1
|
Zheng J, Peng W, Shi H, Zhang J, Hu Q, Chen J. Emerging engineered nanozymes: current status and future perspectives in cancer treatments. NANOSCALE ADVANCES 2025; 7:1226-1242. [PMID: 39882506 PMCID: PMC11774201 DOI: 10.1039/d4na00924j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/10/2025] [Indexed: 01/31/2025]
Abstract
Composite nanozymes are composed of enzymes with similar or different catalytic capabilities and have higher catalytic activity than a single enzyme. In recent years, composite nanozymes have emerged as novel nanomaterial platforms for multiple applications in various research fields, where they are used to produce oxygen, consume glutathione, or produce toxic reactive oxygen species (ROS) for cancer therapy. The therapeutic approach using composite nanozymes is known as chemo-dynamic therapy (CDT). Some composite nanozymes also show special photothermal conversion effects, enabling them to be combined with pioneering cancer treatments, such as photodynamic therapy (PDT), photothermal therapy (PTT) and sonodynamic therapy (SDT), and enhance the anti-cancer effects. In this study, the classification and catalytic performances of composite nanozymes are reviewed, along with their advantages and synthesis methods. Furthermore, the applications of composite nanozymes in the treatment of cancers are emphasized, and the prospective challenges in the future are discussed.
Collapse
Affiliation(s)
- Jiajia Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology Hangzhou Zhejiang China
- Cancer Center, Department of Interventional Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College Hangzhou Zhejiang China
| | - Weili Peng
- Cancer Center, Department of Interventional Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College Hangzhou Zhejiang China
| | - Houhui Shi
- Cancer Center, Department of Interventional Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College Hangzhou Zhejiang China
- College of Pharmaceutical Science, Zhejiang University of Technology Hangzhou Zhejiang China
| | - Jiaqi Zhang
- Cancer Center, Department of Interventional Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College Hangzhou Zhejiang China
| | - Qinglian Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology Hangzhou Zhejiang China
| | - Jun Chen
- Cancer Center, Department of Interventional Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College Hangzhou Zhejiang China
| |
Collapse
|
2
|
Xin J, Shu C, Fu Y, Yu X, Wang Z, Zeng X, Wang R, Meng T, Sun J, Yan M. MOF-confined ultrafine nanozymes with enhanced catalysis for sensitive colorimetric detection of glucose. Talanta 2025; 283:127152. [PMID: 39500180 DOI: 10.1016/j.talanta.2024.127152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/20/2024] [Accepted: 11/02/2024] [Indexed: 12/11/2024]
Abstract
The constrained enzymatic activity and aggregation challenges encountered of nanozymes pose an obstacle to their practical utility, necessitating a strategy to alleviate this problem and improve the enzymatic catalytic efficiency. Herein, MOF-confined ultrafine ZnIrOx clusters (ZnIrOx/ZnIrMOFs) nanozyme have been synthesized by controlling the in-situ growth of ZnIrOx via a one-pot method. Notably, due to the domain-limiting effect of MOF, the ZnIrOx clusters with small size grew uniformly in the structure of ZnIrMOFs nanosheets, while the presence of Zn atoms improved the crystallinity of the MOF phase and the dispersion of ZnIrOx clusters. Moreover, the obtained ZnIrOx/ZnIrMOFs exhibited excellent oxidase- and peroxidase-like activities and better substrate affinity, which can directly and effectively catalyze chromogenic reaction to produce corresponding color and signal changes. Adopting this strategy, we established a visual, sensitive, and selective colorimetric method for glucose detection with a linear range and detection limit of 2.66-319 μM and 1.9 μM, respectively. The successful detection of glucose in real serum and food samples implies the promising MOF-confined ultrafine nanozymes in biomedical diagnostics and in food industry.
Collapse
Affiliation(s)
- Jianhui Xin
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, Shandong, 253023, China
| | - Chang Shu
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou, Shandong, 253023, China
| | - Yuxin Fu
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou, Shandong, 253023, China
| | - Xue Yu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, Shandong, 253023, China
| | - Zhuqing Wang
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, Shandong, 253023, China
| | - Xueyuan Zeng
- Department of Neurology, Wuxi Hospital Affiliate to Nanjing University of Chinese Medicine, Wuxi, Jiangsu, 214071, China.
| | - Rui Wang
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, Shandong, 253023, China
| | - Tian Meng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, Jilin, 130022, China
| | - Jian Sun
- College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China.
| | - Mengxia Yan
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, Shandong, 253023, China.
| |
Collapse
|
3
|
Zhou X, Feng S, Xu Q, Li Y, Lan J, Wang Z, Ding Y, Wang S, Zhao Q. Current advances in nanozyme-based nanodynamic therapies for cancer. Acta Biomater 2025; 191:1-28. [PMID: 39571955 DOI: 10.1016/j.actbio.2024.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/29/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
Nanozymes are nano-catalysis materials with enzyme-like activities, which can repair the defects of natural enzyme such as harsh catalytic conditions, and harness their strengths to treat tumor. The emerging nanodynamic therapies improved drug selectivity and decreased drug tolerance, while causing efficient cell apoptosis through the generated reactive oxygen species (ROS). Nanodynamic therapies based on nanozymes can improve the complicated tumor microenvironment (TME) to reduce the defect rate of nanodynamic therapies, and provide more options for tumor treatment. This review summarized the characteristics and applications of nanozymes with different activities and the factors influencing the activity of nanozymes. We also focused on the application of nanozymes in nanodynamic therapies, including photodynamic therapy (PDT), chemodynamic therapy (CDT), and sonodynamic therapy (SDT). Moreover, we discussed the strategies for optimizing nanodynamic therapies based on nanozymes for tumor treatment in detail, and provided a systematic review of tactics for synergies with other tumor therapies. Ultimately, we analyzed the shortcomings of nanodynamic therapies based on nanozymes and the relevant research prospect, which would provide sufficient evidence and lay a foundation for further research. STATEMENT OF SIGNIFICANCE: 1. The novelty and significance of the work with respect to the existing literatures. (1) Recent advances in nanozyme-based nanodynamic therapies are comprehensively and systematically reviewed, and strategies to address the limitations and challenges of current therapies based on nanozymes are discussed firstly. (2) The mechanism of nanozymes in nanodynamic therapies is described for the first time. The synergistic therapies, prospects, and challenges of nanozyme-based nanodynamic therapies are innovatively discussed. 2. The scientific impact and interest to our readership. This review focuses on the recent progress of nanozyme-based nanodynamic therapies. This review indicates the way forward for the combined treatment of nanozymes and nanodynamic therapies, and lays a foundation for facilitating theoretical development in clinic.
