1
|
Li MH, Yang Y, Dong QQ, Tao H, Lu C, Yang JJ. Novel epitranscriptomic and epigenetic therapeutic strategies and targets for ferroptosis in liver fibrosis. Eur J Pharmacol 2025; 996:177344. [PMID: 40015597 DOI: 10.1016/j.ejphar.2025.177344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/23/2025] [Accepted: 01/31/2025] [Indexed: 03/01/2025]
Abstract
Liver fibrosis is characterized by an excessive accumulation of extracellular matrix (ECM) and the activation of hepatic stellate cells (HSCs), which are influenced by epitranscriptomic and epigenetic factors. Recent advancements in epigenetic and epitranscriptomic research have revealed new opportunities for therapeutic interventions, particularly through the regulation of ferroptosis, a type of programmed cell death that is specifically linked to iron-dependent lipid peroxidation. In the context of liver fibrosis, a progressive scarring process that can progress to cirrhosis and ultimately end-stage liver disease, targeting these regulatory mechanisms to modulate ferroptosis presents a promising therapeutic strategy. This review aims to consolidate current knowledge on the epigenetic and epitranscriptomic control of ferroptosis and investigate its potential implications for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Ming-Hui Li
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Center for Scientific Research and Experiment, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yang Yang
- Department of General Surgery, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215153, China
| | - Qi-Qi Dong
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Center for Scientific Research and Experiment, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Center for Scientific Research and Experiment, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| | - Chao Lu
- First Affiliated Hospital, Anhui University of Science & Technology, Huainan, 232001, China.
| | - Jing-Jing Yang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Center for Scientific Research and Experiment, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
2
|
Yu Z, Fu J, Mantareva V, Blažević I, Wu Y, Wen D, Battulga T, Wang Y, Zhang J. The role of tumor-derived exosomal LncRNA in tumor metastasis. Cancer Gene Ther 2025; 32:273-285. [PMID: 40011710 DOI: 10.1038/s41417-024-00852-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/22/2024] [Accepted: 11/05/2024] [Indexed: 02/28/2025]
Abstract
Tumor metastasis regulated by multiple complicated pathways is closely related to variations in the tumor microenvironment. Exosomes can regulate the tumor microenvironment through various mechanisms. Exosomes derived from tumor cells carry a variety of substances, including long non-coding RNAs (lncRNAs), play important roles in intercellular communication and act as critical determinants influencing tumor metastasis. In this review, we elaborate on several pivotal processes through which lncRNAs regulate tumor metastasis, including the regulation of epithelial‒mesenchymal transition, promotion of angiogenesis and lymphangiogenesis, enhancement of the stemness of tumor cells, and evasion of immune clearance. Additionally, we comprehensively summarized a diverse array of potential tumor-derived exosomal lncRNA biomarkers to facilitate accurate diagnosis and prognosis in a clinical setting.
Collapse
Affiliation(s)
- Zhile Yu
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 510700, PR China
| | - Jiali Fu
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 510700, PR China
| | - Vanya Mantareva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Bld. 9, 1113, Sofia, Bulgaria
| | - Ivica Blažević
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000, Split, Croatia
| | - Yusong Wu
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 510700, PR China
| | - Dianchang Wen
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 510700, PR China
| | - Tungalag Battulga
- School of Pharmacy, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia.
| | - Yuqing Wang
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 510700, PR China.
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, 510140, PR China.
| | - Jianye Zhang
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 510700, PR China.
- The Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, 511518, PR China.
| |
Collapse
|
3
|
Liu S, Liu Z, Lei H, Miao YB, Chen J. Programmable Nanomodulators for Precision Therapy, Engineering Tumor Metabolism to Enhance Therapeutic Efficacy. Adv Healthc Mater 2025; 14:e2403019. [PMID: 39529548 DOI: 10.1002/adhm.202403019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Tumor metabolism is crucial in the continuous advancement and complex growth of cancer. The emerging field of nanotechnology has made significant strides in enhancing the understanding of the complex metabolic intricacies inherent to tumors, offering potential avenues for their strategic manipulation to achieve therapeutic goals. This comprehensive review delves into the interplay between tumor metabolism and various facets of cancer, encompassing its origins, progression, and the formidable challenges posed by metastasis. Simultaneously, it underscores the classification of programmable nanomodulators and their transformative impact on enhancing cancer treatment, particularly when integrated with modalities such as chemotherapy, radiotherapy, and immunotherapy. This review also encapsulates the mechanisms by which nanomodulators modulate tumor metabolism, including the delivery of metabolic inhibitors, regulation of oxidative stress, pH value modulation, nanoenzyme catalysis, nutrient deprivation, and RNA interference technology, among others. Additionally, the review delves into the prospects and challenges of nanomodulators in clinical applications. Finally, the innovative concept of using nanomodulators to reprogram metabolic pathways is introduced, aiming to transform cancer cells back into normal cells. This review underscores the profound impact that tailored nanomodulators can have on tumor metabolic, charting a path toward pioneering precision therapies for cancer.
Collapse
Affiliation(s)
- Siwei Liu
- Women & Children's Molecular Medicine Center, Department of Gynecology, Guangyuan Central Hospital, No. 16, Jingxiangzi, Lizhou District, Guangyuan, 628000, P. R. China
| | - Zhijun Liu
- Urology Institute of Shenzhen University, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, 518000, China
| | - Huajiang Lei
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Yang-Bao Miao
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Jiao Chen
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| |
Collapse
|
4
|
Zhang Y, Ma K, Fang X, Zhang Y, Miao R, Guan H, Tian J. Targeting ion homeostasis in metabolic diseases: Molecular mechanisms and targeted therapies. Pharmacol Res 2025; 212:107579. [PMID: 39756557 DOI: 10.1016/j.phrs.2025.107579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/13/2024] [Accepted: 01/01/2025] [Indexed: 01/07/2025]
Abstract
The incidence of metabolic diseases-hypertension, diabetes, obesity, metabolic dysfunction-associated steatotic liver disease (MASLD), and atherosclerosis-is increasing annually, imposing a significant burden on both human health and the social economy. The occurrence and development of these diseases are closely related to the disruption of ion homeostasis, which is crucial for maintaining cellular functions and metabolic equilibrium. However, the specific mechanism of ion homeostasis in metabolic diseases is still unclear. This article reviews the role of ion homeostasis in the pathogenesis of metabolic diseases and assesses its potential as a therapeutic target. Furthermore, the article explores pharmacological strategies that target ion channels and transporters, including existing drugs and emerging drugs under development. Lastly, the article discusses the development direction of future therapeutic strategies, including the possibility of gene therapy targeting specific ion channels and personalized therapy using novel biomarkers. In summary, targeting ion homeostasis provides a new perspective and potential therapeutic approach for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Yanjiao Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Kaile Ma
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xinyi Fang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuxin Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Runyu Miao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Huifang Guan
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Jiaxing Tian
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
5
|
Wang Z, Zhao M, Huang X, Wang Y, Li W, Qiao J, Yang X. Therapeutic types and advantages of functionalized nanoparticles in inducing ferroptosis in cancer therapy. Ann Med 2024; 56:2396568. [PMID: 39276361 PMCID: PMC11404394 DOI: 10.1080/07853890.2024.2396568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/24/2024] [Accepted: 07/10/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND The clinical efficacy of cancer treatment protocols remains unsatisfactory; however, the emergence of ferroptosis-driven therapy strategies has renewed hope for tumor treatment, owing to their remarkable tumor suppression effects. Biologically based small-molecule inducers are used in conventional method to induce ferroptosis. Nevertheless, some molecular drugs have limited solubility, poor ability to target cells, and fast metabolism, which hinder their ability to induce ferroptosis over a prolonged period. Fortunately, further investigations of ferroptosis and the development of nanotechnology have demonstrated that nanoparticles (NPs) are more efficient in inducing ferroptosis than drugs alone, which opens up new perspectives for cancer therapy. OBJECTIVE In order to organize a profile of recent advance in NPs for inducing ferroptosis in cancer therapy, and NPs were comprehensively classified in a new light.Materials and methods: We comprehensively searched the databases such as PubMed and Embase. The time limit for searching was from the establishment of the database to 2023.11. All literatures were related to "ferroptosis", "nanoparticles", "nanodelivery systems", "tumors", "cancer". RESULTS We summarized and classified the available NPs from a new perspective. The NPs were classified into six categories based on their properties: (1) iron oxide NPs (2) iron - based conversion NPs (3) core-shell structure (4) organic framework (5) silica NPs (6) lipoprotein NPs. According to the therapeutic types of NPs, they can be divided into categories: (1) NPs induced ferroptosis-related immunotherapy (2) NPs loaded with drugs (3) targeted therapy of NPs (4) multidrug resistance therapy (5) gene therapy with NPs (6) energy conversion therapy. CONCLUSIONS The insights gained from this review can provide ideas for the development of original NPs and nanodelivery systems, pave the way for related nanomaterials application in clinical cancer therapy, and advance the application and development of nanotechnology in the medical field.
