1
|
Lin YH, Chen Y, Liu EW, Chen MC, Yu MH, Chen CY, Ho CC, Hsu-Jiang TY, Lee JJ, Cho DY, Shie MY. Immunomodulation effects of collagen hydrogel encapsulating extracellular vesicles derived from calcium silicate stimulated-adipose mesenchymal stem cells for diabetic healing. J Nanobiotechnology 2025; 23:45. [PMID: 39865263 PMCID: PMC11770968 DOI: 10.1186/s12951-025-03097-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/05/2025] [Indexed: 01/28/2025] Open
Abstract
Diabetic wounds are characterized by chronic inflammation, reduced angiogenesis, and insufficient collagen deposition, leading to impaired healing. Extracellular vesicles (EVs) derived from adipose-derived mesenchymal stem cells (ADSC) offer a promising cell-free therapeutic strategy, yet their efficacy and immunomodulation can be enhanced through bioactivation. In this study, we developed calcium silicate (CS)-stimulated ADSC-derived EVs (CSEV) incorporated into collagen hydrogels to create a sustained-release system for promoting diabetic wound healing. CSEV exhibited enhanced protein content, surface marker expression, and bioactive cargo enriched with pro-angiogenic and anti-inflammatory factors. In vitro, CSEV-loaded collagen significantly reduced reactive oxygen species production, promoted cell proliferation and migration compared to standard EV-loaded collagen. Cytokine profiling revealed the upregulation of anti-inflammatory cytokines and extracellular matrix components, highlighting their immunomodulatory and regenerative potential. In vivo, histological evaluation of diabetic rabbit models treated with CSEV-loaded collagen revealed superior reepithelialization and organized collagen deposition, indicating accelerated wound closure. These findings underscore the potential of CSEV-loaded collagen hydrogels as an innovative and effective therapeutic platform for enhancing diabetic wound healing by simultaneously addressing inflammation and tissue regeneration.
Collapse
Affiliation(s)
- Yen-Hong Lin
- Department of Biomedical Engineering, China Medical University, Taichung, 406040, Taiwan
- Research & Development Center for x-Dimensional Extracellular Vesicles, Department of Medical Research, China Medical University Hospital, Taichung, 404327, Taiwan
| | - Yeh Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, 402202, Taiwan
| | - En-Wei Liu
- Department of Plastic and Reconstructive Surgery, China Medical University Hospital, Taichung, 404327, Taiwan
| | - Mei-Chih Chen
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, Taichung, 404327, Taiwan
- Department and Development Department, Shine Out Bio Technology Co., Ltd, Taichung, 407608, Taiwan
| | - Min-Hua Yu
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung, 406040, Taiwan
| | - Cheng-Yu Chen
- Research & Development Center for x-Dimensional Extracellular Vesicles, Department of Medical Research, China Medical University Hospital, Taichung, 404327, Taiwan
| | - Chia-Che Ho
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, 413305, Taiwan
- High Performance Materials Institute for x-Dimensional Printing, Asia University, Taichung, 413305, Taiwan
| | - Tai-Yi Hsu-Jiang
- School of Medicine, China Medical University, Taichung, 406040, Taiwan
| | - Jian-Jr Lee
- Department of Plastic and Reconstructive Surgery, China Medical University Hospital, Taichung, 404327, Taiwan.
- School of Medicine, China Medical University, Taichung, 406040, Taiwan.
| | - Der-Yang Cho
- Research & Development Center for x-Dimensional Extracellular Vesicles, Department of Medical Research, China Medical University Hospital, Taichung, 404327, Taiwan.
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, Taichung, 404327, Taiwan.
- Department of Neurosurgery, China Medical University Hospital, Taichung, 404327, Taiwan.
| | - Ming-You Shie
- Department of Biomedical Engineering, China Medical University, Taichung, 406040, Taiwan.
- Research & Development Center for x-Dimensional Extracellular Vesicles, Department of Medical Research, China Medical University Hospital, Taichung, 404327, Taiwan.