Collapse
Affiliation(s)
- Xubin Zhou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Shuaipeng Feng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Qingqing Xu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Yian Li
- School of Libra Arts of Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Jiaru Lan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Ziyi Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Yiduo Ding
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
4
|
Alven S, Gandidzanwa S, Ngalo B, Poswayo O, Madanhire T, Aderibigbe BA, Tshentu Z. Platinum Group Metals Nanoparticles in Breast Cancer Therapy. Pharmaceutics 2024; 16:1162. [PMID: 39339199 PMCID: PMC11434984 DOI: 10.3390/pharmaceutics16091162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Despite various methods currently used in cancer therapy, breast cancer remains the leading cause of morbidity and mortality worldwide. Current therapeutics face limitations such as multidrug resistance, drug toxicity and off-target effects, poor drug bioavailability and biocompatibility, and inefficient drug delivery. Nanotechnology has emerged as a promising approach to cancer diagnosis, imaging, and therapy. Several preclinical studies have demonstrated that compounds and nanoparticles formulated from platinum group metals (PGMs) effectively treat breast cancer. PGMs are chemically stable, easy to functionalise, versatile, and tunable. They can target hypoxic microenvironments, catalyse the production of reactive oxygen species, and offer the potential for combination therapy. PGM nanoparticles can be incorporated with anticancer drugs to improve efficacy and can be attached to targeting moieties to enhance tumour-targeting efficiency. This review focuses on the therapeutic outcomes of platinum group metal nanoparticles (PGMNs) against various breast cancer cells and briefly discusses clinical trials of these nanoparticles in breast cancer treatment. It further illustrates the potential applications of PGMNs in breast cancer and presents opportunities for future PGM-based nanomaterial applications in combatting breast cancer.
Collapse
Affiliation(s)
- Sibusiso Alven
- Department of Chemistry, Nelson Mandela University, Gqeberha 6001, South Africa
| | | | - Basabele Ngalo
- Department of Chemistry, Nelson Mandela University, Gqeberha 6001, South Africa
| | - Olwethu Poswayo
- Department of Chemistry, Nelson Mandela University, Gqeberha 6001, South Africa
| | - Tatenda Madanhire
- Department of Chemistry, Nelson Mandela University, Gqeberha 6001, South Africa
- Department of Chemistry, University of South Africa, Johannesburg 1710, South Africa
| | | | - Zenixole Tshentu
- Department of Chemistry, Nelson Mandela University, Gqeberha 6001, South Africa
| |
Collapse
|
5
|
Zhang TQ, Lv QY, Jin WL. The cellular-centered view of hypoxia tumor microenvironment: Molecular mechanisms and therapeutic interventions. Biochim Biophys Acta Rev Cancer 2024; 1879:189137. [PMID: 38880161 DOI: 10.1016/j.bbcan.2024.189137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/01/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Cancer is a profoundly dynamic, heterogeneous and aggressive systemic ailment, with a coordinated evolution of various types of tumor niches. Hypoxia plays an indispensable role in the tumor micro-ecosystem, drastically enhancing the plasticity of cancer cells, fibroblasts and immune cells and orchestrating intercellular communication. Hypoxia-induced signals, particularly hypoxia-inducible factor-1α (HIF-1α), drive the reprogramming of genetic, transcriptional, and proteomic profiles. This leads to a spectrum of interconnected processes, including augmented survival of cancer cells, evasion of immune surveillance, metabolic reprogramming, remodeling of the extracellular matrix, and the development of resistance to conventional therapeutic modalities like radiotherapy and chemotherapy. Here, we summarize the latest research on the multifaceted effects of hypoxia, where a multitude of cellular and non-cellular elements crosstalk with each other and co-evolve in a synergistic manner. Additionally, we investigate therapeutic approaches targeting hypoxic niche, encompassing hypoxia-activated prodrugs, HIF inhibitors, nanomedicines, and combination therapies. Finally, we discuss some of the issues to be addressed and highlight the potential of emerging technologies in the treatment of cancer.
Collapse
Affiliation(s)
- Tian-Qi Zhang
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China; The Second Hospital of Jilin University, Changchun 130041, China
| | - Qian-Yu Lv
- The Second Hospital of Jilin University, Changchun 130041, China
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
6
|
Chen K, Zhai Y, Wang Y, Xu Z, Chen X, Zhang Y, Zhou Z, Zheng X, Lin F. H 2O 2 promotes photodynamic efficacy of TMPyP4 against ovarian cancer in vitro by downregulating HIF-1α expression. Biomed Pharmacother 2024; 177:117110. [PMID: 39002439 DOI: 10.1016/j.biopha.2024.117110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024] Open
Abstract
Photodynamic therapy (PDT), employing photosensitizers to induce formation of reactive oxygen species (ROS) for tumor elimination, is emerging as a promising treatment modality in oncology due to its unique benefits. However, the PDT application in ovarian cancer, the most prevalent and lethal type of gynecological malignancy with a severe hypoxic microenvironment, remains unknown. This study revealed that photosensitizer TMPyP4 exhibited enhanced efficacy under H2O2 stimulation, with minimal change in cytotoxicity compared to TMPyP4 alone. The results showed that H2O2 increased ROS production induced by TMPyP4, leading to exacerbated mitochondrial dysfunction and DNA damage, ultimately inhibiting proliferation and inducing apoptosis in ovarian cancer cells. Mechanistically, H2O2 primarily enhanced the therapeutic efficacy of PDT with TMPyP4 against ovarian cancer cells by degrading HIF-1α, which subsequently modulated the HIF-1 signaling pathway, thereby alleviating the hypoxic environment in ovarian cancer cells. Our findings underscore the therapeutic potential of targeting HIF-1α within the hypoxic microenvironment for PDT in ovarian cancer and propose a novel integrated strategy for PDT treatment of this malignancy in vitro.