Collapse
Affiliation(s)
- Ziying Wang
- School of Nursing, Shandong Second Medical University, Weifang, Shandong, China
| | - Miaomiao Zhao
- Department of Pathology, Shandong Second Medical University, Weifang, Shandong, China
| | - Xiaotong Huang
- School of Nursing, Shandong Second Medical University, Weifang, Shandong, China
| | - Yuxin Wang
- School of Pharmacy, Binzhou Medical College, Yantai, Shandong, China
| | - Wentong Li
- Department of Pathology, Shandong Second Medical University, Weifang, Shandong, China
| | - Jianhong Qiao
- Department of Outpatient, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Xiao Yang
- School of Nursing, Shandong Second Medical University, Weifang, Shandong, China
| |
Collapse
|
6
|
Liu X, Liu S, Jin X, Liu H, Sun K, Wang X, Li M, Wang P, Chang Y, Wang T, Wang B, Yu XA. An encounter between metal ions and natural products: natural products-coordinated metal ions for the diagnosis and treatment of tumors. J Nanobiotechnology 2024; 22:726. [PMID: 39574109 PMCID: PMC11580416 DOI: 10.1186/s12951-024-02981-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/04/2024] [Indexed: 11/25/2024] Open
Abstract
Natural products-coordinated metal ions to form the nanomedicines are in the spotlight for cancer therapy. Some natural products could be coordinated with metal ions forming nanomedicines via simple and green environmental self-assembly, which not only improved the bioavailability of natural products, but also conferred multiple therapeutic modalities and multimodal imaging. On the one hand, in the weak acidity, glutathione (GSH) and hydrogen peroxide (H2O2) overexpression of tumor microenvironment (TME), such carrier-free nanomedicines could be further enhanced the therapeutic effect via optimizing the species of metal ions. On the other hand, nanomedicines could exert the precise treatment of tumor under the guidance of multiple imaging. Hence, this review summarized the research progress in recent years on the application of natural product-coordinated metal ions in cancer therapy. In addition, the prospects and challenges for the application of natural product-coordinated metal ions were discussed, especially how to improve targeting ability and stability and assess the safety of metal ions, so as to facilitate the clinical translation and application of natural product-coordinated metal ions nanomedicines.
Collapse
Affiliation(s)
- Xinyue Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Suyi Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xingyue Jin
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Haifan Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Kunhui Sun
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiongqin Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Meifang Li
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Ping Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Yanxu Chang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tiejie Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China.
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
| | - Bing Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
| | - Xie-An Yu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
| |
Collapse
|
7
|
Lei L, Dong Z, Yang F, Zhang X. Metal-Organic Nanomaterials for Tumor Metabolic Blockade and Image to Increase Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:57995-58005. [PMID: 39417452 DOI: 10.1021/acsami.4c11918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The abnormal energy metabolism level of a tumor reduces the efficiency of chemotherapy. Metal-organic nanomaterials (MONs) with high drug loading efficiency, easy processes of synthesis, and controlled drug release have shown great potential in metabolic blocking and enhancement of tumor therapy. These metal-organic nanomedicines have been reported to modulate glycolysis or oxidative phosphorylation to provide monotherapy or combined therapies in tumorous treatments. In addition, the encapsulation or coordination of fluorescent dyes into MONs endowed them with the imaging ability of tumor metabolism. Herein, this Perspective summarizes the progress of MONs as therapeutic agents or imaging probes for application during tumor metabolic blocking or imaging, providing solid inspiration for biomedical applications of effective biomaterials. In addition, the current drawbacks of MONs for further biological applications in the future were discussed, giving stimulation of innovation and development in biomedical applications of MONs.
Collapse
Affiliation(s)
- Lingling Lei
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025 P. R. China
| | - Zhe Dong
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P. R. China
| | - Fengrui Yang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Xiaobing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
8
|
Mohapatra A, Mohanty A, Park IK. Inorganic Nanomedicine-Mediated Ferroptosis: A Synergistic Approach to Combined Cancer Therapies and Immunotherapy. Cancers (Basel) 2024; 16:3210. [PMID: 39335181 PMCID: PMC11430644 DOI: 10.3390/cancers16183210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Ferroptosis, a form of regulated cell death characterized by iron-dependent lipid peroxidation, has generated substantial interest in cancer therapy. Various methods have been developed to induce ferroptosis in tumor cells, including approved drugs, experimental compounds, and nanomedicine formulations. Unlike apoptosis, ferroptosis presents unique molecular and cellular features, representing a promising approach for cancers resistant to conventional treatments. Recent research indicates a strong link between ferroptosis and the tumor immune microenvironment, suggesting the potential of ferroptosis to trigger robust antitumor immune responses. Multiple cellular metabolic pathways control ferroptosis, including iron, lipid, and redox metabolism. Thus, understanding the interaction between tumor metabolism and ferroptosis is crucial for developing effective anticancer therapies. This review provides an in-depth discussion on combining inorganic nanoparticles with cancer therapies such as phototherapy, chemotherapy, radiotherapy, and immunotherapy, and the role of ferroptosis in these combination treatments. Furthermore, this paper explores the future of tumor treatment using nanomedicine, focusing on how inorganic nanoparticles can enhance ferroptosis in tumor cells and boost antitumor immunity. The goal is to advance ferroptosis-based nanomedicine from the laboratory to clinical applications.
Collapse
Affiliation(s)
- Adityanarayan Mohapatra
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea; (A.M.); (A.M.)
- DR Cure Inc., Hwasun 58128, Republic of Korea
| | - Ayeskanta Mohanty
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea; (A.M.); (A.M.)
| | - In-Kyu Park
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea; (A.M.); (A.M.)
- DR Cure Inc., Hwasun 58128, Republic of Korea
| |
Collapse
|
9
|
Gao Y, Liu S, Huang Y, Li F, Zhang Y. Regulation of anti-tumor immunity by metal ion in the tumor microenvironment. Front Immunol 2024; 15:1379365. [PMID: 38915413 PMCID: PMC11194341 DOI: 10.3389/fimmu.2024.1379365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/29/2024] [Indexed: 06/26/2024] Open
Abstract
Metal ions play an essential role in regulating the functions of immune cells by transmitting intracellular and extracellular signals in tumor microenvironment (TME). Among these immune cells, we focused on the impact of metal ions on T cells because they can recognize and kill cancer cells and play an important role in immune-based cancer treatment. Metal ions are often used in nanomedicines for tumor immunotherapy. In this review, we discuss seven metal ions related to anti-tumor immunity, elucidate their roles in immunotherapy, and provide novel insights into tumor immunotherapy and clinical applications.
Collapse
Affiliation(s)
- Yaoxin Gao
- Biotherapy Center & Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shasha Liu
- Biotherapy Center & Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yifan Huang
- Biotherapy Center & Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Li
- Biotherapy Center & Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Zhang
- Biotherapy Center & Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
- School of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Xu Z, Jiang J, Li Y, Hu T, Gu J, Zhang P, Fan L, Xi J, Han J, Guo R. Shape-Regulated Photothermal-Catalytic Tumor Therapy Using Polydopamine@Pt Nanozymes with the Elicitation of an Immune Response. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309096. [PMID: 38054612 DOI: 10.1002/smll.202309096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/07/2023] [Indexed: 12/07/2023]
Abstract
Recently, nanozyme-based photothermal-catalytic therapy has emerged as a promising strategy for antitumor treatment. Extensive research has focused on optimizing the catalytic activity and photothermal conversion performance of nanozymes through size, morphology, and surface property regulations. However, the biological effects of nanozymes, such as cellular uptake and cytotoxicity, resulting from their physicochemical properties, remain largely unexplored. In this study, two types of polydopamine/platinum (PDA@Pt) nanozymes, flower-like (FPDA@Pt) and mesoporous spherical-like (MPDA@Pt), to comprehensively compare their enzyme-mimicking activity, photothermal conversion capacity, and antitumor efficiency are designed. These findings revealed that FPDA@Pt exhibited superior peroxidase-like activity and higher photothermal conversion efficiency compared to MPDA@Pt. This led to enhanced production of reactive oxygen species (ROS) and increased heat generation at tumor sites. Importantly, it is observed thatthe flower-like structure of FPDA@Pt facilitated enhanced cellular uptake, leading to an increased accumulation of nanozymes within tumor cells. Furthermore, the light irradiation on tumors also triggered a series of anti-tumor immune responses, further enhancing the therapeutic efficacy. This work provides a possible design orientation for nanozyme-based photothermal-catalytic tumor therapy, highlighting the importance of considering the physicochemical properties of nanozymes to optimize their therapeutic potential in antitumor strategies.
