSF (with 5 wt% of Ag) could promote the reduction of aqueous 4-NP solution (2 × 10-4 M, 75 mL) in the presence of NaBH4 (0.1 M, 5 mL) under irradiation by a metal halide lamp, affording over 98% reduction within 5 min and a rate constant of 0.185 min-1, demonstrating its promising activity. Moreover, due to the advantages of the core-shell structure, the magnetic properties of Fe3O4 were sufficient to enable facile recycling of the sample for further reaction; SiO2 could protect the Fe3O4 center from oxidation or reduction; TiO2 enabled Ag accommodation and absorbed light to generate electron-hole pairs. In summary, an Ag-loaded TiO2-SiO2-Fe3O4 sphere with high activity and recyclability for 4-NP reduction was prepared via a facile and simple stirring method, where the sample can be used as a promising material in environmental remediation.
Collapse
Affiliation(s)
- Lely Ayu Ningsih
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Daan Dist., Taipei City, 106, Taiwan
| | - Masaaki Yoshida
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Ube, Yamaguchi, 755-0097, Japan; Blue Energy Center for SGE Technology (BEST), Yamaguchi University, Ube, Yamaguchi, 755-0097, Japan
| | - Arisu Sakai
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Ube, Yamaguchi, 755-0097, Japan
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture & Research Center of Sustainable Energy and Nanotechnology, National Chung Hsing University, Kuo-Kuang Road, Taichung City, 250, Taiwan
| | - Kevin C W Wu
- Department of Chemical Engineering, National Taiwan University, Daan Dist, Taipei City, 106, Taiwan.
| | - Hepsiba Niruba Catherine
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Daan Dist., Taipei City, 106, Taiwan
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Saudi Arabia
| | - Chechia Hu
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Daan Dist., Taipei City, 106, Taiwan; R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli Dist., Taoyuan City, 320, Taiwan.
| |
Collapse
|
8
|
Wei J, Shen W. FeOOH quantum dot decorated flower-like WO3 microspheres for visible light driven photo-Fenton degradation of methylene blue and acid red-18. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Haounati R, El Guerdaoui A, Ouachtak H, El Haouti R, Bouddouch A, Hafid N, Bakiz B, Santos D, Labd Taha M, Jada A, Ait Addi A. Design of direct Z-scheme superb magnetic nanocomposite photocatalyst Fe3O4/Ag3PO4@Sep for hazardous dye degradation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119399] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
10
|
Feng GN, Huang XT, Jiang XL, Deng TW, Li QX, Li JX, Wu QN, Li SP, Sun XQ, Huang YG, Qin AP, Liang L, Fu JJ. The Antibacterial Effects of Supermolecular Nano-Carriers by Combination of Silver and Photodynamic Therapy. Front Chem 2021; 9:666408. [PMID: 33937203 PMCID: PMC8082423 DOI: 10.3389/fchem.2021.666408] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/19/2021] [Indexed: 11/16/2022] Open
Abstract
The over-use of antibiotics has promoted multidrug resistance and decreased the efficacy of antibiotic therapy. Thus, it is still in great need to develop efficient treatment strategies to combat the bacteria infection. The antimicrobial photodynamic therapy (aPDT) and silver nanoparticles have been emerged as effective antibacterial methods. However, the silver therapy may induce serious damages to human cells at high concentrations and, the bare silver nanoparticles may rapidly aggregate, which would reduce the antibacterial efficacy. The encapsulation of sliver by nano-carrier is a promising way to avoid its aggregation and facilitates the co-delivery of drugs for combination therapy, which does not require high concentration of sliver to exert antibacterial efficacy. This work constructed a self-assembled supermolecular nano-carrier consisting of the photosensitizers (PSs), the anti-inflammatory agent and silver. The synthesized supermolecular nano-carrier produced reactive oxygen species (ROS) under the exposure of 620-nm laser. It exhibited satisfying biocompatibility in L02 cells. And, this nano-carrier showed excellent antibacterial efficacy in Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) as indicated by bacterial growth and colony formation. Its antibacterial performance is further validated by the bacteria morphology through the scanning electron microscope (SEM), showing severely damaged structures of bacteria. To summary, the supermolecular nano-carrier TCPP-MTX-Ag-NP combining the therapeutic effects of ROS and silver may serve as a novel strategy of treatment for bacterial infection.