Collapse
Affiliation(s)
- Kejie Chen
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yihui Zhai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yuanqiu Wang
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Zichuang Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaojian Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yixin Zhang
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Wenzhou Medical University Renji College, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhengyi Zhou
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Wenzhou Medical University Renji College, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaohui Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Feng Lin
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
7
|
Cao Y, Xu R, Liang Y, Tan J, Guo X, Fang J, Wang S, Xu L. Nature-inspired protein mineralization strategies for nanoparticle construction: advancing effective cancer therapy. NANOSCALE 2024; 16:13718-13754. [PMID: 38954406 DOI: 10.1039/d4nr01536c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Recently, nanotechnology has shown great potential in the field of cancer therapy due to its ability to improve the stability and solubility and reduce side effects of drugs. The biomimetic mineralization strategy based on natural proteins and metal ions provides an innovative approach for the synthesis of nanoparticles. This strategy utilizes the unique properties of natural proteins and the mineralization ability of metal ions to combine nanoparticles through biomimetic mineralization processes, achieving the effective treatment of tumors. The precise control of the mineralization process between proteins and metal ions makes it possible to obtain nanoparticles with the ideal size, shape, and surface characteristics, thereby enhancing their stability and targeting ability in vivo. Herein, initially, we analyze the role of protein molecules in biomineralization and comprehensively review the functions, properties, and applications of various common proteins and metal particles. Subsequently, we systematically review and summarize the application directions of nanoparticles synthesized based on protein biomineralization in tumor treatment. Specifically, we discuss their use as efficient drug delivery carriers and role in mediating monotherapy and synergistic therapy using multiple modes. Also, we specifically review the application of nanomedicine constructed through biomimetic mineralization strategies using natural proteins and metal ions in improving the efficiency of tumor immunotherapy.
Collapse
Affiliation(s)
- Yuan Cao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China.
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China
| | - Rui Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China.
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China
| | - Yixia Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China.
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China
| | - Jiabao Tan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China.
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China
| | - Xiaotang Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China.
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China
| | - Junyue Fang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China.
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China
| | - Shibo Wang
- Institute of Smart Biomaterials, School of Materials Science and Engineering and Zhejiang Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Lei Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China.
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China
| |
Collapse
|
8
|
Wu L, He C, Zhao T, Li T, Xu H, Wen J, Xu X, Gao L. Diagnosis and treatment status of inoperable locally advanced breast cancer and the application value of inorganic nanomaterials. J Nanobiotechnology 2024; 22:366. [PMID: 38918821 PMCID: PMC11197354 DOI: 10.1186/s12951-024-02644-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024] Open
Abstract
Locally advanced breast cancer (LABC) is a heterogeneous group of breast cancer that accounts for 10-30% of breast cancer cases. Despite the ongoing development of current treatment methods, LABC remains a severe and complex public health concern around the world, thus prompting the urgent requirement for innovative diagnosis and treatment strategies. The primary treatment challenges are inoperable clinical status and ineffective local control methods. With the rapid advancement of nanotechnology, inorganic nanoparticles (INPs) exhibit a potential application prospect in diagnosing and treating breast cancer. Due to the unique inherent characteristics of INPs, different functions can be performed via appropriate modifications and constructions, thus making them suitable for different imaging technology strategies and treatment schemes. INPs can improve the efficacy of conventional local radiotherapy treatment. In the face of inoperable LABC, INPs have proposed new local therapeutic methods and fostered the evolution of novel strategies such as photothermal and photodynamic therapy, magnetothermal therapy, sonodynamic therapy, and multifunctional inorganic nanoplatform. This article reviews the advances of INPs in local accurate imaging and breast cancer treatment and offers insights to overcome the existing clinical difficulties in LABC management.
Collapse
Affiliation(s)
- Linxuan Wu
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, China
| | - Chuan He
- Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Tingting Zhao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Tianqi Li
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, China
| | - Hefeng Xu
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, China
| | - Jian Wen
- Department of Breast Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China.
| | - Xiaoqian Xu
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, China.
| | - Lin Gao
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, 110022, China.
| |
Collapse
|
9
|
Zhang C, Li D, Zhang X, Dai R, Kang W, Li Y, Liu Q, Gao M, Zheng Z, Zhang R, Wen Z. Dual regulation of osteosarcoma hypoxia microenvironment by a bioinspired oxygen nanogenerator for precise single-laser synergistic photodynamic/photothermal/induced antitumor immunity therapy. Mater Today Bio 2024; 26:101054. [PMID: 38633865 PMCID: PMC11021954 DOI: 10.1016/j.mtbio.2024.101054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
The hypoxic tumor microenvironment (TME) of osteosarcoma (OS) is the Achilles' heel of oxygen-dependent photodynamic therapy (PDT), and tremendous challenges are confronted to reverse the hypoxia. Herein, we proposed a "reducing expenditure of O2 and broadening sources" dual-strategy and constructed ultrasmall IrO2@BSA-ATO nanogenerators (NGs) for decreasing the O2-consumption and elevating the O2-supply simultaneously. As O2 NGs, the intrinsic catalase (CAT) activity could precisely decompose the overexpressed H2O2 to produce O2 in situ, enabling exogenous O2 infusion. Moreover, the cell respiration inhibitor atovaquone (ATO) would be at the tumor sites, effectively inhibiting cell respiration and elevating oxygen content for endogenous O2 conservation. As a result, IrO2@BSA-ATO NGs systematically increase tumor oxygenation in dual ways and significantly enhance the antitumor efficacy of PDT. Moreover, the extraordinary photothermal conversion efficiency allows the implementation of precise photothermal therapy (PTT) under photoacoustic guidance. Upon a single laser irradiation, this synergistic PDT, PTT, and the following immunosuppression regulation performance of IrO2@BSA-ATO NGs achieved a superior tumor cooperative eradicating capability both in vitro and in vivo. Taken together, this study proposes an innovative dual-strategy to address the serious hypoxia problem, and this microenvironment-regulable IrO2@BSA-ATO NGs as a multifunctional theranostics platform shows great potential for OS therapy.
