1
|
Liu Z, Gu S, Peng Z, Wang Y, Li H, Zeng X, Wang H, Lv P, Wu Y, Zhou Y, Zhang Y, Jiang X, Fu P. Fusion of glioma-associated mesenchymal stem/stromal cells with glioma cells promotes macrophage recruitment and M2 polarization via m 6A modification of CSF1. Cell Death Dis 2025; 16:345. [PMID: 40287444 PMCID: PMC12033374 DOI: 10.1038/s41419-025-07678-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 04/10/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025]
Abstract
Malignant glioma is the most common primary malignant tumor of the brain in adults, with glioblastoma (GBM) being the most aggressive subtype. Mesenchymal stem/stromal cells (MSCs) have been shown to fuse with tumor cells in various cancers including glioma, thereby regulating tumor progression. However, there has been no systematic research on the fusion of glioma-associated MSCs (GA-MSCs) with glioma cells. Here, it is shown that GA-MSCs are able to spontaneously fuse with glioma cells both in vitro and in vivo. The hybrid cells display significantly lower levels of N6-methyladenosine (m6A) modification and can modulate the glioma microenvironment by attracting and inducing M2-like polarization of macrophages. Mechanistically, the demethylase fat mass and obesity-associated protein (FTO) mediates demethylation in hybrids and promotes macrophage colony-stimulating factor (CSF1) secretion by increasing its RNA stability in an m6A-YTH domain family 2 (YTHDF2)-dependent manner. Our study reveals a novel crosstalk mechanism between glioma cells, GA-MSCs, and macrophages in glioma microenvironment, offering potential new approaches for glioma therapy.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sujie Gu
- Department of Neurosurgery, Henan Provincial People's Hospital, Zhengzhou, 450000, China
| | - Zesheng Peng
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yihao Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Li
- Department of Cataract, Nanyang Eye Hospital, Nanyang, 473000, China
| | - Xiaoqing Zeng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Haofei Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Peng Lv
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuyi Wu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Zhou
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yanbin Zhang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Peng Fu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
2
|
Turlej E, Domaradzka A, Radzka J, Drulis-Fajdasz D, Kulbacka J, Gizak A. Cross-Talk Between Cancer and Its Cellular Environment-A Role in Cancer Progression. Cells 2025; 14:403. [PMID: 40136652 PMCID: PMC11940884 DOI: 10.3390/cells14060403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
The tumor microenvironment is a dynamic and complex three-dimensional network comprising the extracellular matrix and diverse non-cancerous cells, including fibroblasts, adipocytes, endothelial cells and various immune cells (lymphocytes T and B, NK cells, dendritic cells, monocytes/macrophages, myeloid-derived suppressor cells, and innate lymphoid cells). A constantly and rapidly growing number of studies highlight the critical role of these cells in shaping cancer survival, metastatic potential and therapy resistance. This review provides a synthesis of current knowledge on the modulating role of the cellular microenvironment in cancer progression and response to treatment.
Collapse
Affiliation(s)
- Eliza Turlej
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Aleksandra Domaradzka
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Justyna Radzka
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Dominika Drulis-Fajdasz
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Julita Kulbacka
- Departament of Molecular and Cellular Biology, Faculty of Pharmacy, Wrocław Medical University, Borowska 211A, 50-556 Wrocław, Poland;
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
| | - Agnieszka Gizak
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| |
Collapse
|
3
|
Liu Z, Wang Y, Peng Z, Li H, Wang H, Wu Y, Jiang X, Fu P. Fusion of tumor cells and mesenchymal stem/stroma cells: a source of tumor heterogeneity, evolution and recurrence. Med Oncol 2025; 42:52. [PMID: 39838167 DOI: 10.1007/s12032-024-02595-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/28/2024] [Indexed: 01/23/2025]
Abstract
The heterogeneity and evolution of tumors remain significant obstacles in cancer treatment, contributing to both therapy resistance and relapse. Mesenchymal stem/stromal cells (MSCs) are multipotent stromal cells within the tumor microenvironment that interact with tumor cells through various mechanisms, including cell fusion. While previous research has largely focused on the effects of MSC-tumor cell fusion on tumor proliferation, migration, and tumorigenicity, emerging evidence indicates that its role in tumor maintenance, evolution, and recurrence, particularly under stress conditions, may be even more pivotal. This review examines the connection between MSC-tumor cell fusion and several critical factors like tumor heterogeneity, cancer stem cells, and therapy resistance, highlighting the crucial role of cell fusion in tumor survival, evolution, and recurrence. Additionally, we explore potential therapeutic strategies aimed at targeting this process.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yihao Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zesheng Peng
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Li
- Department of Cataract, Nanyang Eye Hospital, Nanyang, 473000, China
| | - Haofei Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuyi Wu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Peng Fu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
4
|
Kinoshita J, Doden K, Sakimura Y, Hayashi S, Saito H, Tsuji T, Yamamoto D, Moriyama H, Minamoto T, Inaki N. Crosstalk Between Omental Adipose-Derived Stem Cells and Gastric Cancer Cells Regulates Cancer Stemness and Chemotherapy Resistance. Cancers (Basel) 2024; 16:4275. [PMID: 39766174 PMCID: PMC11674675 DOI: 10.3390/cancers16244275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Peritoneal metastasis (PM) remains a major challenge in patients with gastric cancer (GC) and occurs preferentially in adipose-rich organs, such as the omentum. Adipose-derived stem cells (ASCs) may influence cancer behavior. This study aimed to investigate whether ASCs isolated from the omentum can act as progenitors of cancer-associated fibroblasts (CAFs) and analyze their effects on the cancer stem cell (CSC) niche and the treatment resistance of GC cells. Methods: ASCs were isolated from the human omentum and their cellular characteristics were analyzed during co-culturing with GC cells. Results: ASCs express CAF markers and promote desmoplasia in cancer stroma in a mouse xenograft model. When co-cultured with GC cells, ASCs enhanced the sphere-forming efficiency of MKN45 and MKN74 cells. ASCs increased IL-6 secretion and enhanced the expression of Nanog and CD44v6 in GC cells; however, these changes were suppressed by the inhibition of IL-6. Xenograft mouse models co-inoculated with MKN45 cells and ASCs showed enhanced CD44v6 and Nanog expression and markedly reduced apoptosis induced by 5-FU treatment. Conclusion: This study improves our understanding of ASCs' role in PM treatment resistance and has demonstrated the potential for new treatment strategies targeting ASCs.
Collapse
Affiliation(s)
- Jun Kinoshita
- Department of Gastrointestinal Surgery, Kanazawa University, Kanazawa 920-8641, Japan; (K.D.); (Y.S.); (S.H.); (H.S.); (T.T.); (D.Y.); (H.M.); (N.I.)
| | - Kenta Doden
- Department of Gastrointestinal Surgery, Kanazawa University, Kanazawa 920-8641, Japan; (K.D.); (Y.S.); (S.H.); (H.S.); (T.T.); (D.Y.); (H.M.); (N.I.)
| | - Yusuke Sakimura
- Department of Gastrointestinal Surgery, Kanazawa University, Kanazawa 920-8641, Japan; (K.D.); (Y.S.); (S.H.); (H.S.); (T.T.); (D.Y.); (H.M.); (N.I.)
| | - Saki Hayashi
- Department of Gastrointestinal Surgery, Kanazawa University, Kanazawa 920-8641, Japan; (K.D.); (Y.S.); (S.H.); (H.S.); (T.T.); (D.Y.); (H.M.); (N.I.)
| | - Hiroto Saito
- Department of Gastrointestinal Surgery, Kanazawa University, Kanazawa 920-8641, Japan; (K.D.); (Y.S.); (S.H.); (H.S.); (T.T.); (D.Y.); (H.M.); (N.I.)
| | - Toshikatsu Tsuji
- Department of Gastrointestinal Surgery, Kanazawa University, Kanazawa 920-8641, Japan; (K.D.); (Y.S.); (S.H.); (H.S.); (T.T.); (D.Y.); (H.M.); (N.I.)
| | - Daisuke Yamamoto
- Department of Gastrointestinal Surgery, Kanazawa University, Kanazawa 920-8641, Japan; (K.D.); (Y.S.); (S.H.); (H.S.); (T.T.); (D.Y.); (H.M.); (N.I.)
| | - Hideki Moriyama
- Department of Gastrointestinal Surgery, Kanazawa University, Kanazawa 920-8641, Japan; (K.D.); (Y.S.); (S.H.); (H.S.); (T.T.); (D.Y.); (H.M.); (N.I.)
| | - Toshinari Minamoto
- Japan Community Health Care Organization Kanazawa Hospital, Kanazawa 920-8610, Japan;
- Department of Molecular and Cellular Pathology, Kanazawa University, Kanazawa 920-8640, Japan
| | - Noriyuki Inaki
- Department of Gastrointestinal Surgery, Kanazawa University, Kanazawa 920-8641, Japan; (K.D.); (Y.S.); (S.H.); (H.S.); (T.T.); (D.Y.); (H.M.); (N.I.)
| |
Collapse
|
5
|
Rehman A, Panda SK, Torsiello M, Marigliano M, Tufano CC, Nigam A, Parveen Z, Papaccio G, La Noce M. The crosstalk between primary MSCs and cancer cells in 2D and 3D cultures: potential therapeutic strategies and impact on drug resistance. Stem Cells Transl Med 2024; 13:1178-1185. [PMID: 39418131 PMCID: PMC11631265 DOI: 10.1093/stcltm/szae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/23/2024] [Indexed: 10/19/2024] Open
Abstract
The tumor microenvironment (TME) significantly influences cancer progression, and mesenchymal stem cells (MSCs) play a crucial role in interacting with tumor cells via paracrine signaling, affecting behaviors such as proliferation, migration, and epithelial-mesenchymal transition. While conventional 2D culture models have provided valuable insights, they cannot fully replicate the complexity and diversity of the TME. Therefore, developing 3D culture systems that better mimic in vivo conditions is essential. This review delves into the heterogeneous nature of the TME, spotlighting MSC-tumor cellular signaling and advancements in 3D culture technologies. Utilizing MSCs in cancer therapy presents opportunities to enhance treatment effectiveness and overcome resistance mechanisms. Understanding MSC interactions within the TME and leveraging 3D culture models can advance novel cancer therapies and improve clinical outcomes. Additionally, this review underscores the therapeutic potential of engineered MSCs, emphasizing their role in targeted anti-cancer treatments.
Collapse
Affiliation(s)
- Ayesha Rehman
- Department of Experimental Medicine, University of Campania “L. Vanvitelli” via L. Armanni, 5-80138 Naples, Italy
| | - Sameer Kumar Panda
- Department of Experimental Medicine, University of Campania “L. Vanvitelli” via L. Armanni, 5-80138 Naples, Italy
| | - Martina Torsiello
- Department of Experimental Medicine, University of Campania “L. Vanvitelli” via L. Armanni, 5-80138 Naples, Italy
| | - Martina Marigliano
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana,”Via Salvador Allende, 43, Baronissi, Salerno, Italy
| | - Camilla Carmela Tufano
- Department of Experimental Medicine, University of Campania “L. Vanvitelli” via L. Armanni, 5-80138 Naples, Italy
| | - Aditya Nigam
- Department of Experimental Medicine, University of Campania “L. Vanvitelli” via L. Armanni, 5-80138 Naples, Italy
| | - Zahida Parveen
- Department of Experimental Medicine, University of Campania “L. Vanvitelli” via L. Armanni, 5-80138 Naples, Italy
| | - Gianpaolo Papaccio
- Department of Experimental Medicine, University of Campania “L. Vanvitelli” via L. Armanni, 5-80138 Naples, Italy
| | - Marcella La Noce
- Department of Experimental Medicine, University of Campania “L. Vanvitelli” via L. Armanni, 5-80138 Naples, Italy
| |
Collapse
|
6
|
Mawaribuchi S, Iida M, Haramoto Y. Fusion of breast cancer MCF-7 cells with mesenchymal stem cells rearranges interallelic gene expression and enhances cancer malignancy. Biochem Biophys Res Commun 2024; 736:150887. [PMID: 39461012 DOI: 10.1016/j.bbrc.2024.150887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 10/28/2024]
Abstract
Fusion among normal cells is tightly regulated and required for the developmental processes of an organism. Cancer cell fusion appears relatively rare but is associated with generating new hybrid cancer cells with aggressive properties. However, it remains unclear how cancer cells acquire aggressiveness via cell fusion. Here, we report changes in cell proliferative capacity, cell motility, anticancer drug resistance, and gene expression profiles when fusing human MCF-7 breast cancer cells and mesenchymal stem cells (MSCs). The fused cells were established using envelopes of a hemagglutinating virus of Japan, which increased cell proliferation, motility, and drug resistance. Comprehensive gene expression profile analysis revealed that the fused cells expressed higher levels of glycolysis-related genes than their parental cells. In fact, the fused cells relied more on glycolysis for ATP production (Warburg effect). HIF1A, which induces the expression of glycolysis-related genes, was upregulated in fused cells compared to MCF-7 cells. Allele-specific expression analysis of the fused cells indicated that MSC allele-derived HIF1A efficiently induces the expression of glycolysis-related genes in the MCF-7 allele. These findings indicate that the reorganization of gene expression by combining MSCs and MCF-7 alleles resulted in the predominant expression of glycolysis-related genes and increased malignancy in the fused cells.