Collapse
Affiliation(s)
- Zhilong Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Jian Jiang
- Institute of Translational Medicine, Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
- Central LAB, Binhai County People's Hospital, Binhai, Jiangsu, 224500, P. R. China
| | - Yanan Li
- School of Chemical Engineering, Yangzhou Polytechnic Institute, Yangzhou, Jiangsu, 225127, P. R. China
| | - Ting Hu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Jiake Gu
- Institute of Translational Medicine, Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Peiying Zhang
- Institute of Translational Medicine, Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Lei Fan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Juqun Xi
- Institute of Translational Medicine, Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, Jiangsu, 225009, P. R. China
| | - Jie Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Rong Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| |
Collapse
|
11
|
Yan J, Bhadane R, Ran M, Ma X, Li Y, Zheng D, Salo-Ahen OMH, Zhang H. Development of Aptamer-DNAzyme based metal-nucleic acid frameworks for gastric cancer therapy. Nat Commun 2024; 15:3684. [PMID: 38693181 PMCID: PMC11063048 DOI: 10.1038/s41467-024-48149-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/23/2024] [Indexed: 05/03/2024] Open
Abstract
The metal-nucleic acid nanocomposites, first termed metal-nucleic acid frameworks (MNFs) in this work, show extraordinary potential as functional nanomaterials. However, thus far, realized MNFs face limitations including harsh synthesis conditions, instability, and non-targeting. Herein, we discover that longer oligonucleotides can enhance the synthesis efficiency and stability of MNFs by increasing oligonucleotide folding and entanglement probabilities during the reaction. Besides, longer oligonucleotides provide upgraded metal ions binding conditions, facilitating MNFs to load macromolecular protein drugs at room temperature. Furthermore, longer oligonucleotides facilitate functional expansion of nucleotide sequences, enabling disease-targeted MNFs. As a proof-of-concept, we build an interferon regulatory factor-1(IRF-1) loaded Ca2+/(aptamer-deoxyribozyme) MNF to target regulate glucose transporter (GLUT-1) expression in human epidermal growth factor receptor-2 (HER-2) positive gastric cancer cells. This MNF nanodevice disrupts GSH/ROS homeostasis, suppresses DNA repair, and augments ROS-mediated DNA damage therapy, with tumor inhibition rate up to 90%. Our work signifies a significant advancement towards an era of universal MNF application.
Collapse
Affiliation(s)
- Jiaqi Yan
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road, Shanghai, 200025, PR China
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Rajendra Bhadane
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
- Structural Bioinformatics Laboratory, Biochemistry, Åbo Akademi University, 20520, Turku, Finland
| | - Meixin Ran
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Xiaodong Ma
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Yuanqiang Li
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Dongdong Zheng
- Department of Ultrasound, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China
| | - Outi M H Salo-Ahen
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Structural Bioinformatics Laboratory, Biochemistry, Åbo Akademi University, 20520, Turku, Finland
| | - Hongbo Zhang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road, Shanghai, 200025, PR China.
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
| |
Collapse
|
12
|
Kirbas Cilingir E, Besbinar O, Giro L, Bartoli M, Hueso JL, Mintz KJ, Aydogan Y, Garber JM, Turktas M, Ekim O, Ceylan A, Unal MA, Ensoy M, Arı F, Ozgenç Çinar O, Ozturk BI, Gokce C, Cansaran-Duman D, Braun M, Wachtveitl J, Santamaria J, Delogu LG, Tagliaferro A, Yilmazer A, Leblanc RM. Small Warriors of Nature: Novel Red Emissive Chlorophyllin Carbon Dots Harnessing Fenton-Fueled Ferroptosis for In Vitro and In Vivo Cancer Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309283. [PMID: 38230862 DOI: 10.1002/smll.202309283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/11/2023] [Indexed: 01/18/2024]
Abstract
The appeal of carbon dots (CDs) has grown recently, due to their established biocompatibility, adjustable photoluminescence properties, and excellent water solubility. For the first time in the literature, copper chlorophyllin-based carbon dots (Chl-D CDs) are successfully synthesized. Chl-D CDs exhibit unique spectroscopic traits and are found to induce a Fenton-like reaction, augmenting photodynamic therapy (PDT) efficacies via ferroptotic and apoptotic pathways. To bolster the therapeutic impact of Chl-D CDs, a widely used cancer drug, temozolomide, is linked to their surface, yielding a synergistic effect with PDT and chemotherapy. Chl-D CDs' biocompatibility in immune cells and in vivo models showed great clinical potential.Proteomic analysis was conducted to understand Chl-D CDs' underlying cancer treatment mechanism. The study underscores the role of reactive oxygen species formation and pointed toward various oxidative stress modulators like aldolase A (ALDOA), aldolase C (ALDOC), aldehyde dehydrogenase 1B1 (ALDH1B1), transaldolase 1 (TALDO1), and transketolase (TKT), offering a deeper understanding of the Chl-D CDs' anticancer activity. Notably, the Chl-D CDs' capacity to trigger a Fenton-like reaction leads to enhanced PDT efficiencies through ferroptotic and apoptotic pathways. Hence, it is firmly believed that the inherent attributes of Chl-CDs can lead to a secure and efficient combined cancer therapy.