Collapse
Affiliation(s)
- Chongqing Zhang
- Department of Neurology, Brain Ultrasound, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
- Medical Imaging Department, Shanxi Province Cancer Hospital (Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University), Taiyuan, 030001, China
| | - Dongsheng Li
- Department of Radiology, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, 030000, China
| | - Xin Zhang
- Medical Imaging Department, Shanxi Province Cancer Hospital (Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University), Taiyuan, 030001, China
| | - Rong Dai
- Department of Radiology, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, 030000, China
| | - Weiwei Kang
- Department of Radiology, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, 030000, China
| | - Yao Li
- Department of Radiology, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, 030000, China
| | - Qin Liu
- Department of Radiology, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, 030000, China
| | - Mengting Gao
- Department of Radiology, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, 030000, China
| | - Ziliang Zheng
- Department of Radiology, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, 030000, China
| | - Ruiping Zhang
- Department of Radiology, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, 030000, China
| | - Zhaohui Wen
- Department of Neurology, Brain Ultrasound, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
| |
Collapse
|
10
|
Liu Z, Liu X, Zhang W, Gao R, Wei H, Yu CY. Current advances in modulating tumor hypoxia for enhanced therapeutic efficacy. Acta Biomater 2024; 176:1-27. [PMID: 38232912 DOI: 10.1016/j.actbio.2024.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/08/2023] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
Hypoxia is a common feature of most solid tumors, which promotes the proliferation, invasion, metastasis, and therapeutic resistance of tumors. Researchers have been developing advanced strategies and nanoplatforms to modulate tumor hypoxia to enhance therapeutic effects. A timely review of this rapidly developing research topic is therefore highly desirable. For this purpose, this review first introduces the impact of hypoxia on tumor development and therapeutic resistance in detail. Current developments in the construction of various nanoplatforms to enhance tumor treatment in response to hypoxia are also systematically summarized, including hypoxia-overcoming, hypoxia-exploiting, and hypoxia-disregarding strategies. We provide a detailed discussion of the rationale and research progress of these strategies. Through a review of current trends, it is hoped that this comprehensive overview can provide new prospects for clinical application in tumor treatment. STATEMENT OF SIGNIFICANCE: As a common feature of most solid tumors, hypoxia significantly promotes tumor progression. Advanced nanoplatforms have been developed to modulate tumor hypoxia to enhanced therapeutic effects. In this review, we first introduce the impact of hypoxia on tumor progression. Current developments in the construction of various nanoplatforms to enhance tumor treatment in response to hypoxia are systematically summarized, including hypoxia-overcoming, hypoxia-exploiting, and hypoxia-disregarding strategies. We discuss the rationale and research progress of the above strategies in detail, and finally introduce future challenges for treatment of hypoxic tumors. By reviewing the current trends, this comprehensive overview can provide new prospects for clinical translatable tumor therapy.
Collapse
Affiliation(s)
- Zihan Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xinping Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Wei Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Ruijie Gao
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
11
|
Xu B, Li S, Shi R, Liu H. Multifunctional mesoporous silica nanoparticles for biomedical applications. Signal Transduct Target Ther 2023; 8:435. [PMID: 37996406 PMCID: PMC10667354 DOI: 10.1038/s41392-023-01654-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 11/25/2023] Open
Abstract
Mesoporous silica nanoparticles (MSNs) are recognized as a prime example of nanotechnology applied in the biomedical field, due to their easily tunable structure and composition, diverse surface functionalization properties, and excellent biocompatibility. Over the past two decades, researchers have developed a wide variety of MSNs-based nanoplatforms through careful design and controlled preparation techniques, demonstrating their adaptability to various biomedical application scenarios. With the continuous breakthroughs of MSNs in the fields of biosensing, disease diagnosis and treatment, tissue engineering, etc., MSNs are gradually moving from basic research to clinical trials. In this review, we provide a detailed summary of MSNs in the biomedical field, beginning with a comprehensive overview of their development history. We then discuss the types of MSNs-based nanostructured architectures, as well as the classification of MSNs-based nanocomposites according to the elements existed in various inorganic functional components. Subsequently, we summarize the primary purposes of surface-functionalized modifications of MSNs. In the following, we discuss the biomedical applications of MSNs, and highlight the MSNs-based targeted therapeutic modalities currently developed. Given the importance of clinical translation, we also summarize the progress of MSNs in clinical trials. Finally, we take a perspective on the future direction and remaining challenges of MSNs in the biomedical field.
Collapse
Affiliation(s)
- Bolong Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Shanshan Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Rui Shi
- National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, 100035, Beijing, China.
| | - Huiyu Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China.