Collapse
Affiliation(s)
- Shuuji Mawaribuchi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
| | - Maiko Iida
- Department of Agri-Production Sciences, College of Agriculture, Tamagawa University, 6-1-1 Tamagawa-gakuen, Machida, Tokyo, 194-8610, Japan
| | - Yoshikazu Haramoto
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan; Department of Agri-Production Sciences, College of Agriculture, Tamagawa University, 6-1-1 Tamagawa-gakuen, Machida, Tokyo, 194-8610, Japan
| |
Collapse
|
7
|
Hass R, von der Ohe J, Luo T. Human mesenchymal stroma/stem-like cell-derived taxol-loaded EVs/exosomes transfer anti-tumor microRNA signatures and express enhanced SDF-1-mediated tumor tropism. Cell Commun Signal 2024; 22:506. [PMID: 39420354 PMCID: PMC11488203 DOI: 10.1186/s12964-024-01886-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND The release of extracellular vesicles (EVs) including exosomes from human mesenchymal stroma/stem-like cells (MSC) represents valuable cell-free carriers for the delivery of regenerative and medicinal compounds. METHODS EVs/exosomes were isolated by differential centrifugation from four individual MSC as controls and after treatment with a sub-lethal concentration of 10 mM taxol for 24 h, respectively. The isolated EVs/exosomes were characterized and quantified by nano-tracking-analysis and by Western blots. MicroRNAs (miRs) were isolated from the different EVs/exosome populations and expression levels were quantified by qPCR using 1246 miR templates. Cytotoxic effects of the different MSC-derived taxol-loaded EVs/exosomes were determined in five different GFP-transduced cancer cell lines and quantified by a fluoroscan assay with a GFP-detecting fluorimeter. The presence of stroma cell-derived factor 1 (SDF-1) in MSC-derived EVs/exosomes and its enhanced expression in the vesicles after taxol treatment of MSC was quantified by a specific ELISA. RESULTS EVs/exosomes isolated from four individual taxol-treated MSC displayed a larger size and higher yields as the control EVs/exosomes and were used as anti-tumor therapeutic vehicles. Application of each of the four MSC-derived taxol-loaded EVs/exosome populations revealed significant cytotoxic effects in cell lines of five different tumor entities (carcinomas of lung, breast, ovar, colon, astrocytoma) in a concentration-dependent manner. Expression analysis of 1246 miRs in these taxol-loaded EVs/exosomes as compared to the corresponding MSC-derived control EVs/exosomes unraveled a taxol-mediated up-regulation of 11 miRs with predominantly anti-tumorigenic properties. Moreover, various constitutively expressed protein levels were unanimously altered in the MSC cultures. Taxol treatment of the different MSC revealed an up-regulation of tetraspanins and a 2.2-fold to 5.4-fold increased expression of SDF-1 among others. Treatment of cancer cells with MSC-derived taxol-loaded EVs/exosomes in the presence of a neutralizing SDF-1 antibody significantly abolished the cytotoxic effects between 20.3% and 27%. CONCLUSIONS These findings suggested a taxol-mediated increase of anti-cancer properties in MSC that enhance the tropism of derived EVs/exosomes to tumors, thereby specifically focusing the therapeutic effects of the delivered products.
Collapse
Affiliation(s)
- Ralf Hass
- Department of Obstetrics and Gynecology, Biochemistry and Tumor Biology Laboratory, Hannover Medical School, 30625, Hannover, Germany.
| | - Juliane von der Ohe
- Department of Obstetrics and Gynecology, Biochemistry and Tumor Biology Laboratory, Hannover Medical School, 30625, Hannover, Germany
| | - Tianjiao Luo
- Department of Obstetrics and Gynecology, Biochemistry and Tumor Biology Laboratory, Hannover Medical School, 30625, Hannover, Germany
| |
Collapse
|
8
|
Szewczyk K, Jiang L, Khawaja H, Miranti CK, Zohar Y. Microfluidic Applications in Prostate Cancer Research. MICROMACHINES 2024; 15:1195. [PMID: 39459070 PMCID: PMC11509716 DOI: 10.3390/mi15101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024]
Abstract
Prostate cancer is a disease in which cells in the prostate, a gland in the male reproductive system below the bladder, grow out of control and, among men, it is the second-most frequently diagnosed cancer (other than skin cancer). In recent years, prostate cancer death rate has stabilized and, currently, it is the second-most frequent cause of cancer death in men (after lung cancer). Most deaths occur due to metastasis, as cancer cells from the original tumor establish secondary tumors in distant organs. For a long time, classical cell cultures and animal models have been utilized in basic and applied scientific research, including clinical applications for many diseases, such as prostate cancer, since no better alternatives were available. Although helpful in dissecting cellular mechanisms, these models are poor predictors of physiological behavior mainly because of the lack of appropriate microenvironments. Microfluidics has emerged in the last two decades as a technology that could lead to a paradigm shift in life sciences and, in particular, controlling cancer. Microfluidic systems, such as organ-on-chips, have been assembled to mimic the critical functions of human organs. These microphysiological systems enable the long-term maintenance of cellular co-cultures in vitro to reconstitute in vivo tissue-level microenvironments, bridging the gap between traditional cell cultures and animal models. Several reviews on microfluidics for prostate cancer studies have been published focusing on technology advancement and disease progression. As metastatic castration-resistant prostate cancer remains a clinically challenging late-stage cancer, with no curative treatments, we expanded this review to cover recent microfluidic applications related to prostate cancer research. The review includes discussions of the roles of microfluidics in modeling the human prostate, prostate cancer initiation and development, as well as prostate cancer detection and therapy, highlighting potentially major contributions of microfluidics in the continuous march toward eradicating prostate cancer.
Collapse
Affiliation(s)
- Kailie Szewczyk
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA; (K.S.); (L.J.)
| | - Linan Jiang
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA; (K.S.); (L.J.)
| | - Hunain Khawaja
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85724, USA;
| | - Cindy K. Miranti
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA;
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| | - Yitshak Zohar
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA; (K.S.); (L.J.)
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
9
|
Zhang Y, Wang C, Li JJ. Revisiting the role of mesenchymal stromal cells in cancer initiation, metastasis and immunosuppression. Exp Hematol Oncol 2024; 13:64. [PMID: 38951845 PMCID: PMC11218091 DOI: 10.1186/s40164-024-00532-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024] Open
Abstract
Immune checkpoint blockade (ICB) necessitates a thorough understanding of intricate cellular interactions within the tumor microenvironment (TME). Mesenchymal stromal cells (MSCs) play a pivotal role in cancer generation, progression, and immunosuppressive tumor microenvironment. Within the TME, MSCs encompass both resident and circulating counterparts that dynamically communicate and actively participate in TME immunosurveillance and response to ICB. This review aims to reevaluate various facets of MSCs, including their potential self-transformation to function as cancer-initiating cells and contributions to the creation of a conducive environment for tumor proliferation and metastasis. Additionally, we explore the immune regulatory functions of tumor-associated MSCs (TA-MSCs) and MSC-derived extracellular vesicles (MSC-EVs) with analysis of potential connections between circulating and tissue-resident MSCs. A comprehensive understanding of the dynamics of MSC-immune cell communication and the heterogeneous cargo of tumor-educated versus naïve MSCs may unveil a new MSC-mediated immunosuppressive pathway that can be targeted to enhance cancer control by ICB.
Collapse
Affiliation(s)
- Yanyan Zhang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Radiation Oncology, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Charles Wang
- Department of Radiation Oncology, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Jian Jian Li
- Department of Radiation Oncology, School of Medicine, University of California Davis, Sacramento, CA, USA.
- NCI-Designated Comprehensive Cancer Center, University of California Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|
10
|
Wang KH, Chang YH, Ding DC. Bone Marrow Mesenchymal Stem Cells Promote Ovarian Cancer Cell Proliferation via Cytokine Interactions. Int J Mol Sci 2024; 25:6746. [PMID: 38928452 PMCID: PMC11203416 DOI: 10.3390/ijms25126746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs) are key players in promoting ovarian cancer cell proliferation, orchestrated by the dynamic interplay between cytokines and their interactions with immune cells; however, the intricate crosstalk among BMSCs and cytokines has not yet been elucidated. Here, we aimed to investigate interactions between BMSCs and ovarian cancer cells. We established BMSCs with a characterized morphology, surface marker expression, and tri-lineage differentiation potential. Ovarian cancer cells (SKOV3) cultured with conditioned medium from BMSCs showed increased migration, invasion, and colony formation, indicating the role of the tumor microenvironment in influencing cancer cell behavior. BMSCs promoted SKOV3 tumorigenesis in nonobese diabetic/severe combined immunodeficiency mice, increasing tumor growth. The co-injection of BMSCs increased the phosphorylation of p38 MAPK and GSK-3β in SKOV3 tumors. Co-culturing SKOV3 cells with BMSCs led to an increase in the expression of cytokines, especially MCP-1 and IL-6. These findings highlight the influence of BMSCs on ovarian cancer cell behavior and the potential involvement of specific cytokines in mediating these effects. Understanding these mechanisms will highlight potential therapeutic avenues that may halt ovarian cancer progression.
Collapse
Affiliation(s)
- Kai-Hung Wang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 970, Taiwan;
| | - Yu-Hsun Chang
- Department of Pediatrics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 970, Taiwan;
| | - Dah-Ching Ding
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 970, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan
| |
Collapse
|
11
|
Yi Y, Qin G, Yang H, Jia H, Zeng Q, Zheng D, Ye S, Zhang Z, Liu TM, Luo KQ, Deng CX, Xu RH. Mesenchymal Stromal Cells Increase the Natural Killer Resistance of Circulating Tumor Cells via Intercellular Signaling of cGAS-STING-IFNβ-HLA. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400888. [PMID: 38638003 PMCID: PMC11151078 DOI: 10.1002/advs.202400888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/17/2024] [Indexed: 04/20/2024]
Abstract
Circulating tumor cells (CTCs) shed from primary tumors must overcome the cytotoxicity of immune cells, particularly natural killer (NK) cells, to cause metastasis. The tumor microenvironment (TME) protects tumor cells from the cytotoxicity of immune cells, which is partially executed by cancer-associated mesenchymal stromal cells (MSCs). However, the mechanisms by which MSCs influence the NK resistance of CTCs remain poorly understood. This study demonstrates that MSCs enhance the NK resistance of cancer cells in a gap junction-dependent manner, thereby promoting the survival and metastatic seeding of CTCs in immunocompromised mice. Tumor cells crosstalk with MSCs through an intercellular cGAS-cGAMP-STING signaling loop, leading to increased production of interferon-β (IFNβ) by MSCs. IFNβ reversely enhances the type I IFN (IFN-I) signaling in tumor cells and hence the expression of human leukocyte antigen class I (HLA-I) on the cell surface, protecting the tumor cells from NK cytotoxicity. Disruption of this loop reverses NK sensitivity in tumor cells and decreases tumor metastasis. Moreover, there are positive correlations between IFN-I signaling, HLA-I expression, and NK tolerance in human tumor samples. Thus, the NK-resistant signaling loop between tumor cells and MSCs may serve as a novel therapeutic target.