Collapse
Affiliation(s)
- Emel Kirbas Cilingir
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, USA
| | - Omur Besbinar
- Department of Biomedical Engineering, Faculty of Engineering, Ankara University, Ankara, 06830, Turkey
- Stem Cell Institute, Ankara University, Ankara, 06520, Turkey
- The Graduate School of Health Sciences of Ankara University, Ankara, 06110, Turkey
- Institute of Nanoscience and Materials of Aragon (INMA), CSIC-Universidad de Zaragoza, Campus Río Ebro, Edificio I+D, C/Poeta Mariano Esquillor, s/n, Zaragoza, 50018, Spain
| | - Linda Giro
- Department of Biomedical Sciences, University of Padua, Padua, 35129, Italy
| | - Mattia Bartoli
- Department of Applied Science and Technology, Politecnico di Torino, Torino, 10129, Italy
| | - Jose L Hueso
- Institute of Nanoscience and Materials of Aragon (INMA), CSIC-Universidad de Zaragoza, Campus Río Ebro, Edificio I+D, C/Poeta Mariano Esquillor, s/n, Zaragoza, 50018, Spain
- Networking Research Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, 28029, Spain
- Department of Chemical and Environmental Engineering, University of Zaragoza, Campus Rio Ebro, C/María de Luna, 3, Zaragoza, 50018, Spain
- Instituto de Investigación Sanitaria (IIS) Aragón, Avenida San Juan Bosco, 13, Zaragoza, 50009, Spain
| | - Keenan J Mintz
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, USA
| | - Yagmur Aydogan
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, 60438, Frankfurt, Germany
| | - Jordan M Garber
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, USA
| | - Mine Turktas
- Department of Biology, Faculty of Science, Gazi University, Ankara, 06560, Turkey
| | - Okan Ekim
- Department of Anatomy, Faculty of Veterinary Medicine, Ankara University, Ankara, 06110, Turkey
| | - Ahmet Ceylan
- Department of Histology Embryology, Faculty of Veterinary Medicine, Ankara University, Ankara, 06110, Turkey
| | | | - Mine Ensoy
- Biotechnology Institute, Ankara University, Ankara, 06135, Turkey
| | - Fikret Arı
- Department of Electrical Electronic Engineering, Faculty of Engineering, Ankara, 06830, Turkey
| | - Ozge Ozgenç Çinar
- Department of Histology Embryology, Faculty of Veterinary Medicine, Ankara University, Ankara, 06110, Turkey
| | - Berfin Ilayda Ozturk
- Department of Biomedical Engineering, Faculty of Engineering, Ankara University, Ankara, 06830, Turkey
| | - Cemile Gokce
- Department of Biomedical Engineering, Faculty of Engineering, Ankara University, Ankara, 06830, Turkey
| | | | - Markus Braun
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, 60438, Frankfurt, Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, 60438, Frankfurt, Germany
| | - Jesus Santamaria
- Institute of Nanoscience and Materials of Aragon (INMA), CSIC-Universidad de Zaragoza, Campus Río Ebro, Edificio I+D, C/Poeta Mariano Esquillor, s/n, Zaragoza, 50018, Spain
- Networking Research Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, 28029, Spain
- Department of Chemical and Environmental Engineering, University of Zaragoza, Campus Rio Ebro, C/María de Luna, 3, Zaragoza, 50018, Spain
- Instituto de Investigación Sanitaria (IIS) Aragón, Avenida San Juan Bosco, 13, Zaragoza, 50009, Spain
| | - Lucia Gemma Delogu
- Department of Biomedical Sciences, University of Padua, Padua, 35129, Italy
- Department of Biology, College of Arts and Sciences, Khalifa University, Abu Dhabi, 127788, UAE
| | - Alberto Tagliaferro
- Department of Applied Science and Technology, Politecnico di Torino, Torino, 10129, Italy
| | - Açelya Yilmazer
- Department of Biomedical Engineering, Faculty of Engineering, Ankara University, Ankara, 06830, Turkey
- Stem Cell Institute, Ankara University, Ankara, 06520, Turkey
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, USA
| |
Collapse
|
13
|
Bae C, Hernández Millares R, Ryu S, Moon H, Kim D, Lee G, Jiang Z, Park MH, Kim KH, Koom WS, Ye SJ, Lee K. Synergistic Effect of Ferroptosis-Inducing Nanoparticles and X-Ray Irradiation Combination Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310873. [PMID: 38279618 DOI: 10.1002/smll.202310873] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/18/2023] [Indexed: 01/28/2024]
Abstract
Ferroptosis, characterized by the induction of cell death via lipid peroxidation, has been actively studied over the last few years and has shown the potential to improve the efficacy of cancer nanomedicine in an iron-dependent manner. Radiation therapy, a common treatment method, has limitations as a stand-alone treatment due to radiation resistance and safety as it affects even normal tissues. Although ferroptosis-inducing drugs help alleviate radiation resistance, there are no safe ferroptosis-inducing drugs that can be considered for clinical application and are still in the research stage. Here, the effectiveness of combined treatment with radiotherapy with Fe and hyaluronic acid-based nanoparticles (FHA-NPs) to directly induce ferroptosis, considering the clinical applications is reported. Through the induction of ferroptosis by FHA-NPs and apoptosis by X-ray irradiation, the therapeutic efficiency of cancer is greatly improved both in vitro and in vivo. In addition, Monte Carlo simulations are performed to assess the physical interactions of the X-rays with the iron-oxide nanoparticle. The study provides a deeper understanding of the synergistic effect of ferroptosis and X-ray irradiation combination therapy. Furthermore, the study can serve as a valuable reference for elucidating the role and mechanisms of ferroptosis in radiation therapy.
Collapse
Affiliation(s)
- Chaewon Bae
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Rodrigo Hernández Millares
- Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Suhyun Ryu
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyowon Moon
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Dongwoo Kim
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Gyubok Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Zhuomin Jiang
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Min Hee Park
- THEDONEE, 1208, 156, Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16506, Republic of Korea
| | - Kyung Hwan Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Woong Sub Koom
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Sung-Joon Ye
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, South Korea
- Advanced Institute of Convergence Technology, Seoul National University, Suwon, 16229, South Korea
- Research Institute for Convergence Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kangwon Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
- Research Institute for Convergence Science, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
14
|
Li Y, Qian L, Yang Z, Li S, Wu A, Wang X. Photothermal and ferroptosis synergistic therapy for liver cancer using iron-doped polydopamine nanozymes. Colloids Surf B Biointerfaces 2024; 239:113911. [PMID: 38714079 DOI: 10.1016/j.colsurfb.2024.113911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 05/09/2024]
Abstract
An innovative nanozyme, iron-doped polydopamine (Fe-PDA), which integrates iron ions into a PDA matrix, conferred peroxidase-mimetic activity and achieved a substantial photothermal conversion efficiency of 43.5 %. Fe-PDA mediated the catalysis of H2O2 to produce toxic hydroxyl radicals (•OH), thereby facilitating lipid peroxidation in tumour cells and inducing ferroptosis. Downregulation of solute carrier family 7 no. 11 (SLC7A11) and solute carrier family 3 no. 2 (SLC3A2) in System Xc- resulted in decreased intracellular glutathione (GSH) production and inactivation of the nuclear factor erythroid 2-related factor 2 (NRF2)-glutathione peroxidase 4 (GPX4) pathway, contributing to ferroptosis. Moreover, the application of photothermal therapy (PTT) enhanced the effectiveness of chemodynamic therapy (CDT), accelerating the Fenton reaction for targeted tumour eradication while sparing adjacent non-cancerous tissues. In vivo experiments revealed that Fe-PDA significantly hampered tumour progression in mice, emphasizing the potential of the dual-modality treatment combining CDT and PTT for future clinical oncology applications.
Collapse
Affiliation(s)
- Yunchun Li
- College of Science, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Linqun Qian
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhouping Yang
- College of Science, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Siyu Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan 611130, China
| | - Aimin Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Xianxiang Wang
- College of Science, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
15
|
He G, Mei C, Chen C, Liu X, Wu J, Deng Y, Liao Y. Application and progress of nanozymes in antitumor therapy. Int J Biol Macromol 2024; 265:130960. [PMID: 38518941 DOI: 10.1016/j.ijbiomac.2024.130960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024]
Abstract
Tumors remain one of the major threats to public health and there is an urgent need to design new pharmaceutical agents for their diagnosis and treatment. In recent years, due to the rapid development of nanotechnology, biotechnology, catalytic science, and theoretical computing, subtlety has gradually made great progress in research related to tumor diagnosis and treatment. Compared to conventional drugs, enzymes can improve drug distribution and enhance drug enrichment at the tumor site, thereby reducing drug side effects and enhancing drug efficacy. Nanozymes can also be used as tumor tracking imaging agents to reshape the tumor microenvironment, providing a versatile platform for the diagnosis and treatment of malignancies. In this paper, we review the current status of research on enzymes in oncology and analyze novel oncology therapeutic approaches and related mechanisms. To date, a large number of nanomaterials, such as noble metal nanomaterials, nonmetallic nanomaterials, and carbon-based nanomaterials, have been shown to be able to function like natural enzymes, particularly with significant advantages in tumor therapy. In light of this, the authors in this review have systematically summarized and evaluated the construction, enzymatic activity, and their characteristics of nanozymes with respect to current modalities of tumor treatment. In addition, the application and research progress of different types of nicknames and their features in recent years are summarized in detail. We conclude with a summary and outlook on the study of nanozymes in tumor diagnosis and treatment. It is hoped that this review will inspire researchers in the fields of nanotechnology, chemistry, biology, materials science and theoretical computing, and contribute to the development of nano-enzymology.