| |
Collapse
|
12
|
Najafi A, Keykhaee M, Kazemi MH, Karimi MY, Khorramdelazad H, Aghamohamadi N, Bolouri MR, Ghaffari-Nazari H, Mirsharif ES, Karimi M, Dehghan Manshadi HR, Mahdavi SR, Safari E, Jalali SA, Falak R, Khoobi M. Catalase-gold nanoaggregates manipulate the tumor microenvironment and enhance the effect of low-dose radiation therapy by reducing hypoxia. Biomed Pharmacother 2023; 167:115557. [PMID: 37757491 DOI: 10.1016/j.biopha.2023.115557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Radiotherapy as a standard method for cancer treatment faces tumor recurrence and antitumoral unresponsiveness. Suppressive tumor microenvironment (TME) and hypoxia are significant challenges affecting efficacy of radiotherapy. Herein, a versatile method is introduced for the preparation of pH-sensitive catalase-gold cross-linked nanoaggregate (Au@CAT) having acceptable stability and selective activity in tumor microenvironment. Combining Au@CAT with low-dose radiotherapy enhanced radiotherapy effects via polarizing protumoral immune cells to the antitumoral landscape. This therapeutic approach also attenuated hypoxia, confirmed by downregulating hypoxia hallmarks, such as hypoxia-inducible factor α-subunits (HIF-α), vascular endothelial growth factor (VEGF), and EGF. Catalase stability against protease digestion was improved significantly in Au@CAT compared to the free catalase. Moreover, minimal toxicity of Au@CAT on normal cells and increased reactive oxygen species (ROS) were confirmed in vitro compared with radiotherapy. Using the nanoaggregates combined with radiotherapy led to a significant reduction of immunosuppressive infiltrating cells such as myeloid-derived suppressor cells (MDSCs) and regulatory T cells (T-regs) compared to the other groups. While, this combined therapy could significantly increase the frequency of CD8+ cells as well as M1 to M2 macrophages (MQs) ratio. The combination therapy also reduced the tumor size and increased survival rate in mice models of colorectal cancer (CRC). Our results indicate that this innovative nanocomposite could be an excellent system for catalase delivery, manipulating the TME and providing a potential therapeutic strategy for treating CRC.
Collapse
Affiliation(s)
- Alireza Najafi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Keykhaee
- Department of Pharmaceutical Biomaterials and Medical Biomaterial Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Kazemi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Hossein Khorramdelazad
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Nazanin Aghamohamadi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Bolouri
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Haniyeh Ghaffari-Nazari
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Milad Karimi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Seied Rabi Mahdavi
- Radiation Biology Research Center& Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elahe Safari
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Amir Jalali
- Immunology Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mehdi Khoobi
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Liu K, Yao Y, Xue S, Zhang M, Li D, Xu T, Zhi F, Liu Y, Ding D. Recent Advances of Tumor Microenvironment-Responsive Nanomedicines-Energized Combined Phototherapy of Cancers. Pharmaceutics 2023; 15:2480. [PMID: 37896240 PMCID: PMC10610502 DOI: 10.3390/pharmaceutics15102480] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/02/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Photodynamic therapy (PDT) has emerged as a powerful tumor treatment tool due to its advantages including minimal invasiveness, high selectivity and thus dampened side effects. On the other side, the efficacy of PDT is severely frustrated by the limited oxygen level in tumors, thus promoting its combination with other therapies, particularly photothermal therapy (PTT) for bolstered tumor treatment outcomes. Meanwhile, nanomedicines that could respond to various stimuli in the tumor microenvironment (TME) provide tremendous benefits for combined phototherapy with efficient hypoxia relief, tailorable drug release and activation, improved cellular uptake and intratumoral penetration of nanocarriers, etc. In this review, we will introduce the merits of combining PTT with PDT, summarize the recent important progress of combined phototherapies and their combinations with the dominant tumor treatment regimen, chemotherapy based on smart nanomedicines sensitive to various TME stimuli with a focus on their sophisticated designs, and discuss the challenges and future developments of nanomedicine-mediated combined phototherapies.
Collapse
Affiliation(s)
- Kehan Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (K.L.); (S.X.); (M.Z.); (T.X.)
| | - Yao Yao
- Department of Gerontology, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian 223800, China;
| | - Shujuan Xue
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (K.L.); (S.X.); (M.Z.); (T.X.)
| | - Mengyao Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (K.L.); (S.X.); (M.Z.); (T.X.)
| | - Dazhao Li
- Department of Neurosurgery, The First People’s Hospital of Changzhou, Changzhou 213003, China; (D.L.); (F.Z.)
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Tao Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (K.L.); (S.X.); (M.Z.); (T.X.)
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), D02 NY74 Dublin, Ireland
| | - Feng Zhi
- Department of Neurosurgery, The First People’s Hospital of Changzhou, Changzhou 213003, China; (D.L.); (F.Z.)
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Yang Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (K.L.); (S.X.); (M.Z.); (T.X.)
| | - Dawei Ding
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (K.L.); (S.X.); (M.Z.); (T.X.)
| |
Collapse
|
14
|
P. N. N, Mehla S, Begum A, Chaturvedi HK, Ojha R, Hartinger C, Plebanski M, Bhargava SK. Smart Nanozymes for Cancer Therapy: The Next Frontier in Oncology. Adv Healthc Mater 2023; 12:e2300768. [PMID: 37392379 PMCID: PMC11481082 DOI: 10.1002/adhm.202300768] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/18/2023] [Indexed: 07/03/2023]
Abstract
Nanomaterials that mimic the catalytic activity of natural enzymes in the complex biological environment of the human body are called nanozymes. Recently, nanozyme systems have been reported with diagnostic, imaging, and/or therapeutic capabilities. Smart nanozymes strategically exploit the tumor microenvironment (TME) by the in situ generation of reactive species or by the modulation of the TME itself to result in effective cancer therapy. This topical review focuses on such smart nanozymes for cancer diagnosis, and therapy modalities with enhanced therapeutic effects. The dominant factors that guide the rational design and synthesis of nanozymes for cancer therapy include an understanding of the dynamic TME, structure-activity relationships, surface chemistry for imparting selectivity, and site-specific therapy, and stimulus-responsive modulation of nanozyme activity. This article presents a comprehensive analysis of the subject including the diverse catalytic mechanisms of different types of nanozyme systems, an overview of the TME, cancer diagnosis, and synergistic cancer therapies. The strategic application of nanozymes in cancer treatment can well be a game changer in future oncology. Moreover, recent developments may pave the way for the deployment of nanozyme therapy into other complex healthcare challenges, such as genetic diseases, immune disorders, and ageing.
Collapse
Affiliation(s)
- Navya P. N.