Collapse
Affiliation(s)
- Gui-ning Feng
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital of Guangzhou Medical University and the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Xiao-tao Huang
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital of Guangzhou Medical University and the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Xin-lin Jiang
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital of Guangzhou Medical University and the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Ting-wei Deng
- School of Pharmaceutical Sciences, Shenzhen University, Shenzhen, China
| | - Qiu-xia Li
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital of Guangzhou Medical University and the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Jie-xia Li
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital of Guangzhou Medical University and the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Qian-ni Wu
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital of Guangzhou Medical University and the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Song-pei Li
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital of Guangzhou Medical University and the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Xian-qiang Sun
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital of Guangzhou Medical University and the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Yu-gang Huang
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital of Guangzhou Medical University and the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Ai-ping Qin
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital of Guangzhou Medical University and the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Lu Liang
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital of Guangzhou Medical University and the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Ji-jun Fu
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital of Guangzhou Medical University and the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
11
|
Pouretedal HR, Bashiri Z, Nasiri M, Arab A. Photo-treatment of TNT wastewater in the presence of nanocomposite of WO3/Fe3O4. PARTICULATE SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1080/02726351.2021.1875521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Hamid Reza Pouretedal
- Faculty of Applied Sciences, Malek Ashtar University of Technology, Shahin Shahr, Iran
| | - Zahra Bashiri
- Faculty of Applied Sciences, Malek Ashtar University of Technology, Shahin Shahr, Iran
| | - Mohammad Nasiri
- Faculty of Applied Sciences, Malek Ashtar University of Technology, Shahin Shahr, Iran
| | - Ali Arab
- Faculty of Applied Sciences, Malek Ashtar University of Technology, Shahin Shahr, Iran
| |
Collapse
|
12
|
Progress in fabrication of one-dimensional catalytic materials by electrospinning technology. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.09.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
13
|
Zia J, Riaz U. Microwave-Assisted Degradation of Paracetamol Drug Using Polythiophene-Sensitized Ag-Ag 2O Heterogeneous Photocatalyst Derived from Plant Extract. ACS OMEGA 2020; 5:16386-16394. [PMID: 32685801 PMCID: PMC7364436 DOI: 10.1021/acsomega.0c00405] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/28/2020] [Indexed: 05/29/2023]
Abstract
Ag-Ag2O nanoparticles were synthesized using Osmium sanctum plant extract. The nanoparticles were sensitized with polythiophene (PTh) and were characterized via scanning electron microscopy with energy dispersive X-ray and elemental mapping, transmission electron microscopy, X-ray diffraction (XRD), Fourier-transform infrared, and UV-vis spectroscopy analyses. The elemental mapping results revealed that the samples were composed of C, S, Ag, and O elements which were uniformly distributed in the nanohybrid. XRD analysis confirmed the crystalline nature of Ag-Ag2O nanoparticles, and the average particle size was found to be ranging between 36 and 40 nm. The optical band gap of Ag-Ag2O, PTh, and Ag-Ag2O/PTh was found to be 2.49, 1.1, 1.5, and 0.68 eV. The catalytic activity of Ag-Ag2O, PTh, and Ag-Ag2O/PTh was investigated by degrading paracetamol drug under microwave irradiation. Around 80% of degradation was achieved during 20 min irradiation. All degradation kinetics were fitted to the pseudo-first-order model. A probable degradation pathway for paracetamol degradation was proposed based on liquid chromatography mass spectrometry analysis of degraded fragments.
Collapse
Affiliation(s)
- Jannatun Zia
- Materials Research Laboratory, Department
of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Ufana Riaz
- Materials Research Laboratory, Department
of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
14
|
Ultraviolet Irradiation Enhances the Microbicidal Activity of Silver Nanoparticles by Hydroxyl Radicals. Int J Mol Sci 2020; 21:ijms21093204. [PMID: 32366059 PMCID: PMC7247328 DOI: 10.3390/ijms21093204] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 12/02/2022] Open
Abstract
It is known that silver has microbicidal qualities; even at a low concentration, silver is active against many kinds of bacteria. Silver nanoparticles (AgNPs) have been extensively studied for a wide range of applications. Alternately, the toxicity of silver to human cells is considerably lower than that to bacteria. Recent studies have shown that AgNPs also have antiviral activity. We found that large amounts of hydroxyl radicals—highly reactive molecular species—are generated when AgNPs are irradiated with ultraviolet (UV) radiation with a wavelength of 365 nm, classified as ultraviolet A (UVA). In this study, we used electron spin resonance direct detection to confirm that UV irradiation of AgNPs produced rapid generation of hydroxyl radicals. As hydroxyl radicals are known to degrade bacteria, viruses, and some chemicals, the enhancement of the microbicidal activity of AgNPs by UV radiation could be valuable for the protection of healthcare workers and the prevention of the spread of infectious diseases.
Collapse
|
15
|
Abdel Maksoud M, Elgarahy AM, Farrell C, Al-Muhtaseb AH, Rooney DW, Osman AI. Insight on water remediation application using magnetic nanomaterials and biosorbents. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213096] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|