Collapse
Affiliation(s)
- Gaihua He
- Department of Pharmacy, Jinzhou Medical University, Jinzhou 121001, PR China; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, QLD 4072, Australia.
| | - Chao Mei
- Department of Pharmacy, Jinzhou Medical University, Jinzhou 121001, PR China
| | - Chenbo Chen
- Department of Pharmacy, Jinzhou Medical University, Jinzhou 121001, PR China
| | - Xiao Liu
- Department of Pharmacy, Jinzhou Medical University, Jinzhou 121001, PR China
| | - Jiaxuan Wu
- Department of Pharmacy, Jinzhou Medical University, Jinzhou 121001, PR China
| | - Yue Deng
- Department of Pharmacy, Jinzhou Medical University, Jinzhou 121001, PR China
| | - Ye Liao
- Department of Pharmacy, Jinzhou Medical University, Jinzhou 121001, PR China; College of Veterinary Medicine, Institute of Comparative Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
16
|
Li M, Wang M, Huang J, Tang S, Yang J, Xu Z, Xu G, Chen X, Liu J, Yang C. High-performance pyrite nano-catalyst driven photothermal/chemodynamic synergistic therapy for Osteosarcoma. J Nanobiotechnology 2024; 22:141. [PMID: 38561739 PMCID: PMC10983657 DOI: 10.1186/s12951-024-02419-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Osteosarcoma (OS) is an aggressive bone tumor with strong invasiveness, rapid metastasis, and dreadful mortality. Chemotherapy is a commonly used approach for OS treatment but is limited by the development of drug resistance and long-term adverse effects. To date, OS still lacks the curative treatment. Herein, we fabricated pyrite-based nanoparticles (FeS2@CP NPs) as synergetic therapeutic platform by integrating photothermal therapy (PTT) and chemo-dynamic therapy (CDT) into one system. The synthetic FeS2@CP NPs showed superior Fenton reaction catalytic activity. FeS2@CP NPs-based CDT efficaciously eradicated the tumor cells by initiating dual-effect of killing of apoptosis and ferroptosis. Furthermore, the generated heat from FeS2@CP under near-infrared region II (NIR-II) laser irradiation could not only inhibit tumor's growth, but also promote tumor cell apoptosis and ferroptosis by accelerating •OH production and GSH depletion. Finally, the photothermal/NIR II-enhanced CDT synergistic therapy showed excellent osteosarcoma treatment effects both in vitro and in vivo with negligible side effects. Overall, this work provided a high-performance and multifunctional Fenton catalyst for osteosarcoma synergistic therapy, which provided a pathway for the clinical application of PTT augmented CDT.
Collapse
Affiliation(s)
- Meirong Li
- Central Laboratory, The Second Affiliated Hospital of the Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong, 518172, P. R. China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Minghua Wang
- Pathology Department, The Second Affiliated Hospital of the Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong, 518172, P. R. China
| | - Junfeng Huang
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, P. R. China
| | - Shiqi Tang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Jingyu Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Xin Chen
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Jia Liu
- Central Laboratory, The Second Affiliated Hospital of the Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong, 518172, P. R. China.
| | - Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China.
| |
Collapse
|
17
|
Huang M, Teng Q, Cao F, Huang J, Pang J. Ferroptosis and ferroptosis-inducing nanomedicine as a promising weapon in combination therapy of prostate cancer. Biomater Sci 2024; 12:1617-1629. [PMID: 38379396 DOI: 10.1039/d3bm01894f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Incidence and mortality of prostate cancer (PCa) rank in the top five among male tumors. However, single treatment modalities are often restricted due to biochemical recurrence and drug resistance, necessitating the development of new approaches for the combination treatment of castration-resistant and neuroendocrine PCa. Ferroptosis is characterized by the accumulation of iron-overload-mediated lipid peroxidation and has shown promising outcomes in anticancer treatment, prompting us to present a review reporting the application of ferroptosis in the treatment of PCa. First, the process and mechanism of ferroptosis are briefly reviewed. Second, research advances combining ferroptosis-inducing agents and clinical treatment regimens, which exhibit a "two-pronged approach" effect, are further summarized. Finally, the recent progress on ferroptosis-inducing nanomaterials for combination anticancer therapy is presented. This review is expected to provide novel insights into ferroptosis-based combination treatment in drug-resistant PCa.
Collapse
Affiliation(s)
- Mengjun Huang
- Department of Urology, Kidney and Urology Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Qiliang Teng
- Department of Urology, Kidney and Urology Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Fei Cao
- Department of Urology, Kidney and Urology Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Jinsheng Huang
- Department of Urology, Kidney and Urology Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Jun Pang
- Department of Urology, Kidney and Urology Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
18
|
Zhang Z, Liang X, Yang X, Liu Y, Zhou X, Li C. Advances in Nanodelivery Systems Based on Metabolism Reprogramming Strategies for Enhanced Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6689-6708. [PMID: 38302434 DOI: 10.1021/acsami.3c15686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Tumor development and metastasis are closely related to the complexity of the metabolism network. Recently, metabolism reprogramming strategies have attracted much attention in tumor metabolism therapy. Although there is preliminary success of metabolism therapy agents, their therapeutic effects have been restricted by the effective reaching of the tumor sites of drugs. Nanodelivery systems with unique physical properties and elaborate designs can specifically deliver to the tumors. In this review, we first summarize the research progress of nanodelivery systems based on tumor metabolism reprogramming strategies to enhance therapies by depleting glucose, inhibiting glycolysis, depleting lactic acid, inhibiting lipid metabolism, depleting glutamine and glutathione, and disrupting metal metabolisms combined with other therapies, including chemotherapy, radiotherapy, photodynamic therapy, etc. We further discuss in detail the advantages of nanodelivery systems based on tumor metabolism reprogramming strategies for tumor therapy. As well as the opportunities and challenges for integrating nanodelivery systems into tumor metabolism therapy, we analyze the outlook for these emerging areas. This review is expected to improve our understanding of modulating tumor metabolisms for enhanced therapy.
Collapse
Affiliation(s)
- Zongquan Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiaoya Liang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xi Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yan Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiangyu Zhou
- Department of Thyroid and Vascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Basic Medicine Research Innovation Center for Cardiometabolic Disease, Ministry of Education, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|
19
|
Xu L, Peng M, Gao T, Wang D, Lian X, Sun H, Shi J, Wang Y, Wang P. Nanoenabled Intracellular Metal Ion Homeostasis Regulation for Tumor Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306203. [PMID: 38063781 PMCID: PMC10870045 DOI: 10.1002/advs.202306203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/27/2023] [Indexed: 02/17/2024]
Abstract
Endogenous essential metal ions play an important role in many life processes, especially in tumor development and immune response. The approval of various metallodrugs for tumor therapy brings more attention to the antitumor effect of metal ions. With the deepening understanding of the regulation mechanisms of metal ion homeostasis in vivo, breaking intracellular metal ion homeostasis becomes a new means to inhibit the proliferation of tumor cells and activate antitumor immune response. Diverse nanomedicines with the loading of small molecular ion regulators or metal ions have been developed to disrupt metal ion homeostasis in tumor cells, with higher safety and efficiency than free small molecular ion regulators or metal compounds. This comprehensive review focuses on the latest progress of various intracellular metal ion homeostasis regulation-based nanomedicines in tumor therapy including calcium ion (Ca2+ ), ferrous ion (Fe2+ ), cuprous ion (Cu+ ), managanese ion (Mn2+ ), and zinc ion (Zn2+ ). The physiological functions and homeostasis regulation processes of ions are summarized to guide the design of metal ion regulation-based nanomedicines. Then the antitumor mechanisms of various ions-based nanomedicines and some efficient synergistic therapies are highlighted. Finally, the challenges and future developments of ion regulation-based antitumor therapy are also discussed, hoping to provide a reference for finding more effective metal ions and synergistic therapies.