- Centre for Advanced Materials and Industrial ChemistrySchool of ScienceSTEM CollegeRMIT UniversityMelbourne3000Australia
| | - Sunil Mehla
- Centre for Advanced Materials and Industrial ChemistrySchool of ScienceSTEM CollegeRMIT UniversityMelbourne3000Australia
| | - Amrin Begum
- Centre for Advanced Materials and Industrial ChemistrySchool of ScienceSTEM CollegeRMIT UniversityMelbourne3000Australia
| | | | - Ruchika Ojha
- Centre for Advanced Materials and Industrial ChemistrySchool of ScienceSTEM CollegeRMIT UniversityMelbourne3000Australia
| | - Christian Hartinger
- School of Chemical SciencesThe University of AucklandAuckland 1142Private Bag92019New Zealand
| | - Magdalena Plebanski
- Cancer, Ageing and Vaccines Research GroupSchool of Health and Biomedical SciencesSTEM CollegeRMIT UniversityMelbourne3000Australia
| | - Suresh K. Bhargava
- Centre for Advanced Materials and Industrial ChemistrySchool of ScienceSTEM CollegeRMIT UniversityMelbourne3000Australia
| |
Collapse
|
15
|
Li Q, Liu Q, Wang Z, Zhang X, Ma R, Hu X, Mei J, Su Z, Zhu W, Zhu C. Biofilm Homeostasis Interference Therapy via 1 O 2 -Sensitized Hyperthermia and Immune Microenvironment Re-Rousing for Biofilm-Associated Infections Elimination. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300592. [PMID: 36850031 DOI: 10.1002/smll.202300592] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/10/2023] [Indexed: 06/02/2023]
Abstract
The recurrence of biofilm-associated infections (BAIs) remains high after implant-associated surgery. Biofilms on the implant surface reportedly shelter bacteria from antibiotics and evade innate immune defenses. Moreover, little is currently known about eliminating residual bacteria that can induce biofilm reinfection. Herein, novel "interference-regulation strategy" based on bovine serum albumin-iridium oxide nanoparticles (BIONPs) as biofilm homeostasis interrupter and immunomodulator via singlet oxygen (1 O2 )-sensitized mild hyperthermia for combating BAIs is reported. The catalase-like BIONPs convert abundant H2 O2 inside the biofilm-microenvironment (BME) to sufficient oxygen gas (O2 ), which can efficiently enhance the generation of 1 O2 under near-infrared irradiation. The 1 O2 -induced biofilm homeostasis disturbance (e.g., sigB, groEL, agr-A, icaD, eDNA) can disrupt the sophisticated defense system of biofilm, further enhancing the sensitivity of biofilms to mild hyperthermia. Moreover, the mild hyperthermia-induced bacterial membrane disintegration results in protein leakage and 1 O2 penetration to kill bacteria inside the biofilm. Subsequently, BIONPs-induced immunosuppressive microenvironment re-rousing successfully re-polarizes macrophages to pro-inflammatory M1 phenotype in vivo to devour residual biofilm and prevent biofilm reconstruction. Collectively, this 1 O2 -sensitized mild hyperthermia can yield great refractory BAIs treatment via biofilm homeostasis interference, mild-hyperthermia, and immunotherapy, providing a novel and effective anti-biofilm strategy.
Collapse
Affiliation(s)
- Qianming Li
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Quan Liu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Zhengxi Wang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Xianzuo Zhang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Ruixiang Ma
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Xianli Hu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Jiawei Mei
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Zheng Su
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Wanbo Zhu
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China
| | - Chen Zhu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| |
Collapse
|
16
|
Liang Z, Li X, Chen X, Zhou J, Li Y, Peng J, Lin Z, Liu G, Zeng X, Li C, Hang L, Li H. Fe/MOF based platform for NIR laser induced efficient PDT/PTT of cancer. Front Bioeng Biotechnol 2023; 11:1156079. [PMID: 37064235 PMCID: PMC10098195 DOI: 10.3389/fbioe.2023.1156079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/15/2023] [Indexed: 04/18/2023] Open
Abstract
Introduction: Photodynamic therapy (PDT) and photothermal therapy (PTT) are widely used in the treatment of tumors. However, their application in the treatment of clinical tumors is limited by the complexity and irreversible hypoxia environment generated by tumor tissues. To overcome this limitation, a nanoparticle composed of indocyanine green (ICG) and Fe-MOF-5 was developed. Methods: We prepared F-I@FM5 and measured its morphology, particle size, and stability. Its enzyme like ability and optical effect was verified. Then we used MTT, staining and flow cytometry to evaluated the anti-tumor effect on EMT-6 cells in vitro. Finally, the anti-tumor effect in vivo has been studied on EMT-6 tumor bearing mice. Results: For the composite nanoparticle, we confirmed that Fe-MOF-5 has the best nanozyme activity. In addition, it has excellent photothermal conversion efficiency and generates reactive oxygen species (ROS) under near-infrared light irradiation (808 nm). The composite nanoparticle showed good tumor inhibition effect in vitro and in vivo, which was superior to the free ICG or Fe-MOF-5 alone. Besides, there was no obvious cytotoxicity in major organs within the effective therapeutic concentration. Discussion: Fe-MOF-5 has the function of simulating catalase, which can promote the decomposition of excessive H2O2 in the tumor microenvironment and produce oxygen to improve the hypoxic environment. The improvement of tumor hypoxia can enhance the efficacy of PDT and PTT. This research not only provides an efficient and stable anti-tumor nano platform, but also has broad application prospects in the field of tumor therapy, and provides a new idea for the application of MOF as an important carrier material in the field of photodynamic therapy.