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, 413305, Taiwan.
| |
Collapse
|
2
|
Li H, Sun D, Zhao Z, Fang J, Li M, Lv C, Zhou W, Li N, Guo Y, Cao Z, Liu K, Chen X. Neutrophil membrane-derived nanoparticles protect traumatic brain injury via inhibiting calcium overload and scavenging ROS. J Nanobiotechnology 2024; 22:477. [PMID: 39135044 PMCID: PMC11320991 DOI: 10.1186/s12951-024-02753-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
The secondary injury is more serious after traumatic brain injury (TBI) compared with primary injury. Release of excessive reactive oxygen species (ROS) and Ca2+ influx at the damaged site trigger the secondary injury. Herein, a neutrophil-like cell membrane-functionalized nanoparticle was developed to prevent ROS-associated secondary injury. NCM@MP was composed of three parts: (1) Differentiated neutrophil-like cell membrane (NCM) was synthesized, with inflammation-responsive ability to achieve effective targeting and to increase the retention time of Mn3O4 and nimodipine (MP) in deep injury brain tissue via C-X-C chemokine receptor type 4, integrin beta 1 and macrophage antigen-1. (2) Nimodipine was used to inhibit Ca2+ influx, eliminating the ROS at source. (3) Mn3O4 further eradicated the existing ROS. In addition, NCM@MP also exhibited desirable properties for T1 enhanced imaging and low toxicity which may serve as promising multifunctional nanoplatforms for precise therapies. In our study, NCM@MP obviously alleviated oxidative stress response, reduced neuroinflammation, protected blood-brain barrier integrity, relieved brain edema, promoted the regeneration of neurons, and improved the cognition of TBI mice. This study provides a promising TBI management to relieve the secondary spread of damage.
Collapse
Affiliation(s)
- Hongqing Li
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Duo Sun
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Zhenghuan Zhao
- College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Jingqin Fang
- Department of Ultrasound, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Muyao Li
- College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Chaoqun Lv
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Weicheng Zhou
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Ning Li
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yu Guo
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Zhile Cao
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Kaijun Liu
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Xiao Chen
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
3
|
Sands I, Demarco R, Thurber L, Esteban-Linares A, Song D, Meng E, Chen Y. Interface-Mediated Neurogenic Signaling: The Impact of Surface Geometry and Chemistry on Neural Cell Behavior for Regenerative and Brain-Machine Interfacing Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401750. [PMID: 38961531 PMCID: PMC11326983 DOI: 10.1002/adma.202401750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/17/2024] [Indexed: 07/05/2024]
Abstract
Nanomaterial advancements have driven progress in central and peripheral nervous system applications such as tissue regeneration and brain-machine interfacing. Ideally, neural interfaces with native tissue shall seamlessly integrate, a process that is often mediated by the interfacial material properties. Surface topography and material chemistry are significant extracellular stimuli that can influence neural cell behavior to facilitate tissue integration and augment therapeutic outcomes. This review characterizes topographical modifications, including micropillars, microchannels, surface roughness, and porosity, implemented on regenerative scaffolding and brain-machine interfaces. Their impact on neural cell response is summarized through neurogenic outcome and mechanistic analysis. The effects of surface chemistry on neural cell signaling with common interfacing compounds like carbon-based nanomaterials, conductive polymers, and biologically inspired matrices are also reviewed. Finally, the impact of these extracellular mediated neural cues on intracellular signaling cascades is discussed to provide perspective on the manipulation of neuron and neuroglia cell microenvironments to drive therapeutic outcomes.
Collapse
Affiliation(s)
- Ian Sands
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Ryan Demarco
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Laura Thurber
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Alberto Esteban-Linares
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Dong Song
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Ellis Meng
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Yupeng Chen
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
4
|
Pegoraro C, Domingo-Ortí I, Conejos-Sánchez I, Vicent MJ. Unlocking the Mitochondria for Nanomedicine-based Treatments: Overcoming Biological Barriers, Improving Designs, and Selecting Verification Techniques. Adv Drug Deliv Rev 2024; 207:115195. [PMID: 38325562 DOI: 10.1016/j.addr.2024.115195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/13/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Enhanced targeting approaches will support the treatment of diseases associated with dysfunctional mitochondria, which play critical roles in energy generation and cell survival. Obstacles to mitochondria-specific targeting include the presence of distinct biological barriers and the need to pass through (or avoid) various cell internalization mechanisms. A range of studies have reported the design of mitochondrially-targeted nanomedicines that navigate the complex routes required to influence mitochondrial function; nonetheless, a significant journey lies ahead before mitochondrially-targeted nanomedicines become suitable for clinical use. Moving swiftly forward will require safety studies, in vivo assays confirming effectiveness, and methodologies to validate mitochondria-targeted nanomedicines' subcellular location/activity. From a nanomedicine standpoint, we describe the biological routes involved (from administration to arrival within the mitochondria), the features influencing rational design, and the techniques used to identify/validate successful targeting. Overall, rationally-designed mitochondria-targeted-based nanomedicines hold great promise for precise subcellular therapeutic delivery.