Collapse
Affiliation(s)
- Lihua Xu
- Sino‐British Research Centre for Molecular OncologyNational Centre for International Research in Cell and Gene TherapyState Key Laboratory of Esophageal Cancer Prevention & TreatmentSchool of Basic Medical SciencesAcademy of Medical SciencesZhengzhou UniversityZhengzhou450052China
| | - Mingzheng Peng
- Sino‐British Research Centre for Molecular OncologyNational Centre for International Research in Cell and Gene TherapyState Key Laboratory of Esophageal Cancer Prevention & TreatmentSchool of Basic Medical SciencesAcademy of Medical SciencesZhengzhou UniversityZhengzhou450052China
| | - Tingting Gao
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001China
| | - Dandan Wang
- Sino‐British Research Centre for Molecular OncologyNational Centre for International Research in Cell and Gene TherapyState Key Laboratory of Esophageal Cancer Prevention & TreatmentSchool of Basic Medical SciencesAcademy of Medical SciencesZhengzhou UniversityZhengzhou450052China
| | - Xiaowu Lian
- Henan Institute of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhou450052China
| | - Huihui Sun
- Sino‐British Research Centre for Molecular OncologyNational Centre for International Research in Cell and Gene TherapyState Key Laboratory of Esophageal Cancer Prevention & TreatmentSchool of Basic Medical SciencesAcademy of Medical SciencesZhengzhou UniversityZhengzhou450052China
| | - Jinjin Shi
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001China
| | - Yafeng Wang
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001China
| | - Pengju Wang
- Sino‐British Research Centre for Molecular OncologyNational Centre for International Research in Cell and Gene TherapyState Key Laboratory of Esophageal Cancer Prevention & TreatmentSchool of Basic Medical SciencesAcademy of Medical SciencesZhengzhou UniversityZhengzhou450052China
| |
Collapse
|
20
|
Fırlak Demirkan M, Öztürk D, Çifçibaşı ZS, Ertan F, Hardy JG, Nurşeval Oyunlu A, Darıcı H. Controlled Sr(ii) ion release from in situ crosslinking electroactive hydrogels with potential for the treatment of infections. RSC Adv 2024; 14:4324-4334. [PMID: 38304567 PMCID: PMC10828636 DOI: 10.1039/d3ra07061a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/26/2023] [Indexed: 02/03/2024] Open
Abstract
The development of electrochemical stimuli-responsive drug delivery systems is of both academic and industrial interest due to the ease with which it is possible to trigger payload release, providing drug delivery in a controllable manner. Herein, the preparation of in situ forming hydrogels including electroactive polypyrrole nanoparticles (PPy-NPs) where Sr2+ ions are electrochemically loaded for electrically triggered release of Sr2+ ions is reported. The hydrogels were characterized by a variety of techniques including Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), thermogravimetric analysis (TGA), X-ray diffraction (XRD), cyclic voltammetry (CV), etc. The cytocompatibility towards human mesenchymal stem cells (MSCs) and fibroblasts were also studied. The Sr2+ ion loaded PEC-ALD/CS/PPy-NPs hydrogel showed no significant cytotoxicity towards human mesenchymal stem cells (MSCs) and fibroblasts. Sr2+ ions were electrochemically loaded and released from the electroactive hydrogels, and the application of an electrical stimulus enhanced the release of Sr2+ ions from gels by ca. 2-4 fold relative to the passive release control experiment. The antibacterial activity of Sr2+ ions against E. coli and S. aureus was demonstrated in vitro. Although these prototypical examples of Sr2+ loaded electroactive gels don't release sufficient Sr2+ ions to show antibacterial activity against E. coli and S. aureus, we believe future iterations with optimised physical properties of the gels will be capable of doing so.
Collapse
Affiliation(s)
| | - Dilek Öztürk
- Department of Chemistry, Gebze Technical University Gebze Kocaeli 41400 Turkey
| | | | - Fatma Ertan
- Department of Chemistry, Gebze Technical University Gebze Kocaeli 41400 Turkey
| | | | | | - Hakan Darıcı
- HD Bioink Biotechnology Corp. İstanbul Turkey
- 3D Bioprinting Design & Prototyping R&D Center, Istinye University Istanbul Turkey
- Faculty of Medicine, Dept. of Histology & Embryology, Istinye University Istanbul Turkey
- Stem Cell, and Tissue Engineering R&D Center, Istinye University Istanbul Turkey
| |
Collapse
|
21
|
Li Y, Wei C, Yan J, Li F, Chen B, Sun Y, Luo K, He B, Liang Y. The application of nanoparticles based on ferroptosis in cancer therapy. J Mater Chem B 2024; 12:413-435. [PMID: 38112639 DOI: 10.1039/d3tb02308g] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Ferroptosis is a new form of non-apoptotic programmed cell death. Due to its effectiveness in cancer treatment, there are increasing studies on the application of nanoparticles based on ferroptosis in cancer therapy. In this paper, we present a summary of the latest progress in nanoparticles based on ferroptosis for effective tumor therapy. We also describe the combined treatment of ferroptosis with other therapies, including chemotherapy, radiotherapy, phototherapy, immunotherapy, and gene therapy. This summary of drug delivery systems based on ferroptosis aims to provide a basis and inspire opinions for researchers concentrating on exploring this field. Finally, we present some prospects and challenges for the application of nanotherapies to clinical treatment by promoting ferroptosis in cancer cells.
Collapse
Affiliation(s)
- Yifei Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| | - Chen Wei
- Department of Pharmacy, Qingdao Women and Children's Hospital, Qingdao 266034, China
| | - Jianqin Yan
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| | - Fashun Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| | - Bohan Chen
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yan Liang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| |
Collapse
|
22
|
Zhang X, Li X, Xia R, Zhang HS. Ferroptosis resistance in cancer: recent advances and future perspectives. Biochem Pharmacol 2024; 219:115933. [PMID: 37995980 DOI: 10.1016/j.bcp.2023.115933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Ferroptosis is an iron-dependent, non-apoptotic form of regulated cell death and has been implicated in the occurrence and development of various diseases, including heart disease, nervous system diseases and cancer. Ferroptosis induction recently emerged as an attractive strategy for cancer therapy. Ferroptosis has become a potential target for intervention in these diseases or injuries in relevant preclinical models. This review summarizes recent progress on the mechanisms of ferroptosis resistance in cancer, highlights redox status and metabolism's role in it. Combination therapy for ferroptosis has great potential in cancer treatment, especially malignant tumors that are resistant to conventional therapies. This review will lead us to have a comprehensive understanding of the future exploration of ferroptosis and cancer therapy. A deeper understanding of the relationship between ferroptosis resistance and metabolism reprogramming may provide new strategies for tumor treatment and drug development based on ferroptosis.
Collapse
Affiliation(s)
- Xing Zhang
- Faculty of Environment and Life, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing 100124, China
| | - Xiang Li
- Faculty of Environment and Life, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing 100124, China
| | - Ran Xia
- Faculty of Environment and Life, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing 100124, China
| | - Hong-Sheng Zhang
- Faculty of Environment and Life, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing 100124, China.
| |
Collapse
|
23
|
Zhou X, Jia Y, Mao C, Liu S. Small extracellular vesicles: Non-negligible vesicles in tumor progression, diagnosis, and therapy. Cancer Lett 2024; 580:216481. [PMID: 37972701 DOI: 10.1016/j.canlet.2023.216481] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/26/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
Small extracellular vesicles (sEVs) such as exosomes are nanoscale membranous particles (<200 nm) that have emerged as crucial targets for liquid biopsy and as promising drug delivery vehicles. They play a significant role in tumor progression as intercellular messengers. They can serve as biomarkers for tumor diagnosis and as drug carriers for cancer treatment. This article reviews recent studies on sEVs in oncology and explores their potential as biomarkers and drug delivery vehicles. Following tumorigenesis, sEVs in the tumor microenvironment (TME) and circulatory system undergo modifications to regulate various events in the TME, including angiogenesis, epithelial-mesenchymal transition (EMT), and tumor immunity, with either pro- or anti-tumor effects. sEVs have been investigated for use as diagnostic and prognostic biomarkers for a variety of tumors, including lung cancer, melanoma, breast cancer, prostate cancer, and hepatocellular carcinoma. sEVs can be used for cancer therapy by packaging drugs or proteins into them through pre- and post-isolation modification techniques. The clinical trials of sEVs as biomarkers and drug carriers are also summarized. Finally, the challenges in the use of sEVs are described and the possible approaches to tackling them are suggested. Overall, sEVs will advance the precision cancer medicine and has shown great potential in clinical applications.
Collapse
Affiliation(s)
- Xinru Zhou
- Department of Laboratory Diagnostics, Changhai Hospital, Navy Military Medical University, Shanghai, China
| | - Yin Jia
- Department of Laboratory Diagnostics, Changhai Hospital, Navy Military Medical University, Shanghai, China
| | - Chuanbin Mao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; School of Materials Science & Engineering, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Shanrong Liu
- Department of Laboratory Diagnostics, Changhai Hospital, Navy Military Medical University, Shanghai, China.
| |
Collapse
|
24
|
Mavridi-Printezi A, Menichetti A, Mordini D, Montalti M. Functionalization of and through Melanin: Strategies and Bio-Applications. Int J Mol Sci 2023; 24:9689. [PMID: 37298641 PMCID: PMC10253489 DOI: 10.3390/ijms24119689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
A unique feature of nanoparticles for bio-application is the ease of achieving multi-functionality through covalent and non-covalent functionalization. In this way, multiple therapeutic actions, including chemical, photothermal and photodynamic activity, can be combined with different bio-imaging modalities, such as magnetic resonance, photoacoustic, and fluorescence imaging, in a theragnostic approach. In this context, melanin-related nanomaterials possess unique features since they are intrinsically biocompatible and, due to their optical and electronic properties, are themselves very efficient photothermal agents, efficient antioxidants, and photoacoustic contrast agents. Moreover, these materials present a unique versatility of functionalization, which makes them ideal for the design of multifunctional platforms for nanomedicine integrating new functions such as drug delivery and controlled release, gene therapy, or contrast ability in magnetic resonance and fluorescence imaging. In this review, the most relevant and recent examples of melanin-based multi-functionalized nanosystems are discussed, highlighting the different methods of functionalization and, in particular, distinguishing pre-functionalization and post-functionalization. In the meantime, the properties of melanin coatings employable for the functionalization of a variety of material substrates are also briefly introduced, especially in order to explain the origin of the versatility of melanin functionalization. In the final part, the most relevant critical issues related to melanin functionalization that may arise during the design of multifunctional melanin-like nanoplatforms for nanomedicine and bio-application are listed and discussed.