Collapse
Affiliation(s)
- Zixing Liang
- Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xiaofeng Li
- Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xiaofang Chen
- Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jiawei Zhou
- Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yanan Li
- Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Jianhui Peng
- Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Zhousheng Lin
- Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Gai Liu
- Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xiancheng Zeng
- Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Cheng Li
- Guangdong Second Provincial General Hospital, Guangzhou, China
- Jinan University, Guangzhou, China
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan, China
| | - Lifeng Hang
- Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Hailiang Li
- Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|
17
|
Hong L, Wang J, Zhou Y, Shang G, Guo T, Tang H, Li J, Luo Y, Zeng X, Zeng Z, Hu Z. Orthogonal Optimization, Characterization, and In Vitro Anticancer Activity Evaluation of a Hydrogen Peroxide-Responsive and Oxygen-Reserving Nanoemulsion for Hypoxic Tumor Photodynamic Therapy. Cancers (Basel) 2023; 15:cancers15051576. [PMID: 36900370 PMCID: PMC10000418 DOI: 10.3390/cancers15051576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Tumor hypoxia can seriously impede the effectiveness of photodynamic therapy (PDT). To address this issue, two approaches, termed in situ oxygen generation and oxygen delivery, were developed. The in situ oxygen generation method uses catalysts such as catalase to decompose excess H2O2 produced by tumors. It offers specificity for tumors, but its effectiveness is limited by the low H2O2 concentration often present in tumors. The oxygen delivery strategy relies on the high oxygen solubility of perfluorocarbon, etc., to transport oxygen. It is effective, but lacks tumor specificity. In an effort to integrate the merits of the two approaches, we designed a multifunctional nanoemulsion system named CCIPN and prepared it using a sonication-phase inversion composition-sonication method with orthogonal optimization. CCIPN included catalase, the methyl ester of 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO-Me), photosensitizer IR780, and perfluoropolyether. Perfluoropolyether may reserve the oxygen generated by catalase within the same nanoformulation for PDT. CCIPN contained spherical droplets below 100 nm and showed reasonable cytocompatibility. It presented a stronger ability to generate cytotoxic reactive oxygen species and consequently destroy tumor cells upon light irradiation, in comparison with its counterpart without catalase or perfluoropolyether. This study contributes to the design and preparation of oxygen-supplementing PDT nanomaterials.
Collapse
Affiliation(s)
- Liang Hong
- Key Laboratory of Infectious Immune and Antibody Engineering in University of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550025, China
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Jianman Wang
- Key Laboratory of Infectious Immune and Antibody Engineering in University of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550025, China
| | - Yi Zhou
- Key Laboratory of Infectious Immune and Antibody Engineering in University of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550025, China
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Guofu Shang
- Key Laboratory of Infectious Immune and Antibody Engineering in University of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550025, China
| | - Tao Guo
- Key Laboratory of Infectious Immune and Antibody Engineering in University of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550025, China
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Hailong Tang
- Key Laboratory of Infectious Immune and Antibody Engineering in University of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550025, China
| | - Jiangmin Li
- Key Laboratory of Infectious Immune and Antibody Engineering in University of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550025, China
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Yali Luo
- Key Laboratory of Infectious Immune and Antibody Engineering in University of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550025, China
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Xiangyu Zeng
- Key Laboratory of Infectious Immune and Antibody Engineering in University of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550025, China
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Zhu Zeng
- Key Laboratory of Infectious Immune and Antibody Engineering in University of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550025, China
- Correspondence: (Z.Z.); (Z.H.)
| | - Zuquan Hu
- Key Laboratory of Infectious Immune and Antibody Engineering in University of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550025, China
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of China, Guizhou Medical University, Guiyang 550025, China
- Correspondence: (Z.Z.); (Z.H.)
| |
Collapse
|
18
|
Gao XJ, Yan J, Zheng JJ, Zhong S, Gao X. Clear-Box Machine Learning for Virtual Screening of 2D Nanozymes to Target Tumor Hydrogen Peroxide. Adv Healthc Mater 2022; 12:e2202925. [PMID: 36565096 DOI: 10.1002/adhm.202202925] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/10/2022] [Indexed: 12/25/2022]
Abstract
Targeting tumor hydrogen peroxide (H2 O2 ) with catalytic materials has provided a novel chemotherapy strategy against solid tumors. Because numerous materials have been fabricated so far, there is an urgent need for an efficient in silico method, which can automatically screen out appropriate candidates from materials libraries for further therapeutic evaluation. In this work, adsorption-energy-based descriptors and criteria are developed for the catalase-like activities of materials surfaces. The result enables a comprehensive prediction of H2 O2 -targeted catalytic activities of materials by density functional theory (DFT) calculations. To expedite the prediction, machine learning models, which efficiently calculate the adsorption energies for 2D materials without DFT, are further developed. The finally obtained method takes advantage of both interpretability of physics model and high efficiency of machine learning. It provides an efficient approach for in silico screening of 2D materials toward tumor catalytic therapy, and it will greatly promote the development of catalytic nanomaterials for medical applications.
Collapse
Affiliation(s)
- Xuejiao J Gao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, P. R. China.,Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| | - Jun Yan
- State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing, 100195, P. R. China.,School of Cyber Security, University of Chinese Academy of Sciences, Beijing, 100195, P. R. China
| | - Jia-Jia Zheng
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| | - Shengliang Zhong
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Xingfa Gao
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| |
Collapse
|
19
|
Deng X, Zhao R, Song Q, Zhang Y, Zhao H, Hu H, Zhang Z, Liu W, Lin W, Wang G. Synthesis of dual-stimuli responsive metal organic framework-coated iridium oxide nanocomposite functionalized with tumor targeting albumin-folate for synergistic photodynamic/photothermal cancer therapy. Drug Deliv 2022; 29:3142-3154. [PMID: 36164704 PMCID: PMC9542428 DOI: 10.1080/10717544.2022.2127973] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The synergistic effects of photothermal therapy (PTT) and photodynamic therapy (PDT) has attracted considerable attention in the field of cancer therapy because of its excellent anti-tumor effect. This work provides a novel pH/NIR responsive therapeutic nanoplatform, IrO2@ZIF-8/BSA-FA (Ce6), producing a synergistic effect of PTT-PDT in the treatment of osteosarcoma. Iridium dioxide nanoparticles (IrO2 NPs) with exceptional catalase-like activity and PTT effects were synthesized by a hydrolysis method and decorated with zeolitic imidazolate framework-8 (ZIF-8) shell layer to promote the physical absorption of Chlorin e6 (Ce6), and further functionalized with bovine serum albumin-folate acid (BSA-FA) for targeting tumor cells. The IrO2@ZIF-8/BSA-FA nanocomposite indicated an outstanding photothermal heating conversion efficiency of 62.1% upon laser irradiation. In addition, the Ce6 loading endows nanoplatform with the capability to induce cell apoptosis under 660 nm near-infrared (NIR) laser irradiation through a reactive oxygen species (ROS)-mediated mechanism. It was further testified that IrO2@ZIF-8/BSA-FA can function as a catalase and convert the endogenous hydrogen peroxide (H2O2) into oxygen (O2) to improve the local oxygen pressure under the acidic tumor microenvironment (TME), which could subsequently amplified PDT-mediated ROS cell-killing performance via relieving hypoxia microenvironment of tumor. Both in vitro and in vivo experimental results indicated that the nanomaterials were good biocompatibility, and could remarkably achieve tumor-specific and enhanced combination therapy outcomes as compared with the corresponding PTT or PDT monotherapy. Taken together, this work holds great potential to design an intelligent multifunctional therapeutic nanoplatform for cancer therapy.