Collapse
Affiliation(s)
- Ye Yi
- Center of Reproduction, Development and Aging, Cancer Center, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, 999078, China
| | - Guihui Qin
- Center of Reproduction, Development and Aging, Cancer Center, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, 999078, China
| | - Hongmei Yang
- Center of Reproduction, Development and Aging, Cancer Center, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, 999078, China
| | - Hao Jia
- Center of Reproduction, Development and Aging, Cancer Center, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, 999078, China
| | - Qibing Zeng
- Center of Reproduction, Development and Aging, Cancer Center, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, 999078, China
| | - Dejin Zheng
- Center of Reproduction, Development and Aging, Cancer Center, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, 999078, China
| | - Sen Ye
- Center of Reproduction, Development and Aging, Cancer Center, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, 999078, China
| | - Zhiming Zhang
- Center of Reproduction, Development and Aging, Cancer Center, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, 999078, China
| | - Tzu-Ming Liu
- Center of Reproduction, Development and Aging, Cancer Center, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, 999078, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macao SAR, 999078, China
| | - Kathy Qian Luo
- Center of Reproduction, Development and Aging, Cancer Center, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, 999078, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macao SAR, 999078, China
| | - Chu-Xia Deng
- Center of Reproduction, Development and Aging, Cancer Center, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, 999078, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macao SAR, 999078, China
| | - Ren-He Xu
- Center of Reproduction, Development and Aging, Cancer Center, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, 999078, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macao SAR, 999078, China
| |
Collapse
|
12
|
Guo Q, Zhou Y, Xie T, Yuan Y, Li H, Shi W, Zheng L, Li X, Zhang W. Tumor microenvironment of cancer stem cells: Perspectives on cancer stem cell targeting. Genes Dis 2024; 11:101043. [PMID: 38292177 PMCID: PMC10825311 DOI: 10.1016/j.gendis.2023.05.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/25/2023] [Indexed: 02/01/2024] Open
Abstract
There are few tumor cell subpopulations with stem cell characteristics in tumor tissue, defined as cancer stem cells (CSCs) or cancer stem-like cells (CSLCs), which can reconstruct neoplasms with malignant biological behaviors such as invasiveness via self-renewal and unlimited generation. The microenvironment that CSCs depend on consists of various cellular components and corresponding medium components. Among these factors existing at a variety of levels and forms, cytokine networks and numerous signal pathways play an important role in signaling transduction. These factors promote or maintain cancer cell stemness, and participate in cancer recurrence, metastasis, and resistance. This review aims to summarize the recent molecular data concerning the multilayered relationship between CSCs and CSC-favorable microenvironments. We also discuss the therapeutic implications of targeting this synergistic interplay, hoping to give an insight into targeting cancer cell stemness for tumor therapy and prognosis.
Collapse
Affiliation(s)
- Qianqian Guo
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450003, China
| | - Yi Zhou
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Tianyuan Xie
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yin Yuan
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Huilong Li
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Wanjin Shi
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450003, China
| |
Collapse
|
13
|
Vajda F, Szepesi Á, Erdei Z, Szabó E, Várady G, Kiss D, Héja L, Német K, Szakács G, Füredi A. Mesenchymal Stem Cells Increase Drug Tolerance of A431 Cells Only in 3D Spheroids, Not in 2D Co-Cultures. Int J Mol Sci 2024; 25:4515. [PMID: 38674102 PMCID: PMC11049889 DOI: 10.3390/ijms25084515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are an integral part of the tumor microenvironment (TME); however, their role is somewhat controversial: conflicting reports suggest that, depending on the stage of tumor development, MSCs can either support or suppress tumor growth and spread. Additionally, the influence of MSCs on drug resistance is also ambiguous. Previously, we showed that, despite MSCs proliferating significantly more slowly than cancer cells, there are chemotherapeutic drugs which proved to be similarly toxic to both cell types. Here we established 2D co-cultures and 3D co-culture spheroids from different ratios of GFP-expressing, adipose tissue-derived MSCs and A431 epidermoid carcinoma cells tagged with mCherry to investigate the effect of MSCs on cancer cell growth, survival, and drug sensitivity. We examined the cytokine secretion profile of mono- and co-cultures, explored the inner structure of the spheroids, applied MSC-(nutlin-3) and cancer cell-targeting (cisplatin) treatments separately, monitored the response with live-cell imaging and identified a new, double-fluorescent cell type emerging from these cultures. In 2D co-cultures, no effect on proliferation or drug sensitivity was observed, regardless of the changes in cytokine secretion induced by the co-culture. Conversely, 3D spheroids developed a unique internal structure consisting of MSCs, which significantly improved cancer cell survival and resilience to treatment, suggesting that physical proximity and cell-cell connections are required for MSCs to considerably affect nearby cancer cells. Our results shed light on MSC-cancer cell interactions and could help design new, better treatment options for tumors.
Collapse
Affiliation(s)
- Flóra Vajda
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 1117 Budapest, Hungary
- Doctoral School, Semmelweis University, 1085 Budapest, Hungary
| | | | | | - Edit Szabó
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - György Várady
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - Dániel Kiss
- John von Neumann Faculty of Informatics, Óbuda University, 1034 Budapest, Hungary
| | - László Héja
- Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | | | - Gergely Szakács
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 1117 Budapest, Hungary
- National Laboratory for Drug Research and Development, 1117 Budapest, Hungary
- Center for Cancer Research, Medical University of Vienna, 1090 Wien, Austria
| | - András Füredi
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 1117 Budapest, Hungary
- Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, 1121 Budapest, Hungary
| |
Collapse
|
14
|
Wu CH, Weng TF, Li JP, Wu KH. Biology and Therapeutic Properties of Mesenchymal Stem Cells in Leukemia. Int J Mol Sci 2024; 25:2527. [PMID: 38473775 DOI: 10.3390/ijms25052527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
This comprehensive review delves into the multifaceted roles of mesenchymal stem cells (MSCs) in leukemia, focusing on their interactions within the bone marrow microenvironment and their impact on leukemia pathogenesis, progression, and treatment resistance. MSCs, characterized by their ability to differentiate into various cell types and modulate the immune system, are integral to the BM niche, influencing hematopoietic stem cell maintenance and functionality. This review extensively explores the intricate relationship between MSCs and leukemic cells in acute myeloid leukemia, acute lymphoblastic leukemia, chronic myeloid leukemia, and chronic lymphocytic leukemia. This review also addresses the potential clinical applications of MSCs in leukemia treatment. MSCs' role in hematopoietic stem cell transplantation, their antitumor effects, and strategies to disrupt chemo-resistance are discussed. Despite their therapeutic potential, the dual nature of MSCs in promoting and inhibiting tumor growth poses significant challenges. Further research is needed to understand MSCs' biological mechanisms in hematologic malignancies and develop targeted therapeutic strategies. This in-depth exploration of MSCs in leukemia provides crucial insights for advancing treatment modalities and improving patient outcomes in hematologic malignancies.
Collapse
Affiliation(s)
- Cheng-Hsien Wu
- School of Medicine, National Defense Medical Center, Taipei 114, Taiwan
| | - Te-Fu Weng
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Ju-Pi Li
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Department of Pathology, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Kang-Hsi Wu
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| |
Collapse
|
15
|
Zhang N, Shu L, Liu Z, Shi A, Zhao L, Huang S, Sheng G, Yan Z, Song Y, Huang F, Tang Y, Zhang Z. The role of extracellular vesicles in cholangiocarcinoma tumor microenvironment. Front Pharmacol 2024; 14:1336685. [PMID: 38269274 PMCID: PMC10805838 DOI: 10.3389/fphar.2023.1336685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 12/26/2023] [Indexed: 01/26/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a highly aggressive malignant tumor that originates from the biliary system. With restricted treatment options at hand, the challenging aspect of early CCA diagnosis leads to a bleak prognosis. Besides the intrinsic characteristics of tumor cells, the generation and progression of CCA are profoundly influenced by the tumor microenvironment, which engages in intricate interactions with cholangiocarcinoma cells. Of notable significance is the role of extracellular vesicles as key carriers in enabling communication between cancer cells and the tumor microenvironment. This review aims to provide a comprehensive overview of current research examining the interplay between extracellular vesicles and the tumor microenvironment in the context of CCA. Specifically, we will emphasize the significant contributions of extracellular vesicles in molding the CCA microenvironment and explore their potential applications in the diagnosis, prognosis assessment, and therapeutic strategies for this aggressive malignancy.
Collapse
Affiliation(s)
- Nuoqi Zhang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Lizhuang Shu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Zengli Liu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
- Department of General Surgery, Qilu Hospital, Shandong University, Qingdao, Shandong, China
| | - Anda Shi
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Liming Zhao
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Shaohui Huang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Guoli Sheng
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Zhangdi Yan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yan Song
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Fan Huang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yongchang Tang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Zongli Zhang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
16
|
Borzone FR, Giorello MB, Sanmartin MC, Yannarelli G, Martinez LM, Chasseing NA. Mesenchymal stem cells and cancer-associated fibroblasts as a therapeutic strategy for breast cancer. Br J Pharmacol 2024; 181:238-256. [PMID: 35485850 DOI: 10.1111/bph.15861] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/21/2022] [Accepted: 04/22/2022] [Indexed: 11/26/2022] Open
Abstract
Breast cancer is the most common type of cancer and the leading cause of death among women. Recent evidence suggests that mesenchymal stromal/stem cells and cancer-associated fibroblasts (CAFs) have an essential role in cancer progression, invasion and therapy resistance. Therefore, they are considered as highly promising future therapeutic targets against breast cancer. The intrinsic tumour tropism and immunomodulatory capacities of mesenchymal stromal/stem cells are of special relevance for developing mesenchymal stromal/stem cells-based anti-tumour therapies that suppress primary tumour growth and metastasis. In addition, the utilization of therapies that target the stromal components of the tumour microenvironment in combination with standard drugs is an innovative tool that could improve patients' response to therapies and their survival. In this review, we discuss the currently available information regarding the possible use of mesenchymal stromal/stem cells-derived anti-tumour therapies, as well as the utilization of therapies that target CAFs in breast cancer microenvironment. Finally, these data can serve as a guide map for future research in this field, ultimately aiding the effective transition of these results into the clinic. LINKED ARTICLES: This article is part of a themed issue on Cancer Microenvironment and Pharmacological Interventions. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.2/issuetoc.
Collapse
Affiliation(s)
- Francisco Raúl Borzone
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Belén Giorello
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Cecilia Sanmartin
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Regulación Génica y Células Madre, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Buenos Aires, Argentina
| | - Gustavo Yannarelli
- Laboratorio de Regulación Génica y Células Madre, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Buenos Aires, Argentina
| | - Leandro Marcelo Martinez
- Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Norma Alejandra Chasseing
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
17
|
Brown MJ, Nickels M, Akam EC, Morris MA. The protective effect of endurance running against the pro-invasive effects of ageing in breast cancer cells and mesenchymal stem cells in vitro. IN VITRO MODELS 2023; 2:263-280. [PMID: 39872498 PMCID: PMC11756502 DOI: 10.1007/s44164-023-00055-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 01/30/2025]
Abstract
Purpose Regular exercise is known to reduce cancer risk and may prevent metastases, however, modelling this in vitro is challenging due the heterogeneity of the tumour microenvironment. Exercised serum can be used to capture changes in cellular signalling components in response to different types and durations of exercise. In this study, exercised serum from long-term endurance runners and sprinters of different ages was used to evaluate the impact of exercise on the invasiveness of breast cancer cells and mesenchymal stem cells in vitro. Methods Exercised serum from long-term trained younger and older endurance runners and sprinters was used to supplement cell culture media in the 3D culture of spheroids containing breast cancer cells or mesenchymal stem cells. Spheroids were generated in a 3D semi-solid matrix and cell invasion was measured using ImageJ software. Statistical analyses of invasion were conducted using one-way ANOVAs. Results Invasion was significantly greater in cells cultured with serum from older, inactive participants compared to young, inactive participants (YC vs OC; F (1,3) = 37.135, P = 0.009). No significant difference was found in the invasion of MDA-MB-231 breast cancer cells cultured in serum from older, long-term endurance runners and younger, long-term endurance runners (YE vs OE; F (1,3) = 5.178, P = 0.107), suggesting a protective effect of endurance running against the pro-invasive effects of ageing. Conclusion This is the first study of its kind to demonstrate the protective effects of long-term exercise training type in two populations of different ages against the invasiveness of breast cancer cells in vitro.