Collapse
Affiliation(s)
| | | | | | - Marco Montalti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.-P.); (A.M.); (D.M.)
| |
Collapse
|
25
|
Yi J, Luo X, Xing J, Gedanken A, Lin X, Zhang C, Qiao G. Micelle encapsulation zinc-doped copper oxide nanocomposites reverse Olaparib resistance in ovarian cancer by disrupting homologous recombination repair. Bioeng Transl Med 2023; 8:e10507. [PMID: 37206208 PMCID: PMC10189445 DOI: 10.1002/btm2.10507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 01/22/2023] [Accepted: 03/04/2023] [Indexed: 03/31/2024] Open
Abstract
Micelle Encapsulation Zinc-doped copper oxide nanocomposites (MEnZn-CuO NPs) is a novel doped metal nanomaterial prepared by our group based on Zinc doped copper oxide nanocomposites (Zn-CuO NPs) using non-micellar beam. Compared with Zn-CuO NPs, MEnZn-CuO NPs have uniform nanoproperties and high stability. In this study, we explored the anticancer effects of MEnZn-CuO NPs on human ovarian cancer cells. In addition to affecting cell proliferation, migration, apoptosis and autophagy, MEnZn-CuO NPs have a greater potential for clinical application by inducing HR repair defects in ovarian cancer cells in combination with poly (ADP-ribose) polymerase inhibitors for lethal effects.
Collapse
Affiliation(s)
- Jingyan Yi
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Nucleic Acid Medicine of Luzhou Key Laboratory, Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular ResearchSouthwest Medical UniversityLuzhouSichuan646000China
| | - Xin Luo
- Department of Pharmacology, School of Pharmacy, Nucleic Acid Medicine of Luzhou Key LaboratorySouthwest Medical UniversityLuzhouSichuan646000China
| | - Jinshan Xing
- Department of NeurosurgeryThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouSichuan646000China
| | - Aharon Gedanken
- Center for Advanced Materials and NanotechnologyBar‐Ilan UniversityRamat Gan52900Israel
| | - Xiukun Lin
- College of Marine SciencesBeibu Gulf University12 Binhai RoadQinzhou535011GuangxiChina
| | - Chunxiang Zhang
- Nucleic Acid Medicine of Luzhou Key Laboratory, Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular ResearchSouthwest Medical UniversityLuzhouSichuan646000China
| | - Gan Qiao
- Department of Pharmacology, School of Pharmacy, Nucleic Acid Medicine of Luzhou Key LaboratorySouthwest Medical UniversityLuzhouSichuan646000China
- School of Pharmacy, Central Nervous System Drug Key Laboratory of Sichuan Province, Nucleic Acid Medicine of Luzhou Key Laboratory, Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular ResearchSouthwest Medical UniversityLuzhou646000SichuanChina
| |
Collapse
|
26
|
Lee J, Roh JL. Targeting GPX4 in human cancer: Implications of ferroptosis induction for tackling cancer resilience. Cancer Lett 2023; 559:216119. [PMID: 36893895 DOI: 10.1016/j.canlet.2023.216119] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/25/2023] [Accepted: 03/07/2023] [Indexed: 03/09/2023]
Abstract
Cancer metabolic alterations have been emphasized to protect cancer cells from cell death. The metabolic reprogramming toward a mesenchymal state makes cancer cells resistant to therapy but vulnerable to ferroptosis induction. Ferroptosis is a new form of regulated cell death based on the iron-dependent accumulation of excessive lipid peroxidation. Glutathione peroxidase 4 (GPX4) is the core regulator of ferroptosis by detoxifying cellular lipid peroxidation using glutathione as a cofactor. GPX4 synthesis requires selenium incorporation into the selenoprotein through isopentenylation and selenocysteine tRNA maturation. GPX4 synthesis and expression can be regulated by multiple levels of its transcription, translation, posttranslational modifications, and epigenetic modifications. Targeting GPX4 in cancer may be a promising strategy for effectively inducing ferroptosis and killing therapy-resistant cancer. Several pharmacological therapeutics targeting GPX4 have been developed constantly to activate ferroptosis induction in cancer. The potential therapeutic index of GPX4 inhibitors remains to be tested with thorough examinations of their safety and adverse effects in vivo and clinical trials. Many papers have been published continuously in recent years, requiring state-of-the-art updates in targeting GPX4 in cancer. Herein, we summarize targeting the GPX4 pathway in human cancer, which leads to implications of ferroptosis induction for tackling cancer resilience.
Collapse
Affiliation(s)
- Jaewang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea; Department of Biomedical Science, General Graduate School, CHA University, Seongnam, Republic of Korea
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea; Department of Biomedical Science, General Graduate School, CHA University, Seongnam, Republic of Korea.
| |
Collapse
|
27
|
Shen F, Fang Y, Wu Y, Zhou M, Shen J, Fan X. Metal ions and nanometallic materials in antitumor immunity: Function, application, and perspective. J Nanobiotechnology 2023; 21:20. [PMID: 36658649 PMCID: PMC9850565 DOI: 10.1186/s12951-023-01771-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
The slightest change in the extra/intracellular concentration of metal ions results in amplified effects by signaling cascades that regulate both cell fate within the tumor microenvironment and immune status, which influences the network of antitumor immunity through various pathways. Based on the fact that metal ions influence the fate of cancer cells and participate in both innate and adaptive immunity, they are widely applied in antitumor therapy as immune modulators. Moreover, nanomedicine possesses the advantage of precise delivery and responsive release, which can perfectly remedy the drawbacks of metal ions, such as low target selectivity and systematic toxicity, thus providing an ideal platform for metal ion application in cancer treatment. Emerging evidence has shown that immunotherapy applied with nanometallic materials may significantly enhance therapeutic efficacy. Here, we focus on the physiopathology of metal ions in tumorigenesis and discuss several breakthroughs regarding the use of nanometallic materials in antitumor immunotherapeutics. These findings demonstrate the prominence of metal ion-based nanomedicine in cancer therapy and prophylaxis, providing many new ideas for basic immunity research and clinical application. Consequently, we provide innovative insights into the comprehensive understanding of the application of metal ions combined with nanomedicine in cancer immunotherapy in the past few years.
Collapse
Affiliation(s)
- Feiyang Shen
- grid.16821.3c0000 0004 0368 8293Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025 China
| | - Yan Fang
- grid.16821.3c0000 0004 0368 8293Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025 China
| | - Yijia Wu
- grid.16821.3c0000 0004 0368 8293Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025 China
| | - Min Zhou
- grid.16821.3c0000 0004 0368 8293Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025 China
| | - Jianfeng Shen
- grid.16821.3c0000 0004 0368 8293Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025 China ,grid.16821.3c0000 0004 0368 8293Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Xianqun Fan
- grid.16821.3c0000 0004 0368 8293Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025 China ,grid.16821.3c0000 0004 0368 8293Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
28
|
Ouyang X, Zhu R, Lin L, Wang X, Zhuang Q, Hu D. GAPDH Is a Novel Ferroptosis-Related Marker and Correlates with Immune Microenvironment in Lung Adenocarcinoma. Metabolites 2023; 13:metabo13020142. [PMID: 36837761 PMCID: PMC9961514 DOI: 10.3390/metabo13020142] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/01/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is a prevalent form of lung cancer with high morbidity and fatality rates. Ferroptosis is a type of programmed cell death that is iron-dependent. Recent findings have suggested that ferroptosis inducers have promising prospects for the therapy of LUAD. However, ferroptosis-related gene expression in LUAD and its relationship with the tumor prognosis and tumor immune microenvironment remain unknown. We identified a total of 638 ferroptosis-related genes, built a LUAD ferroptosis-related risk model (FRRM) with the help of Least Absolute Shrinkage Selection Operator (LASSO) regression analysis based on The Cancer Genome Atlas (TCGA) database, split LUAD patients into high- and low-risk clusters, and verified the model utilizing the Gene Expression Omnibus (GEO) database. The results of the FRRM's principal component analysis (PCA) demonstrated its strong predictive power. Further, univariate and multivariate Cox and AUC curve analyses demonstrated that the model was independent of other clinical traits and served as an independent prognostic factor. The nomogram demonstrated strong predictive power for overall survival, according to calibration plots. We also explored variations in clinical characteristics, immune cell infiltration, immune-related function, and functional pathways between the high- and low-risk groups. Additionally, we used a protein-protein interaction (PPI) network of various genes in the two groups to search for potential target genes. GAPDH was then chosen for a follow-up investigation. An analysis was performed on the relationship between GAPDH and variations in survival prognosis, clinical traits, immune cell infiltration, immune checkpoints, and immunotherapy. In vitro tests further supported the probable functions of GAPDH as a ferroptosis marker in LUAD. In conclusion, a novel ferroptosis-related prognostic gene, GAPDH, was discovered, whose expression was connected to the tumor immune microenvironment. The combination of immunotherapy and the targeting of GAPDH to induce ferroptosis in LUAD may provide a novel therapeutical option.