Collapse
Affiliation(s)
- Camilla Pegoraro
- Polymer Therapeutics Laboratory and CIBERONC, Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Inés Domingo-Ortí
- Polymer Therapeutics Laboratory and CIBERONC, Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Inmaculada Conejos-Sánchez
- Polymer Therapeutics Laboratory and CIBERONC, Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - María J Vicent
- Polymer Therapeutics Laboratory and CIBERONC, Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| |
Collapse
|
5
|
Han YS, Jang JH, Lee WS, Oh JS, Lee EJ, Yoon BE. Regulation of astrocyte activity and immune response on graphene oxide-coated titanium by electrophoretic deposition. Front Bioeng Biotechnol 2023; 11:1261255. [PMID: 37854881 PMCID: PMC10579947 DOI: 10.3389/fbioe.2023.1261255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/19/2023] [Indexed: 10/20/2023] Open
Abstract
Introduction: Astrocytes play crucial role in modulating immune response in the damaged central nervous system. Numerous studies have investigated the relationship between immune responses in astrocytes and brain diseases. However, the potential application of nanomaterials for alleviating neuroinflammation induced by astrocytes remains unexplored. Method: In this study, we utilized electrophoretic deposition (EPD) to coat graphene oxide (GO) onto titanium (Ti) to enhance the bioactivity of Ti. Results: We confirmed that GO-Ti could improve cell adhesion and proliferation of astrocytes with upregulated integrins and glial fibrillary acidic protein (GFAP) expression. Moreover, we observed that astrocytes on GO-Ti exhibited a heightened immune response when exposed to lipopolysaccharide (LPS). Although pro-inflammatory cytokines increased, anti-inflammatory cytokines and brain-derived neurotrophic factors involved in neuroprotective effects were also augmented through nuclear localization of the yes-associated protein (YAP) and nuclear factor kappa B (NF-κB). Discussion: Taken together, GO-Ti could enhance the neuroprotective function of astrocytes by upregulating the expression of anti-inflammatory cytokines and neuroprotective factors with improved cell adhesion and viability. Consequently, our findings suggest that GO-Ti has the potential to induce neuroprotective effects by regulating cell activity.
Collapse
Affiliation(s)
- Yong-Soo Han
- Department of Molecular Biology, College of Science and Technology, Dankook University, Cheonan, Republic of Korea
| | - Jun-Hwee Jang
- Nano-Bio Medical Science, Graduate School, Dankook University, Cheonan, Republic of Korea
| | - Won-Seok Lee
- Department of Molecular Biology, College of Science and Technology, Dankook University, Cheonan, Republic of Korea
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Republic of Korea
| | - Jun-Sung Oh
- Nano-Bio Medical Science, Graduate School, Dankook University, Cheonan, Republic of Korea
| | - Eun-Jung Lee
- Nano-Bio Medical Science, Graduate School, Dankook University, Cheonan, Republic of Korea
| | - Bo-Eun Yoon
- Department of Molecular Biology, College of Science and Technology, Dankook University, Cheonan, Republic of Korea
- Nano-Bio Medical Science, Graduate School, Dankook University, Cheonan, Republic of Korea
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
6
|
Komane P, Kumar P, Choonara Y. Functionalised Carbon Nanotubes: Promising Drug Delivery Vehicles for Neurovascular Disorder Intervention. AAPS PharmSciTech 2023; 24:201. [PMID: 37783896 DOI: 10.1208/s12249-023-02651-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/05/2023] [Indexed: 10/04/2023] Open
Abstract
Neurovascular diseases are linked to the brain's blood vessels. These disorders are complicated to treat due to the strict selective characteristics of the blood-brain barrier. Consequently, the potency of the pharmacological treatments for these conditions is immensely diminished, leading to a rise in neurovascular-associated morbidity and mortality. Carbon nanotubes are regarded as essential nanoparticles with a promise of treating neurovascular disorders. Current findings have demonstrated the effectiveness of carbon nanotubes as vehicles for ferrying drugs to the site of interest. This review accentuates the theoretical utilisation of carbon nanotubes as drug nanocarriers equipped with the penetrating capability to the blood-brain barrier for treating neurovascular disorders such as ischemic stroke. The success of the carbon nanotube system may result in the development of a new and highly relevant drug delivery procedure. This review will also cover carbon nanotube functionalisation for applications in the biomedical fields, toxicity, in vitro and in vivo drugs and biomolecule delivery, and the future outlook of carbon nanotubes.
Collapse
Affiliation(s)
- Patrick Komane
- Department of Chemical Sciences, Faculty of Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Johannesburg, 2193, Parktown, South Africa
| | - Yahya Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Johannesburg, 2193, Parktown, South Africa
| |
Collapse
|