Collapse
Affiliation(s)
- Marie-Juliet Brown
- School of Sport, Exercise and Health Sciences, Loughborough University, Towers Way, Loughborough, LE11 3TU UK
| | - Matt Nickels
- School of Sport, Exercise and Health Sciences, Loughborough University, Towers Way, Loughborough, LE11 3TU UK
| | - Elizabeth C. Akam
- School of Sport, Exercise and Health Sciences, Loughborough University, Towers Way, Loughborough, LE11 3TU UK
| | - Mhairi A. Morris
- School of Sport, Exercise and Health Sciences, Loughborough University, Towers Way, Loughborough, LE11 3TU UK
| |
Collapse
|
18
|
Ramírez Idarraga JA, Restrepo Múnera LM. Mesenchymal Stem Cells: Their Role in the Tumor Microenvironment. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:681-691. [PMID: 37276173 DOI: 10.1089/ten.teb.2023.0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Mesenchymal stem cells (MSCs) have been seen for years as great candidates for treating different diseases and an alternative to embryonic stem cells due to their differentiation capacity in vitro. More recent research has focused on their ability to modulate the immune response and regeneration at sites associated with inflammation, activities attributable to the release of trophic factors into the extracellular medium, a set of components known as the secretome. It has been possible to demonstrate the presence of these cells within the tumor microenvironment, which is associated with their tropism for sites of inflammation; however, their role here needs to be clarified. In different investigations, the feasibility of using MSCs or their secretome to treat cancer has been sought, with these results being ambiguous. It has been described that MSCs can be activated and present various phenotypes, which could explain the divergence in their action; however, these activation mechanisms and the different phenotypes still need to be well known. This review explores MSCs and their use in regenerative medicine with a targeted approach to cancer. Impact Statement This text addresses the diverging findings on the role of mesenchymal stem cells in the tumor microenvironment and discrepancies on the use of these cells as cancer treatment, separating the direct use of the cells from the use of the secretome. Multiple authors refer equally to the cells and their secretome to conclude on the positive or negative outcome, without taking into consideration how the cells are affected by their surroundings.
Collapse
Affiliation(s)
- Jhon Alexander Ramírez Idarraga
- Corporación Académica Ciencias Básicas Biomédicas, Universidad de Antioquía, Medellín, Colombia
- Grupo Ingeniería de Tejidos y Terapias Celulares, Instituto de Investigaciones Médicas, Universidad de Antioquía, Medellín, Colombia
| | - Luz Marina Restrepo Múnera
- Grupo Ingeniería de Tejidos y Terapias Celulares, Instituto de Investigaciones Médicas, Universidad de Antioquía, Medellín, Colombia
| |
Collapse
|
19
|
Jahangiri B, Khalaj-Kondori M, Asadollahi E, Kian Saei A, Sadeghizadeh M. Dual impacts of mesenchymal stem cell-derived exosomes on cancer cells: unravelling complex interactions. J Cell Commun Signal 2023:10.1007/s12079-023-00794-3. [PMID: 37973719 DOI: 10.1007/s12079-023-00794-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent, self-renewing stromal cells found in a variety of adult tissues. MSCs possess a remarkable ability to migrate towards tumor sites, known as homing. This homing process is mediated by various factors, including chemokines, growth factors, and extracellular matrix components present in the tumor microenvironment. MSCs release extracellular vesicles known as exosomes (MSC-Exos), which have been suggested to serve a key role in mediating a wide variety of MSC activities. Through cell-cell communication, MSC-Exos have been shown to alter recipient cell phenotype or function and play as a novel cell-free alternative for MSC-based cell therapy. However, MSC recruitment to tumors allows for their interaction with cancer cells and subsequent regulation of tumor behavior. MSC-Exos act as tumor niche modulators via transferring exosomal contents, such as specific proteins or genetic materials, to the nearby cancer cells, leading to either promotion or suppression of tumorigenesis, angiogenesis, and metastasis, depending on the specific microenvironmental cues and recipient cell characteristics. Consequently, there is still a debate about the precise relationship between tumor cells and MSC-Exos, and it is unclear how MSC-Exos impacts tumor cells. Although the dysregulation of miRNAs is caused by the progression of cancer, they also play a direct role in either promoting or inhibiting tumor growth as they act as either oncogenes or tumor suppressors. The utilization of MSC-Exos may prove to be an effective method for restoring miRNA as a means of treating cancer. This review aimed to present the existing understanding of the impact that MSC-Exos could have on cancer. To begin with, we presented a brief explanation of exosomes, MSCs, and MSC-Exos. Following this, we delved into the impact of MSC-Exos on cancer growth, EMT, metastasis, angiogenesis, resistance to chemotherapy and radiotherapy, and modulation of the immune system. Opposing effects of mesenchymal stem cells-derived exosomes on cancer cells.
Collapse
Affiliation(s)
- Babak Jahangiri
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Elahe Asadollahi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Kian Saei
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
20
|
Gschwendtberger T, Thau-Habermann N, von der Ohe J, Luo T, Hass R, Petri S. Protective effects of EVs/exosomes derived from permanently growing human MSC on primary murine ALS motor neurons. Neurosci Lett 2023; 816:137493. [PMID: 37774774 DOI: 10.1016/j.neulet.2023.137493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/29/2023] [Accepted: 09/19/2023] [Indexed: 10/01/2023]
Abstract
In recent years, the neuroprotective potential of mesenchymal stroma-/stem-like cells (MSC) as well as of MSC-derived extracellular vesicles (EVs) like exosomes has been intensively explored. This included preclinical evaluation regarding treatment of neurodegenerative disorders such as the fatal motor neuron disease amyotrophic Lateral Sclerosis (ALS). Several studies have reported that MSC-derived exosomes can stimulate tissue regeneration and reduce inflammation. MSC release EVs and trophic factors and thereby modify cell-to-cell communication. These cell-free products may protect degenerating motor neurons (MNs) and represent a potential therapeutic approach for ALS. In the present study we investigated the effects of exosomes derived from a permanently growing MSC line on both, wild type and ALS (SOD1G93A transgenic) primary motor neurons. Following application in a normal and stressed environment we could demonstrate beneficial effects of MSC exosomes on neurite growth and morphology indicating the potential for further preclinical evaluation and clinical therapeutic development. Investigation of gene expression profiles detected transcripts of several antioxidant and anti-inflammatory genes in MSC exosomes. Characterization of their microRNA (miRNA) content revealed miRNAs capable of regulating antioxidant and anti-apoptotic pathways.
Collapse
Affiliation(s)
- Thomas Gschwendtberger
- Department of Neurology, Hannover Medical School, Hannover 30625, Germany; Center for Systems Neuroscience (ZSN), Hannover, Germany
| | | | - Juliane von der Ohe
- Biochemistry and Tumor Biology Lab, Department of Obstetrics and Gynecology, Hannover Medical School, Hannover 30625, Germany
| | - Tianjiao Luo
- Biochemistry and Tumor Biology Lab, Department of Obstetrics and Gynecology, Hannover Medical School, Hannover 30625, Germany
| | - Ralf Hass
- Biochemistry and Tumor Biology Lab, Department of Obstetrics and Gynecology, Hannover Medical School, Hannover 30625, Germany.
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Hannover 30625, Germany; Center for Systems Neuroscience (ZSN), Hannover, Germany.
| |
Collapse
|
21
|
Liu WS, Wu LL, Chen CM, Zheng H, Gao J, Lu ZM, Li M. Lipid-hybrid cell-derived biomimetic functional materials: A state-of-the-art multifunctional weapon against tumors. Mater Today Bio 2023; 22:100751. [PMID: 37636983 PMCID: PMC10448342 DOI: 10.1016/j.mtbio.2023.100751] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
Tumors are among the leading causes of death worldwide. Cell-derived biomimetic functional materials have shown great promise in the treatment of tumors. These materials are derived from cell membranes, extracellular vesicles and bacterial outer membrane vesicles and may evade immune recognition, improve drug targeting and activate antitumor immunity. However, their use is limited owing to their low drug-loading capacity and complex preparation methods. Liposomes are artificial bionic membranes that have high drug-loading capacity and can be prepared and modified easily. Although they can overcome the disadvantages of cell-derived biomimetic functional materials, they lack natural active targeting ability. Lipids can be hybridized with cell membranes, extracellular vesicles or bacterial outer membrane vesicles to form lipid-hybrid cell-derived biomimetic functional materials. These materials negate the disadvantages of both liposomes and cell-derived components and represent a promising delivery platform in the treatment of tumors. This review focuses on the design strategies, applications and mechanisms of action of lipid-hybrid cell-derived biomimetic functional materials and summarizes the prospects of their further development and the challenges associated with it.
Collapse
Affiliation(s)
- Wen-Shang Liu
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, Shanghai, 200011, China
| | - Li-Li Wu
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Cui-Min Chen
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Hao Zheng
- Department of Gastrointestinal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Zheng-Mao Lu
- Department of Gastrointestinal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Meng Li
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, Shanghai, 200011, China
| |
Collapse
|
22
|
Dittmar T, Sieler M, Hass R. Why do certain cancer cells alter functionality and fuse? Biol Chem 2023; 404:951-960. [PMID: 37246410 DOI: 10.1515/hsz-2023-0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/11/2023] [Indexed: 05/30/2023]
Abstract
Cancer cell fusion represents a rare event. However, the surviving cancer hybrid cells after a post-hybrid selection process (PHSP) can overgrow other cancer cells by exhibiting a proliferation advantage and/or expression of cancer stem-like properties. Addition of new tumor properties during hetero-fusion of cancer cells e.g. with mesenchymal stroma-/stem-like cells (MSC) contribute to enhanced tumor plasticity via acquisition of new/altered functionalities. This provides new avenues for tumor development and metastatic behavior. Consequently, the present review article will also address the question as to whether cancer cell fusion represents a general and possibly evolutionary-conserved program or rather a random process?
Collapse
Affiliation(s)
- Thomas Dittmar
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, D-58448 Witten, Germany
| | - Mareike Sieler
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, D-58448 Witten, Germany
| | - Ralf Hass
- Department of Obstetrics and Gynecology, Biochemistry and Tumor Biology Laboratory, Hannover Medical School, D-30625 Hannover, Germany
| |
Collapse
|
23
|
Frerichs LM, Frerichs B, Petzsch P, Köhrer K, Windolf J, Bittersohl B, Hoffmann MJ, Grotheer V. Tumorigenic effects of human mesenchymal stromal cells and fibroblasts on bladder cancer cells. Front Oncol 2023; 13:1228185. [PMID: 37781195 PMCID: PMC10534007 DOI: 10.3389/fonc.2023.1228185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/11/2023] [Indexed: 10/03/2023] Open
Abstract
Background Patients with muscle-invasive bladder cancer face a poor prognosis due to rapid disease progression and chemoresistance. Thus, there is an urgent need for a new therapeutic treatment. The tumor microenvironment (TME) has crucial roles in tumor development, growth, progression, and therapy resistance. TME cells may also survive standard treatment of care and fire up disease recurrence. However, whether specific TME components have tumor-promoting or tumor-inhibitory properties depends on cell type and cancer entity. Thus, a deeper understanding of the interaction mechanisms between the TME and cancer cells is needed to develop new cancer treatment approaches that overcome therapy resistance. Little is known about the function and interaction between mesenchymal stromal cells (MSC) or fibroblasts (FB) as TME components and bladder cancer cells. Methods We investigated the functional impact of conditioned media (CM) from primary cultures of different donors of MSC or FB on urothelial carcinoma cell lines (UCC) representing advanced disease stages, namely, BFTC-905, VMCUB-1, and UMUC-3. Underlying mechanisms were identified by RNA sequencing and protein analyses of cancer cells and of conditioned media by oncoarrays. Results Both FB- and MSC-CM had tumor-promoting effects on UCC. In some experiments, the impact of MSC-CM was more pronounced. CM augmented the aggressive phenotype of UCC, particularly of those with epithelial phenotype. Proliferation and migratory and invasive capacity were significantly increased; cisplatin sensitivity was reduced. RNA sequencing identified underlying mechanisms and molecules contributing to the observed phenotype changes. NRF2 and NF-κB signaling was affected, contributing to improved cisplatin detoxification. Likewise, interferon type I signaling was downregulated and regulators of epithelial mesenchymal transition (EMT) were increased. Altered protein abundance of CXCR4, hyaluronan receptor CD44, or TGFβ-signaling was induced by CM in cancer cells and may contribute to phenotypical changes. CM contained high levels of CCL2/MCP-1, MMPs, and interleukins which are well known for their impact on other cancer entities. Conclusions The CM of two different TME components had overlapping tumor-promoting effects and increased chemoresistance. We identified underlying mechanisms and molecules contributing to the aggressiveness of bladder cancer cells. These need to be further investigated for targeting the TME to improve cancer therapy.