Collapse
Affiliation(s)
- Xiaohu Ouyang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Rui Zhu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lan Lin
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xunxun Wang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qigang Zhuang
- The First Clinical College, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan 430022, China
- Clinical Research Center of Cancer Immunotherapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Correspondence: ; Tel.: +86-27-8587-3071
| |
Collapse
|
29
|
Lin Y, Xu W, Hou Y, Wang S, Zhang H, Ran M, Huang Y, Wang Y, Yang G. The multifaceted role of ferroptosis in kidney diseases. Chem Biol Interact 2022; 365:110107. [PMID: 35985518 DOI: 10.1016/j.cbi.2022.110107] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/20/2022]
Abstract
Ferroptosis, a form of cell death caused by the excessive accumulation of iron-dependent lipid peroxides. Studies over the last decade have identified multiple pathways that affect the sensitivity of cells to ferroptosis. Renal diseases, the tenth leading cause of death in the world, has been affecting the life of people for a long time. Numerous studies have shown that ferroptosis is inextricably linked to damage to kidney cells. Here, we review the pathophysiological features of the kidney, the basic pathways of ferroptosis, and the mechanisms of ferroptosis-induced kidney injury. It is proposed a promising outlook for the treatment of renal diseases by influencing ferroptosis.
Collapse
Affiliation(s)
- Yuxuan Lin
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Wenqi Xu
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Yunfeng Hou
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Shaopeng Wang
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Haoyang Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Maohuan Ran
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Yiming Huang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Yimeng Wang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Guang Yang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China.
| |
Collapse
|
30
|
Zhang S, Zhang J, Fan X, Liu H, Zhu M, Yang M, Zhang X, Zhang H, Yu F. Ionizing Radiation-Induced Ferroptosis Based on Nanomaterials. Int J Nanomedicine 2022; 17:3497-3507. [PMID: 35966149 PMCID: PMC9364940 DOI: 10.2147/ijn.s372947] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022] Open
Abstract
Ferroptosis is an iron-dependent form of regulated cell death (RCD), that is associated with peroxidative damage to cellular membranes. A promising therapeutic method is to target ferroptosis. Nanomaterial-induced ferroptosis attracts enormous attention. Nevertheless, there are still certain shortcomings in ferroptosis, such as inadequate triggered immunogenic cell death to suit clinical demands. Various investigations have indicated that ionizing radiation (IR) can further induce ferroptosis. Consequently, it is a potential strategy for cancer therapy that combines nanomaterials and IR to induce ferroptosis. Initially, we discuss various ferroptosis inducers based on nanomaterials in this review. Furthermore, mechanisms of IR-induced ferroptosis are briefly introduced. Ultimately, we assess the feasibility of combining nanomaterials with IR to induce ferroptosis, paving the way for future research.
Collapse
Affiliation(s)
- Shenghong Zhang
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
- Shanghai Clinical College, Anhui Medical University, Shanghai, People’s Republic of China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Jiajia Zhang
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Xin Fan
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Hanhui Liu
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
- Shanghai Clinical College, Anhui Medical University, Shanghai, People’s Republic of China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Mengqin Zhu
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
- Shanghai Clinical College, Anhui Medical University, Shanghai, People’s Republic of China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Mengdie Yang
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Xiaoyi Zhang
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Han Zhang
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Fei Yu
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, People’s Republic of China
- Correspondence: Fei Yu, Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China, Tel +86-021-66302721, Fax +86-021-66300588, Email
| |
Collapse
|
31
|
Qiao C, Wang H, Guan Q, Wei M, Li Z. Ferroptosis-based nano delivery systems targeted therapy for colorectal cancer: Insights and future perspectives. Asian J Pharm Sci 2022; 17:613-629. [PMID: 36382305 PMCID: PMC9640473 DOI: 10.1016/j.ajps.2022.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/29/2022] [Accepted: 09/19/2022] [Indexed: 11/02/2022] Open
Abstract
There are limited options for patients who develop liver metastasis from colorectal cancer (CRC), the leading cause of cancer-related mortality worldwide. Emerging evidence has provided insights into iron deficiency and excess in CRC. Ferroptosis is an iron-dependent form of programmed cell death characterized by aberrant iron and lipid metabolism, which play crucial roles in tumorigenesis, tumor progression, and treatment options. A better understanding of the underlying molecular mechanism of ferroptosis has shed light on the current findings of ferroptosis-based nanodrug targeting strategies, such as driving ferroptosis in tumor cells and the tumor microenvironment, emerging combination therapy and against multidrug resistance. Furthermore, this review highlights the challenge and perspective of a ferroptosis-driven nanodrug delivery system for CRC-targeted therapy.
Collapse
Affiliation(s)
- Chu Qiao
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Haiying Wang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Qiutong Guan
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Minjie Wei
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Zhenhua Li
- School of Pharmacy, China Medical University, Shenyang 110122, China
| |
Collapse
|
32
|
Wang D, Zhang S, Ge X, Yin Z, Li M, Guo M, Hu T, Han Z, Kong X, Li D, Zhao J, Wang L, Liu Q, Chen F, Lei P. Mesenchymal stromal cell treatment attenuates repetitive mild traumatic brain injury-induced persistent cognitive deficits via suppressing ferroptosis. J Neuroinflammation 2022; 19:185. [PMID: 35836233 PMCID: PMC9281149 DOI: 10.1186/s12974-022-02550-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/06/2022] [Indexed: 11/10/2022] Open
Abstract
The incidence of repetitive mild traumatic brain injury (rmTBI), one of the main risk factors for predicting neurodegenerative disorders, is increasing; however, its underlying mechanism remains unclear. As suggested by several studies, ferroptosis is possibly related to TBI pathophysiology, but its effect on rmTBI is rarely studied. Mesenchymal stromal cells (MSCs), the most studied experimental cells in stem cell therapy, exert many beneficial effects on diseases of the central nervous system, yet evidence regarding the role of MSCs in ferroptosis and post-rmTBI neurodegeneration is unavailable. Our study showed that rmTBI resulted in time-dependent alterations in ferroptosis-related biomarker levels, such as abnormal iron metabolism, glutathione peroxidase (GPx) inactivation, decrease in GPx4 levels, and increase in lipid peroxidation. Furthermore, MSC treatment markedly decreased the aforementioned rmTBI-mediated alterations, neuronal damage, pathological protein deposition, and improved cognitive function compared with vehicle control. Similarly, liproxstatin-1, a ferroptosis inhibitor, showed similar effects. Collectively, based on the above observations, MSCs ameliorate cognitive impairment following rmTBI, partially via suppressing ferroptosis, which could be a therapeutic target for rmTBI.
Collapse
Affiliation(s)
- Dong Wang
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Shishuang Zhang
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xintong Ge
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhenyu Yin
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Meimei Li
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Mengtian Guo
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Tianpeng Hu
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhaoli Han
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaodong Kong
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Dai Li
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing Zhao
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Lu Wang
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiang Liu
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Fanglian Chen
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Ping Lei
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China. .,Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
33
|
Huang XL. What are the inorganic nanozymes? Artificial or inorganic enzymes! NEW J CHEM 2022. [DOI: 10.1039/d2nj02088b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The research on inorganic nanozymes remains very active since the first paper on the “intrinsic peroxidase-like properties of ferromagnetic nanoparticles” was published in Nature Nanotechnology in 2007. However, there is...
Collapse
|