Collapse
Affiliation(s)
- Xiangtian Deng
- Trauma Medical Center, Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu, China.,Orthopedics Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Renliang Zhao
- Trauma Medical Center, Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu, China.,Orthopedics Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Qingcheng Song
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijazhuang, China
| | - Yiran Zhang
- School of Medicine, Nankai University, Tianjin, China
| | - Haiyue Zhao
- School of Medicine, Nankai University, Tianjin, China
| | - Hongzhi Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen Zhang
- Trauma Medical Center, Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu, China.,Orthopedics Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Weijian Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Lin
- Department of Gynecology, West China Second Hospital, Sichuan University, Chengdu, China
| | - Guanglin Wang
- Trauma Medical Center, Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu, China.,Orthopedics Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Li W, Shi C, Wu X, Zhang Y, Liu H, Wang X, Huang C, Liang L, Liu Y. Light activation of iridium(III) complexes driving ROS production and DNA damage enhances anticancer activity in A549 cells. J Inorg Biochem 2022; 236:111977. [PMID: 36030672 DOI: 10.1016/j.jinorgbio.2022.111977] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/10/2022] [Accepted: 08/19/2022] [Indexed: 12/15/2022]
Abstract
The work aimed to synthesize and characterize two iridium(III) complexes [Ir(ppy)2(IPPH)](PF6) (Ir1, IPPH = (2S,3R,5S,6R)-2-(2-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol, ppy = 2-phenylpyridine), [Ir(piq)2(IPPH)](PF6) (Ir2, piq = 1-phenylisoquinoline). The cytotoxicity of the complexes against BEL-7402, A549, HCT-116, B16 cancer cells and normal LO2 was evaluated through 3-(4,5-dimethylthiazole-2-yl)-2,5-biphenyl tetrazolium bromide (MTT) method. The complexes show no cytotoxic activity (IC50 > 100 μM) against these cancer cells, while their cytotoxicity can significantly be elevated upon illumination. The IC50 values range from 0.2 ± 0.05 to 35.5 ± 3.5 μM. The cellular uptake, endoplasmic reticulum and mitochondria localization, reactive oxygen species, the change of mitochondrial membrane potential, γ-H2AX levels, cycle arrest, apoptosis and the expression of B-cell lymphoma-2 were investigated. The calreticulin (CRT), heat shock protein 70 (HSP70), high mobility group box 1 (HMGB1) were explored. This study demonstrates that photoactivatable complexes induce cell death in A549 through ROS-mediated endoplasmic reticulum stress-mitochondrial pathway, DNA damage pathways, immunogenic cell death (ICD), activation of PI3K/AKT signaling pathway and inhibit the cell growth at S phase.
Collapse
Affiliation(s)
- Wenlong Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Chuanling Shi
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Xiaoyun Wu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yuanyuan Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Haimei Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Xiuzhen Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| | - Chunxia Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Lijuan Liang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
21
|
Babu N, Rahaman SA, John AM, Balakrishnan SP. Photosensitizer Anchored Nanoparticles: A Potential Material for Photodynamic Therapy. ChemistrySelect 2022. [DOI: 10.1002/slct.202200850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Nisha Babu
- Department of Chemistry CHRIST (Deemed to be University) Bengaluru India 560029
| | - Shaik Abdul Rahaman
- Department of Chemistry CHRIST (Deemed to be University) Bengaluru India 560029
| | - Athira Maria John
- Department of Chemistry CHRIST (Deemed to be University) Bengaluru India 560029
| | | |
Collapse
|
22
|
Yu XT, Sui SY, He YX, Yu CH, Peng Q. Nanomaterials-based photosensitizers and delivery systems for photodynamic cancer therapy. BIOMATERIALS ADVANCES 2022; 135:212725. [PMID: 35929205 DOI: 10.1016/j.bioadv.2022.212725] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 12/12/2022]
Abstract
The increasing cancer morbidity and mortality requires the development of high-efficiency and low-toxicity anticancer approaches. In recent years, photodynamic therapy (PDT) has attracted much attention in cancer therapy due to its non-invasive features and low side effects. Photosensitizer (PS) is one of the key factors of PDT, and its successful delivery largely determines the outcome of PDT. Although a few PS molecules have been approved for clinical use, PDT is still limited by the low stability and poor tumor targeting capacity of PSs. Various nanomaterial systems have shown great potentials in improving PDT, such as metal nanoparticles, graphene-based nanomaterials, liposomes, ROS-sensitive nanocarriers and supramolecular nanomaterials. The small molecular PSs can be loaded in functional nanomaterials to enhance the PS stability and tumor targeted delivery, and some functionalized nanomaterials themselves can be directly used as PSs. Herein, we aim to provide a comprehensive understanding of PDT, and summarize the recent progress of nanomaterials-based PSs and delivery systems in anticancer PDT. In addition, the concerns of nanomaterials-based PDT including low tumor targeting capacity, limited light penetration, hypoxia and nonspecific protein corona formation are discussed. The possible solutions to these concerns are also discussed.
Collapse
Affiliation(s)
- Xiao-Tong Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shang-Yan Sui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yu-Xuan He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chen-Hao Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|