Collapse
Affiliation(s)
- Lucie M. Frerichs
- Department of Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Bastian Frerichs
- Department of Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Patrick Petzsch
- Biological and Medical Research Center (BMFZ), Heinrich-Heine-University, Düsseldorf, Germany
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Heinrich-Heine-University, Düsseldorf, Germany
| | - Joachim Windolf
- Department of Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Bernd Bittersohl
- Department of Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Michèle J. Hoffmann
- Department of Urology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Vera Grotheer
- Department of Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
24
|
Slama Y, Ah-Pine F, Khettab M, Arcambal A, Begue M, Dutheil F, Gasque P. The Dual Role of Mesenchymal Stem Cells in Cancer Pathophysiology: Pro-Tumorigenic Effects versus Therapeutic Potential. Int J Mol Sci 2023; 24:13511. [PMID: 37686315 PMCID: PMC10488262 DOI: 10.3390/ijms241713511] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are multipotent cells involved in numerous physiological events, including organogenesis, the maintenance of tissue homeostasis, regeneration, or tissue repair. MSCs are increasingly recognized as playing a major, dual, and complex role in cancer pathophysiology through their ability to limit or promote tumor progression. Indeed, these cells are known to interact with the tumor microenvironment, modulate the behavior of tumor cells, influence their functions, and promote distant metastasis formation through the secretion of mediators, the regulation of cell-cell interactions, and the modulation of the immune response. This dynamic network can lead to the establishment of immunoprivileged tissue niches or the formation of new tumors through the proliferation/differentiation of MSCs into cancer-associated fibroblasts as well as cancer stem cells. However, MSCs exhibit also therapeutic effects including anti-tumor, anti-proliferative, anti-inflammatory, or anti-oxidative effects. The therapeutic interest in MSCs is currently growing, mainly due to their ability to selectively migrate and penetrate tumor sites, which would make them relevant as vectors for advanced therapies. Therefore, this review aims to provide an overview of the double-edged sword implications of MSCs in tumor processes. The therapeutic potential of MSCs will be reviewed in melanoma and lung cancers.
Collapse
Affiliation(s)
- Youssef Slama
- Unité de Recherche Études Pharmaco-Immunologiques (EPI), Université de La Réunion, CHU de La Réunion, Allée des Topazes, 97400 Saint-Denis, La Réunion, France; (F.A.-P.); (M.K.); (P.G.)
- Service de Radiothérapie, Clinique Sainte-Clotilde, Groupe Clinifutur, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France; (M.B.); (F.D.)
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Clinique Sainte-Clotilde, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France;
| | - Franck Ah-Pine
- Unité de Recherche Études Pharmaco-Immunologiques (EPI), Université de La Réunion, CHU de La Réunion, Allée des Topazes, 97400 Saint-Denis, La Réunion, France; (F.A.-P.); (M.K.); (P.G.)
- Service d’Anatomie et Cytologie Pathologiques, CHU de La Réunion sites SUD—Saint-Pierre, Avenue François Mitterrand, 97448 Saint-Pierre Cedex, La Réunion, France
| | - Mohamed Khettab
- Unité de Recherche Études Pharmaco-Immunologiques (EPI), Université de La Réunion, CHU de La Réunion, Allée des Topazes, 97400 Saint-Denis, La Réunion, France; (F.A.-P.); (M.K.); (P.G.)
- Service d’Oncologie Médicale, CHU de La Réunion sites SUD—Saint-Pierre, Avenue François Mitterrand, 97448 Saint-Pierre Cedex, La Réunion, France
| | - Angelique Arcambal
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Clinique Sainte-Clotilde, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France;
| | - Mickael Begue
- Service de Radiothérapie, Clinique Sainte-Clotilde, Groupe Clinifutur, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France; (M.B.); (F.D.)
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Clinique Sainte-Clotilde, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France;
| | - Fabien Dutheil
- Service de Radiothérapie, Clinique Sainte-Clotilde, Groupe Clinifutur, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France; (M.B.); (F.D.)
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Clinique Sainte-Clotilde, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France;
| | - Philippe Gasque
- Unité de Recherche Études Pharmaco-Immunologiques (EPI), Université de La Réunion, CHU de La Réunion, Allée des Topazes, 97400 Saint-Denis, La Réunion, France; (F.A.-P.); (M.K.); (P.G.)
| |
Collapse
|
25
|
Mozafari N, Mozafari N, Dehshahri A, Azadi A. Knowledge Gaps in Generating Cell-Based Drug Delivery Systems and a Possible Meeting with Artificial Intelligence. Mol Pharm 2023; 20:3757-3778. [PMID: 37428824 DOI: 10.1021/acs.molpharmaceut.3c00162] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Cell-based drug delivery systems are new strategies in targeted delivery in which cells or cell-membrane-derived systems are used as carriers and release their cargo in a controlled manner. Recently, great attention has been directed to cells as carrier systems for treating several diseases. There are various challenges in the development of cell-based drug delivery systems. The prediction of the properties of these platforms is a prerequisite step in their development to reduce undesirable effects. Integrating nanotechnology and artificial intelligence leads to more innovative technologies. Artificial intelligence quickly mines data and makes decisions more quickly and accurately. Machine learning as a subset of the broader artificial intelligence has been used in nanomedicine to design safer nanomaterials. Here, how challenges of developing cell-based drug delivery systems can be solved with potential predictive models of artificial intelligence and machine learning is portrayed. The most famous cell-based drug delivery systems and their challenges are described. Last but not least, artificial intelligence and most of its types used in nanomedicine are highlighted. The present Review has shown the challenges of developing cells or their derivatives as carriers and how they can be used with potential predictive models of artificial intelligence and machine learning.
Collapse
Affiliation(s)
- Negin Mozafari
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, 71468 64685 Shiraz, Iran
| | - Niloofar Mozafari
- Design and System Operations Department, Regional Information Center for Science and Technology, 71946 94171 Shiraz, Iran
| | - Ali Dehshahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, 71468 64685 Shiraz, Iran
- Pharmaceutical Sciences Research Centre, Shiraz University of Medical Sciences, 71468 64685 Shiraz, Iran
| | - Amir Azadi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, 71468 64685 Shiraz, Iran
- Pharmaceutical Sciences Research Centre, Shiraz University of Medical Sciences, 71468 64685 Shiraz, Iran
| |
Collapse
|
26
|
Boukani LM, Khosroshahi RF, Kh SA, Rashtbar M, Khosroshahi AF. Statistical study of clinical trials with stem cells and their function in skin wound. Cell Tissue Res 2023:10.1007/s00441-023-03793-3. [PMID: 37266728 DOI: 10.1007/s00441-023-03793-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/23/2023] [Indexed: 06/03/2023]
Abstract
Mesenchymal stem cells (MSCs) have been known as a reliable and effective source to repair damaged tissues. The differentiation and self-renewal ability, easy access, immune system modulation capability, and important role in the process of repairing wounds have caused using these cells extensively in wound healing. In this review study, the role of MSCs is debated about different diseases especially in repairing skin wounds. This review article was obtained from 75 basic and trial articles on the PubMed, Google Scholar, and Clinical Trials databases between 2000 and 2022. MSCs are capable of migrating to the wound site and are effective in all stages of wound healing. These cells differentiate into skin cells and also inhibit inflammatory responses, proliferation, and differentiation cells through paracrine messages. They stimulate locally resident precursors, leading to angiogenesis, epithelial regeneration, and granular tissue formation. During maturation stages, these cells decrease fibrosis tissue formation and wound contraction and increase collagen expression and wound tensile strength. The molecular factors of the lesion site change function of these cells and cause MSCs to create a wound healing microenvironment instead of a fibrotic microenvironment. Currently, significant advances have been achieved in the delivery of MSCs to wound sites. These cells are injected intravenously or intradermally, with or without a scaffold. They are also used in the form of spray or hydrogels. Furthermore, the extracellular vesicles and the synergistic environment of these cells alone are effective. Forthcoming studies could lead to more effective treatment strategies for the use of MSCs in wound healing.
Collapse
Affiliation(s)
| | | | | | - Morteza Rashtbar
- Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Ferdowsi Khosroshahi
- Imam Reza General Hospital & Stem Cell Research, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
27
|
Buschhaus JM, Rajendran S, Chen S, Wharram BL, Bevoor AS, Cutter AC, Humphries BA, Robison TH, Farfel AP, Luker GD. Bone Marrow Mesenchymal Stem Cells Induce Metabolic Plasticity in Estrogen Receptor-Positive Breast Cancer. Mol Cancer Res 2023; 21:458-471. [PMID: 36735350 PMCID: PMC10159984 DOI: 10.1158/1541-7786.mcr-22-0451] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/06/2022] [Accepted: 02/01/2023] [Indexed: 02/04/2023]
Abstract
Cancer cells reprogram energy metabolism through metabolic plasticity, adapting ATP-generating pathways in response to treatment or microenvironmental changes. Such adaptations enable cancer cells to resist standard therapy. We employed a coculture model of estrogen receptor-positive (ER+) breast cancer and mesenchymal stem cells (MSC) to model interactions of cancer cells with stromal microenvironments. Using single-cell endogenous and engineered biosensors for cellular metabolism, coculture with MSCs increased oxidative phosphorylation, intracellular ATP, and resistance of cancer cells to standard therapies. Cocultured cancer cells had increased MCT4, a lactate transporter, and were sensitive to the MCT1/4 inhibitor syrosingopine. Combining syrosingopine with fulvestrant, a selective estrogen receptor degrading drug, overcame resistance of ER+ breast cancer cells in coculture with MSCs. Treatment with antiestrogenic therapy increased metabolic plasticity and maintained intracellular ATP levels, while MCT1/4 inhibition successfully limited metabolic transitions and decreased ATP levels. Furthermore, MCT1/4 inhibition decreased heterogenous metabolic treatment responses versus antiestrogenic therapy. These data establish MSCs as a mediator of cancer cell metabolic plasticity and suggest metabolic interventions as a promising strategy to treat ER+ breast cancer and overcome resistance to standard clinical therapies. IMPLICATIONS This study reveals how MSCs reprogram metabolism of ER+ breast cancer cells and point to MCT4 as potential therapeutic target to overcome resistance to antiestrogen drugs.
Collapse
Affiliation(s)
- Johanna M. Buschhaus
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel, Blvd., Ann Arbor, MI, 48109-2099, USA
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Shrila Rajendran
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Siyi Chen
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Bryan L. Wharram
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Avinash S. Bevoor
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Alyssa C. Cutter
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Brock A. Humphries
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Tanner H. Robison
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel, Blvd., Ann Arbor, MI, 48109-2099, USA
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Alex P. Farfel
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Gary D. Luker
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel, Blvd., Ann Arbor, MI, 48109-2099, USA
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
- Department of Microbiology and Immunology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| |
Collapse
|
28
|
Dittmar T, Hass R. Intrinsic signalling factors associated with cancer cell-cell fusion. Cell Commun Signal 2023; 21:68. [PMID: 37016404 PMCID: PMC10071245 DOI: 10.1186/s12964-023-01085-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/21/2023] [Indexed: 04/06/2023] Open
Abstract
Cellular fusion e.g. between cancer cells and normal cells represents a stepwise process that is tightly regulated. During a pre-hybrid preparation program somatic cells and/or cancer cells are promoted to a pro-fusogenic state as a prerequisite to prepare a fusion process. A pro-fusogenic state requires significant changes including restructure of the cytoskeleton, e.g., by the formation of F-actin. Moreover, distinct plasma membrane lipids such as phosphatidylserine play an important role during cell fusion. In addition, the expression of distinct fusogenic factors such as syncytins and corresponding receptors are of fundamental importance to enable cellular mergers. Subsequent hybrid formation and fusion are followed by a post-hybrid selection process. Fusion among normal cells is important and often required during organismal development. Cancer cells fusion appears more rarely and is associated with the generation of new cancer hybrid cell populations. These cancer hybrid cells contribute to an elevated tumour plasticity by altered metastatic behaviour, changes in therapeutic and apoptotic responses, and even in the formation of cancer stem/ initiating cells. While many parts within this multi-step cascade are still poorly understood, this review article predominantly focusses on the intracellular necessities for fusion among cancer cells or with other cell populations of the tumour microenvironment. Video Abstract.
Collapse
Affiliation(s)
- Thomas Dittmar
- Institute of Immunology, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58448, Witten, Germany.
| | - Ralf Hass
- Biochemistry and Tumor Biology Laboratory, Department of Obstetrics and Gynaecology, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
29
|
Gordon JAR, Evans MF, Ghule PN, Lee K, Vacek P, Sprague BL, Weaver DL, Stein GS, Stein JL. Identification of molecularly unique tumor-associated mesenchymal stromal cells in breast cancer patients. PLoS One 2023; 18:e0282473. [PMID: 36940196 PMCID: PMC10027225 DOI: 10.1371/journal.pone.0282473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/16/2023] [Indexed: 03/21/2023] Open
Abstract
The tumor microenvironment is a complex mixture of cell types that bi-directionally interact and influence tumor initiation, progression, recurrence, and patient survival. Mesenchymal stromal cells (MSCs) of the tumor microenvironment engage in crosstalk with cancer cells to mediate epigenetic control of gene expression. We identified CD90+ MSCs residing in the tumor microenvironment of patients with invasive breast cancer that exhibit a unique gene expression signature. Single-cell transcriptional analysis of these MSCs in tumor-associated stroma identified a distinct subpopulation characterized by increased expression of genes functionally related to extracellular matrix signaling. Blocking the TGFβ pathway reveals that these cells directly contribute to cancer cell proliferation. Our findings provide novel insight into communication between breast cancer cells and MSCs that are consistent with an epithelial to mesenchymal transition and acquisition of competency for compromised control of proliferation, mobility, motility, and phenotype.
Collapse
Affiliation(s)
- Jonathan A. R. Gordon
- Department of Biochemistry, Larner College of Medicine at the University of Vermont, Burlington, VT, United States of America
| | - Mark F. Evans
- Department of Pathology and Laboratory Medicine, Larner College of Medicine at the University of Vermont, Burlington, VT, United States of America
| | - Prachi N. Ghule
- Department of Biochemistry, Larner College of Medicine at the University of Vermont, Burlington, VT, United States of America
| | - Kyra Lee
- Department of Biochemistry, Larner College of Medicine at the University of Vermont, Burlington, VT, United States of America
| | - Pamela Vacek
- Department of Surgery, Larner College of Medicine at the University of Vermont, Burlington, VT, United States of America
| | - Brian L. Sprague
- Department of Surgery, Larner College of Medicine at the University of Vermont, Burlington, VT, United States of America
| | - Donald L. Weaver
- Department of Pathology and Laboratory Medicine, Larner College of Medicine at the University of Vermont, Burlington, VT, United States of America
| | - Gary S. Stein
- Department of Biochemistry, Larner College of Medicine at the University of Vermont, Burlington, VT, United States of America
| | - Janet L. Stein
- Department of Biochemistry, Larner College of Medicine at the University of Vermont, Burlington, VT, United States of America
| |
Collapse
|
30
|
Abatay-Sel F, Erol A, Suleymanoglu M, Demirayak G, Kekik-Cinar C, Kuruca DS, Savran-Oguz F. The in vitro treatment of mesenchymal stem cells for colorectal cancer cells. Med Oncol 2023; 40:103. [PMID: 36811793 DOI: 10.1007/s12032-023-01972-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/03/2023] [Indexed: 02/24/2023]
Abstract
Colorectal cancer is the most common tumor of the gastrointestinal system. The conventional treatment options for colorectal cancer are troublesome for both patients and clinicians. Recently, mesenchymal stem cells (MSCs) have been the novel focus for cell therapy due to their migration to tumor sites. In this study, the apoptotic effect of MSCs on colorectal cancer cell lines has been aimed. HCT-116 and HT-29 were selected as the colorectal cancer cell lines. Human umbilical cord blood and Wharton's jelly were used as mesenchymal stem cell sources. To discriminate against the apoptotic effect of MSC on cancer, we also used peripheral blood mononuclear cells (PBMC) as a healthy control group. Cord blood-MSC and PBMC were obtained by ficoll-paque density gradient, and Wharton's jelly-MSC by explant method. Transwell co-culture systems were used as cancer cells or PBMC/MSCs at ratios of 1/5 and 1/10, with incubation times of 24 h and 72 h. The Annexin V/PI-FITC-based apoptosis assay was performed by flow cytometry. Caspase-3 and HTRA2/Omi proteins were measured by ELISA. For both ratios in both cancer cells, it was found that the apoptotic effect of Wharton's jelly-MSC was significantly higher in 72-h incubations (p < 0.006), whereas the effect of cord blood mesenchymal stem cell in 24-h incubations were higher (p < 0.007). In this study, we showed that human cord blood and tissue-derived MSCs treatment led to colorectal cancers to apoptosis. We anticipate that further in vivo studies may shed light on the apoptotic effect of MSC.
Collapse
Affiliation(s)
- Figen Abatay-Sel
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey. .,Institute of Graduate Studies in Health Science, Istanbul University, Istanbul, Turkey.
| | - Ayse Erol
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Mediha Suleymanoglu
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Gokhan Demirayak
- Department of Gynecologic Oncology, Bakırköy Sadi Konuk Education and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Cigdem Kekik-Cinar
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Durdane Serap Kuruca
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Fatma Savran-Oguz
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
31
|
Brown MJ, Morris MA, Akam EC. Investigating the Effects of Indirect Coculture of Human Mesenchymal Stem Cells on the Migration of Breast Cancer Cells: A Systematic Review and Meta-Analysis. Breast Cancer (Auckl) 2023; 17:11782234221145385. [PMID: 36710995 PMCID: PMC9875320 DOI: 10.1177/11782234221145385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 01/24/2023] Open
Abstract
Purpose Breast cancer is the most diagnosed cancer and the leading cause of cancer death in women globally, and mesenchymal stem cells have been widely implicated in tumour progression. This systematic review and meta-analysis seeks to identify and summarise existing literature on the effects of human mesenchymal stem cells (hMSCs) on the migration of breast cancer cells (BCCs) in vitro, to determine the direction of this relationship according to existing research and to identify the directions for future research. Methods A systematic literature search was conducting using a collection of databases, using the following search terms: in vitro AND mesenchymal stem cells AND breast cancer. Only studies that investigated the effects of human, unmodified MSCs on the migration of human, unmodified BCCs in vitro were included. Standardised mean differences (SMDs) were calculated to determine pooled effect sizes. Results This meta-analysis demonstrates that hMSCs (different sources combined) increase the migration of both MDA-MB-231 and MCF-7 cell lines in vitro (SMD = 1.84, P = .03 and SMD = 2.69, P < .00001, respectively). Importantly, the individual effects of hMSCs from different sources were also analysed and demonstrated that MSCs derived from human adipose tissue increase BCC migration (SMD = 1.34, P = .0002) and those derived from umbilical cord increased both MDA-MB-231 and MCF-7 migration (SMD = 3.93, P < .00001 and SMD = 3.01, P < .00001, respectively). Conclusions To our knowledge, this is the first systematic review and meta-analysis investigating and summarising the effects of hMSCs from different sources on the migration of BCCs, in vitro.
Collapse
Affiliation(s)
- Marie-Juliet Brown
- School of Sport, Exercise and Health Sciences,
Loughborough University, Loughborough, UK
| | - Mhairi A Morris
- School of Sport, Exercise and Health Sciences,
Loughborough University, Loughborough, UK
| | - Elizabeth C Akam
- School of Sport, Exercise and Health Sciences,
Loughborough University, Loughborough, UK
| |
Collapse
|
32
|
Dittmar T, Hass R. Extracellular Events Involved in Cancer Cell-Cell Fusion. Int J Mol Sci 2022; 23:16071. [PMID: 36555709 PMCID: PMC9784959 DOI: 10.3390/ijms232416071] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Fusion among different cell populations represents a rare process that is mediated by both intrinsic and extracellular events. Cellular hybrid formation is relayed by orchestrating tightly regulated signaling pathways that can involve both normal and neoplastic cells. Certain important cell merger processes are often required during distinct organismal and tissue development, including placenta and skeletal muscle. In a neoplastic environment, however, cancer cell fusion can generate new cancer hybrid cells. Following survival during a subsequent post-hybrid selection process (PHSP), the new cancer hybrid cells express different tumorigenic properties. These can include elevated proliferative capacity, increased metastatic potential, resistance to certain therapeutic compounds, and formation of cancer stem-like cells, all of which characterize significantly enhanced tumor plasticity. However, many parts within this multi-step cascade are still poorly understood. Aside from intrinsic factors, cell fusion is particularly affected by extracellular conditions, including an inflammatory microenvironment, viruses, pH and ionic stress, hypoxia, and exosome signaling. Accordingly, the present review article will primarily highlight the influence of extracellular events that contribute to cell fusion in normal and tumorigenic tissues.
Collapse
Affiliation(s)
- Thomas Dittmar
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58448 Witten, Germany
| | - Ralf Hass
- Biochemistry and Tumor Biology Laboratory, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
33
|
Amiri N, Mohammadi P, Allahgholi A, Salek F, Amini E. The potential of sertoli cells (SCs) derived exosomes and its therapeutic efficacy in male reproductive disorders. Life Sci 2022; 312:121251. [PMID: 36463941 DOI: 10.1016/j.lfs.2022.121251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/15/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022]
Abstract
In the male reproductive system, seminiferous tubules in testis are lined by a complex stratified epithelium containing two distinct populations of cells, spermatogenic cells that develop into spermatozoa, and sertoli cells (SCs) that mainly support and nourish spermatogenic cell lineage as well as exerting powerful effect on men reproductive capacity. Different varieties of proteins, hormones, exosomes and growth factors are secreted by SCs. There are different kinds of junctions found between SCs called BTB. It was elucidated that complete absence of BTB or its dysfunction leads to infertility. To promote spermatogenesis, crosstalk of SCs with spermatogenic cells plays an important role. The ability of SCs to support germ cell productivity and development is related to its various products carrying out several functions. Exosomes (EXOs) are one of the main EVs with 30-100 nm size generating from endocytic pathway. They are produced in different parts of male reproductive system including epididymis, prostate and SCs. The most prominent characteristics of SC-based exosomes is considered mutual interaction of sertoli cells with spermatogonial stem cells and Leydig cells mainly through establishment of intercellular communication. Exosomes have gotten a lot of interest because of their role in pathobiological processes and as a cell free therapy which led to developing multiple exosome isolation methods based on different principles. Transmission of nucleic acids, proteins, and growth factors via SC-based exosomes and exosomal miRNAs are proved to have potential to be valuable biomarkers in male reproductive disease. Among testicular abnormalities, non-obstructive azoospermia and testicular cancer have been more contributed with SCs performance. The identification of key proteins and miRNAs involved in the signaling pathways related with spermatogenesis, can serve as diagnostic and regenerative targets in male infertility.
Collapse
Affiliation(s)
- Narjes Amiri
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran
| | - Paria Mohammadi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran
| | - Atefeh Allahgholi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran
| | - Farzaneh Salek
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Elaheh Amini
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| |
Collapse
|
34
|
Jiang B, White A, Ou W, Van Belleghem S, Stewart S, Shamul JG, Rahaman SO, Fisher JP, He X. Noncovalent reversible binding-enabled facile fabrication of leak-free PDMS microfluidic devices without plasma treatment for convenient cell loading and retrieval. Bioact Mater 2022; 16:346-358. [PMID: 35386332 PMCID: PMC8965690 DOI: 10.1016/j.bioactmat.2022.02.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/25/2022] [Accepted: 02/24/2022] [Indexed: 12/17/2022] Open
Abstract
The conventional approach for fabricating polydimethylsiloxane (PDMS) microfluidic devices is a lengthy and inconvenient procedure and may require a clean-room microfabrication facility often not readily available. Furthermore, living cells can't survive the oxygen-plasma and high-temperature-baking treatments required for covalent bonding to assemble multiple PDMS parts into a leak-free device, and it is difficult to disassemble the devices because of the irreversible covalent bonding. As a result, seeding/loading cells into and retrieving cells from the devices are challenging. Here, we discovered that decreasing the curing agent for crosslinking the PDMS prepolymer increases the noncovalent binding energy of the resultant PDMS surfaces without plasma or any other treatment. This enables convenient fabrication of leak-free microfluidic devices by noncovalent binding for various biomedical applications that require high pressure/flow rates and/or long-term cell culture, by simply hand-pressing the PDMS parts without plasma or any other treatment to bind/assemble. With this method, multiple types of cells can be conveniently loaded into specific areas of the PDMS parts before assembly and due to the reversible nature of the noncovalent bonding, the assembled device can be easily disassembled by hand peeling for retrieving cells. Combining with 3D printers that are widely available for making masters to eliminate the need of photolithography, this facile yet rigorous fabrication approach is much faster and more convenient for making PDMS microfluidic devices than the conventional oxygen plasma-baking-based irreversible covalent bonding method.
Collapse
Affiliation(s)
- Bin Jiang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Alisa White
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Wenquan Ou
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Sarah Van Belleghem
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Samantha Stewart
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - James G. Shamul
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Shaik O. Rahaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA
| | - John P. Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, 21201, USA
| |
Collapse
|
35
|
Qin X, Wu F, Chen C, Li Q. Recent advances in CAR-T cells therapy for colorectal cancer. Front Immunol 2022; 13:904137. [PMID: 36238297 PMCID: PMC9551069 DOI: 10.3389/fimmu.2022.904137] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer, with a high mortality rate and a serious impact on people’s life and health. In recent years, adoptive chimeric antigen receptor T (CAR-T) cells therapy has shown well efficacy in the treatment of hematological malignancies, but there are still many problems and challenges in solid tumors such as CRC. For example, the tumor immunosuppressive microenvironment, the low targeting of CAR-T cells, the short time of CAR-T cells in vivo, and the limited proliferation capacity of CAR-T cells, CAR-T cells can not effectively infiltrate into the tumor and so on. New approaches have been proposed to address these challenges in CRC, and this review provides a comprehensive overview of the current state of CAR-T cells therapy in CRC.
Collapse
Affiliation(s)
- Xiaoling Qin
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Fengjiao Wu
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chang Chen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Department of Pharmacology, Harbin Medical University, Harbin, China
- *Correspondence: Qi Li, ; Chang Chen,
| | - Qi Li
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, China
- *Correspondence: Qi Li, ; Chang Chen,
| |
Collapse
|
36
|
Prostate Cancer Tumor Stroma: Responsibility in Tumor Biology, Diagnosis and Treatment. Cancers (Basel) 2022; 14:cancers14184412. [PMID: 36139572 PMCID: PMC9496870 DOI: 10.3390/cancers14184412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary The crosstalk between prostate stroma and its epithelium is essential to tissue homeostasis. Likewise, reciprocal signaling between tumor cells and the stromal compartment is required in tumor progression to facilitate or stimulate key processes such as cell proliferation and invasion. The aim of the present work was to review the current state of knowledge on the significance of tumor stroma in the genesis, progression and therapeutic response of prostate carcinoma. Additionally, we addressed the future therapeutic opportunities. Abstract Prostate cancer (PCa) is a common cancer among males globally, and its occurrence is growing worldwide. Clinical decisions about the combination of therapies are becoming highly relevant. However, this is a heterogeneous disease, ranging widely in prognosis. Therefore, new approaches are needed based on tumor biology, from which further prognostic assessments can be established and complementary strategies can be identified. The knowledge of both the morphological structure and functional biology of the PCa stroma compartment can provide new diagnostic, prognostic or therapeutic possibilities. In the present review, we analyzed the aspects related to the tumor stromal component (both acellular and cellular) in PCa, their influence on tumor behavior and the therapeutic response and their consideration as a new therapeutic target.
Collapse
|
37
|
Paganelli A, Rossi E, Magnoni C. The dark side of adipose-derived mesenchymal stromal cells in cutaneous oncology: roles, expectations, and potential pitfalls. Stem Cells Dev 2022; 31:593-603. [PMID: 36066334 DOI: 10.1089/scd.2022.0189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Adipose-derived stromal cells (ADSCs) have well-established regenerative and immunomodulatory properties. For such reasons, ADSCs are currently under investigation for their use in the setting of both regenerative medicine and autoimmune diseases. As per dermatological disorders, MSC-based strategies represent potential therapeutic tools not only for chronic ulcers and wound healing, but also for immune-mediated dermatoses. However, a growing body of research has been focusing on the role of MSCs in human cancers, due to the potential oncological risk of using MSC-based strategies linked to their anti-apoptotic, pro-angiogenic and immunosuppressive properties. In the dermatological setting, ADSCs have shown not only to promote melanoma growth and invasiveness, but also to induce drug-resistance. On the other hand, genetically modified ADSCs have been demonstrated to efficiently target therapies at tumor sites, due to their migratory properties and their peculiar tropism for cancer microenvironment. The present review briefly summarizes the findings published so far on the use of ADSCs in the dermato-oncological setting, with the majority of data being available for melanoma.
Collapse
Affiliation(s)
- Alessia Paganelli
- Universita degli Studi di Modena e Reggio Emilia, Dermatology, Modena, Italy, 41124;
| | - Elena Rossi
- Universita degli Studi di Modena e Reggio Emilia, Dermatology, Modena, Italy;
| | - Cristina Magnoni
- Universita degli Studi di Modena e Reggio Emilia, Dermatology, Modena, Italy;
| |
Collapse
|
38
|
Sun X, Li K, Aryal UK, Li BY, Yokota H. PI3K-activated MSC proteomes inhibit mammary tumors via Hsp90ab1 and Myh9. Mol Ther Oncolytics 2022; 26:360-371. [PMID: 36090473 PMCID: PMC9420348 DOI: 10.1016/j.omto.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/02/2022] [Indexed: 12/05/2022] Open
Abstract
Despite the advance in medications in the past decade, aggressive breast cancer such as triple-negative breast cancer is difficult to treat. Here, we examined a counter-intuitive approach to converting human bone marrow-derived mesenchymal stem cells (MSCs) into induced tumor-suppressing cells by administering YS49, a PI3K/Akt activator. Notably, PI3K-activated MSCs generated tumor-suppressive proteomes, while PI3K-inactivated MSCs tumor-promotive proteomes. In a mouse model, the daily administration of YS49-treated MSC-derived CM decreased the progression of primary mammary tumors as well as the colonization of tumor cells in the lung. In the ex vivo assay, the size of freshly isolated human breast cancer tissues, including estrogen receptor positive and negative as well as human epidermal growth factor receptor 2 (HER2) positive and negative, was decreased by YS49-treated MSC-derived CM. Hsp90ab1 was enriched in CM as an atypical tumor-suppressing protein and immunoprecipitated a non-muscle myosin, Myh9. Extracellular Hsp90ab1 and Myh9 exerted the anti-tumor action and inhibited the maturation of bone-resorbing osteoclasts. Collectively, this study demonstrated that the activation of PI3K generated tumor-suppressive proteomes in MSCs and supported the possibility of using patient-derived MSCs for the treatment of breast cancer and bone metastasis.
Collapse
|
39
|
The Effects of Placental Mesenchymal Stem Cells Labeled With Ultrasmall Superparamagnetic Iron Oxides on the Growth of Colorectal Cancer Cells. J Comput Assist Tomogr 2022; 46:854-861. [PMID: 35995569 DOI: 10.1097/rct.0000000000001362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Colorectal cancer (CRC) is one of the most common malignant tumors worldwide, with effective intervention and treatment being essential for CRC management. This study investigated the effects of human placental mesenchymal stem cells (PMSCs) labeled with ultrasmall superparamagnetic iron oxides (USPIOs) on the growth of CRC cells and the feasibility of 3.0-T magnetic resonance (MR) imaging as an in vivo tracer. METHODS Twenty subcutaneous CRC HT-29 xenograft model in immunodeficient mice was established. Mice injected with labeled PMSCs were considered as the experimental group. Thereafter, the growth and MR signal changes of xenograft tumors of every nude mouse were measured. Then, growth curve was plotted, and the MR image quality in different sequences was analyzed. Pathological staining was performed after MR scan. RESULTS Ultrasmall superparamagnetic iron oxides-labeled PMSCs had no significant influence on biological characteristics (P > 0.05). The growth of tumors in mice in the experimental group before the injection of PMSCs was similar to that of the control group. Contrarily, the tumor growth rate in the experimental group on day 5 post-PMSCs injection was slightly lower than that of the control group. Moreover, the tumor volume on day 14 was noticeably smaller than in the control group. The tracing ability of T2* mapping sequences for USPIOs-labeled cells was significantly more effective than T2-weighted image and T2 mapping sequences. CONCLUSIONS Ultrasmall superparamagnetic iron oxides-labeled PMSCs injected into CRC transplanted tumors can be studied for a long period of time. Furthermore, 3.0-T MRI in vivo molecular imaging was demonstrated to be effective for CRC intervention.
Collapse
|
40
|
Li S, Han Y, Lu M, Liu Z, Jin J, Guo Q, Wang Y, Liu H. Mesenchymal stem cell‐exosome‐mediated matrix metalloproteinase 1 participates in oral leukoplakia and carcinogenesis by inducing angiogenesis. J Oral Pathol Med 2022; 51:638-648. [PMID: 35792829 DOI: 10.1111/jop.13321] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/04/2022] [Accepted: 02/10/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Shufang Li
- Department of Oral Medicine Peking University School and Hospital of Stomatology Beijing China
| | - Ying Han
- Department of Oral Medicine Peking University School and Hospital of Stomatology Beijing China
| | - Mingxing Lu
- Department of Oral Medicine Peking University School and Hospital of Stomatology Beijing China
| | - Zijian Liu
- Department of Oral Medicine Peking University School and Hospital of Stomatology Beijing China
| | - Jianqiu Jin
- Department of Stomatology Beijing Hospital, National Center of Gerontology Beijing China
| | - Qianyun Guo
- Department of Oral Medicine Peking University School and Hospital of Stomatology Beijing China
| | - Yixiang Wang
- Department of Central Laboratory Peking University School and Hospital of Stomatology Beijing China
| | - Hongwei Liu
- Department of Oral Medicine Peking University School and Hospital of Stomatology Beijing China
| |
Collapse
|
41
|
Rajput PK, Sharma JR, Yadav UCS. Cellular and molecular insights into the roles of visfatin in breast cancer cells plasticity programs. Life Sci 2022; 304:120706. [PMID: 35691376 DOI: 10.1016/j.lfs.2022.120706] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/30/2022] [Accepted: 06/07/2022] [Indexed: 11/15/2022]
Abstract
Obesity has reached a pandemic proportion and is responsible for the augmentation of multimorbidity including certain cancers. With the rise in obesity amongst the female population globally, a concomitant increase in breast cancer (BC) incidence and related mortality has been observed. In the present review, we have elucidated the cellular and molecular insight into the visfatin-mediated cellular plasticity programs such as Epithelial to mesenchymal transition (EMT) and Endothelial to mesenchymal transition (EndoMT), and stemness-associated changes in BC cells. EMT and EndoMT are responsible for inducing metastasis in cancer cells and conferring chemotherapy resistance, immune escape, and infinite growth potential. Visfatin, an obesity-associated adipokine implicated in metabolic syndrome, has emerged as a central player in BC pathogenesis. Several studies have indicated the presence of visfatin in the tumor microenvironment (TME) where it augments EMT and EndoMT of BC cells. Further, Visfatin also modulates the TME by acting on the tumor stroma cells such as adipocytes, infiltrated immune cells, and adipose-associated stem cells that secrete factors such as cytokines, and extracellular vesicles responsible for augmenting cellular plasticity program. Visfatin induced altered metabolism of the cancer cells and molecular determinants such as non-coding RNAs involved in EMT and EndoMT have been discussed. We have also highlighted specific therapeutic targets that can be exploited for the development of effective BC treatment. Taken together, these advanced understandings of cellular and molecular insight into the visfatin-mediated cellular plasticity programs may stimulate the development of better approaches for the prevention and therapy of BC, especially in obese patients.
Collapse
Affiliation(s)
- Pradeep Kumar Rajput
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India
| | - Jiten R Sharma
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India
| | - Umesh C S Yadav
- Special Center for Molecular medicine, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
42
|
Gilazieva Z, Ponomarev A, Rizvanov A, Solovyeva V. The Dual Role of Mesenchymal Stromal Cells and Their Extracellular Vesicles in Carcinogenesis. BIOLOGY 2022; 11:biology11060813. [PMID: 35741334 PMCID: PMC9220333 DOI: 10.3390/biology11060813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/07/2023]
Abstract
Simple Summary Extracellular vesicles (EVs) are membrane structures that play the role of intermediaries between tumor cells and the tumor microenvironment (TME) because they have the ability to transport lipids, transcription factors, mRNA, and proteins. Mesenchymal stem cells (MSCs) are a major component of the TME and may have different effects on tumor progression using EVs. This review includes information about various studies which have reported that EVs from MSCs can have either antitumor or pro-tumor effects, depending on both the tumor type and developmental stage. It provides an overview of the published data on EV MSCs and their effect on tumor cells. In addition, the use of EV MSCs for the development of new methods for treating oncological diseases is described. Abstract Mesenchymal stem cells (MSCs) are a major component of the tumor microenvironment (TME) and play an important role in tumor progression. MSCs remodel the extracellular matrix, participate in the epithelial–mesenchymal transition, promote the spread of metastases, and inhibit antitumor immune responses in the TME; however, there are also data pertaining to the antitumor effects of MSCs. MSCs activate the cell death mechanism by modulating the expression of proteins involved in the regulation of the cell cycle, angiogenesis receptors, and proapoptotic proteins. One of the main ways in which MSCs and TME interact is through the production of extracellular vesicles (EVs) by cells. Currently, data on the effects of both MSCs and their EVs on tumor cells are rather contradictory. Various studies have reported that EVs from MSCs can have either antitumor or pro-tumor effects, depending on both the tumor type and developmental stage. In this review, we discuss published data on EV MSCs and their effect on tumor cells. The molecular composition of vesicles obtained from MSCs is also presented in the review. In addition, the use of EV MSCs for the development of new methods for treating oncological diseases is described.
Collapse
|
43
|
Wu K, Liu Y, Liu L, Peng Y, Pang H, Sun X, Xia D. Emerging Trends and Research Foci in Tumor Microenvironment of Pancreatic Cancer: A Bibliometric and Visualized Study. Front Oncol 2022; 12:810774. [PMID: 35515122 PMCID: PMC9063039 DOI: 10.3389/fonc.2022.810774] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/21/2022] [Indexed: 01/07/2023] Open
Abstract
Background Pancreatic cancer (PC) is a serious disease with high mortality. The tumor microenvironment plays a key role in the occurrence and development of PC. The purpose of this study is to analyze trends by year, country, institution, journal, reference and keyword in publications on the PC microenvironment and to predict future research hotspots. Methods The Web of Science Core Collection was used to search for publications. We analyzed the contributions of various countries/regions, institutes, and authors and identified research hotspots and promising future trends using the CiteSpace and VOSviewer programs. We also summarized relevant completed clinical trials. Results A total of 2,155 papers on the PC microenvironment published between 2011 and 2021 were included in the study. The number of publications has increased every year. The average number of citations per article was 32.69. The USA had the most publications, followed by China, and a total of 50 influential articles were identified through co-citation analysis. Clustering analysis revealed two clusters of keywords: basic research and clinical application. The co-occurrence cluster analysis showed glutamine metabolism, carcinoma-associated fibroblasts, oxidative phosphorylation as the highly concerned research topics of basic research in recently. The three latest hot topics in clinical application are liposomes, endoscopic ultrasound and photodynamic therapy. Conclusion The number of publications and research interest have generally increased, and the USA has made prominent contributions to the study of the tumor microenvironment of PC. The current research hotspots mainly focus on energy metabolism in the hypoxic tumor microenvironment, cancer associated fibroblasts in regulating the tumor microenvironment, accurate diagnosis, drug delivery and new treatments.
Collapse
Affiliation(s)
- Kaiwen Wu
- Department of Gastroenterology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China.,Southwest Jiaotong University College of Medicine, Southwest Jiaotong University Affiliated Chengdu Third People's Hospital, Chengdu, China
| | - Ye Liu
- Naval Medical University, Shanghai, China
| | - Lei Liu
- Medical Research Center, Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Yunlan Peng
- Southwest Jiaotong University College of Medicine, Southwest Jiaotong University Affiliated Chengdu Third People's Hospital, Chengdu, China
| | - Honglin Pang
- Southwest Jiaotong University College of Medicine, Southwest Jiaotong University Affiliated Chengdu Third People's Hospital, Chengdu, China
| | - Xiaobin Sun
- Department of Gastroenterology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Demeng Xia
- Luodian Clinical Drug Research Center, Shanghai Baoshan Luodian Hospital, Shanghai University, Shanghai, China
| |
Collapse
|
44
|
Kitzberger C, Spellerberg R, Morath V, Schwenk N, Schmohl KA, Schug C, Urnauer S, Tutter M, Eiber M, Schilling F, Weber WA, Ziegler S, Bartenstein P, Wagner E, Nelson PJ, Spitzweg C. The sodium iodide symporter (NIS) as theranostic gene: its emerging role in new imaging modalities and non-viral gene therapy. EJNMMI Res 2022; 12:25. [PMID: 35503582 PMCID: PMC9065223 DOI: 10.1186/s13550-022-00888-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/11/2022] [Indexed: 01/14/2023] Open
Abstract
Cloning of the sodium iodide symporter (NIS) in 1996 has provided an opportunity to use NIS as a powerful theranostic transgene. Novel gene therapy strategies rely on image-guided selective NIS gene transfer in non-thyroidal tumors followed by application of therapeutic radionuclides. This review highlights the remarkable progress during the last two decades in the development of the NIS gene therapy concept using selective non-viral gene delivery vehicles including synthetic polyplexes and genetically engineered mesenchymal stem cells. In addition, NIS is a sensitive reporter gene and can be monitored by high resolution PET imaging using the radiotracers sodium [124I]iodide ([124I]NaI) or [18F]tetrafluoroborate ([18F]TFB). We performed a small preclinical PET imaging study comparing sodium [124I]iodide and in-house synthesized [18F]TFB in an orthotopic NIS-expressing glioblastoma model. The results demonstrated an improved image quality using [18F]TFB. Building upon these results, we will be able to expand the NIS gene therapy approach using non-viral gene delivery vehicles to target orthotopic tumor models with low volume disease, such as glioblastoma. Trial registration not applicable.
Collapse
Affiliation(s)
- Carolin Kitzberger
- Department of Internal Medicine IV, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Rebekka Spellerberg
- Department of Internal Medicine IV, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Volker Morath
- Department of Nuclear Medicine, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Nathalie Schwenk
- Department of Internal Medicine IV, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Kathrin A Schmohl
- Department of Internal Medicine IV, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Christina Schug
- Department of Internal Medicine IV, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Sarah Urnauer
- Department of Internal Medicine IV, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Mariella Tutter
- Department of Internal Medicine IV, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Matthias Eiber
- Department of Nuclear Medicine, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Franz Schilling
- Department of Nuclear Medicine, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Wolfgang A Weber
- Department of Nuclear Medicine, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Sibylle Ziegler
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Centre for System-Based Drug Research and Centre for Nanoscience, LMU Munich, Munich, Germany
| | - Peter J Nelson
- Department of Internal Medicine IV, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Christine Spitzweg
- Department of Internal Medicine IV, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany. .,Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
45
|
Bladder Cancer Cells Exert Pleiotropic Effects on Human Adipose-Derived Stem Cells. Life (Basel) 2022; 12:life12040549. [PMID: 35455040 PMCID: PMC9025060 DOI: 10.3390/life12040549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/29/2022] [Accepted: 04/05/2022] [Indexed: 12/12/2022] Open
Abstract
Stem cell-based therapies are considered one of the most promising disciplines in biomedicine. Bladder cancer patients could benefit from therapies directed to promote healing after invasive surgeries or to lessen urinary incontinence, a common side effect of both cancer itself and the treatment. However, the local delivery of cells producing large amounts of paracrine factors may alter interactions within the microenvironment. For this reason, reconstructive cellular therapies for patients with a history of cancer carry a potential risk of tumor reactivation. We used an indirect co-culture model to characterize the interplay between adipose-derived stem cells and bladder cancer cells. Incubation with ASCs increased MCP-1 secretion by bladder cancer cells (from 2.1-fold to 8.1-fold, depending on the cell line). Cancer cell-derived factors altered ASC morphology. Cells with atypical shapes and significantly enlarged volumes appeared within the monolayer. Incubation in a conditioned medium (CM) containing soluble mediators secreted by 5637 and HB-CLS-1 bladder cancer cell lines decreased ASC numbers by 47.5% and 45.7%. A significant increase in adhesion to ECM components, accompanied by reduced motility and sheet migration, was also observed after incubation in CM from 5637 and HB-CLS-1 cells. No differences were observed when ASCs were co-cultured with HT-1376 cells. Our previous and present results indicate that soluble mediators secreted by ASCs and bladder cancer cells induce opposite effects influencing cells that represent the non-muscle-invasive urinary bladder.
Collapse
|
46
|
Kaigorodova EV, Kozik AV, Zavaruev IS, Grishchenko MY. Hybrid/Atypical Forms of Circulating Tumor Cells: Current State of the Art. BIOCHEMISTRY (MOSCOW) 2022; 87:380-390. [PMID: 35527376 PMCID: PMC8993035 DOI: 10.1134/s0006297922040071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cancer is one of the most common diseases worldwide, and its treatment is associated with many challenges such as drug and radioresistance and formation of metastases. These difficulties are due to tumor heterogeneity, which has many causes. One may be the cell fusion, a process that is relevant to both physiological (e.g., wound healing) and pathophysiological (cancer and viral infection) processes. This literature review aimed to summarize the existing data on the hybrid/atypical forms of circulating cancer cells and their role in tumor progression. For that, the bioinformatics search in universal databases, such as PubMed, NCBI, and Google Scholar was conducted by using the keywords “hybrid cancer cells”, “cancer cell fusion”, etc. In this review the latest information related to the hybrid tumor cells, theories of their genesis, characteristics of different variants with data from our own researches are presented. Many aspects of the hybrid cell research are still in their infancy. However, with the level of knowledge already accumulated, circulating hybrids such as CAML and CHC could be considered as promising biomarkers of cancerous tumors, and even more as a new approach to cancer treatment.
Collapse
Affiliation(s)
- Evgeniya V Kaigorodova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634050, Russia.
- Siberian State Medical University, Tomsk, 634050, Russia
| | - Alexey V Kozik
- Siberian State Medical University, Tomsk, 634050, Russia
| | | | | |
Collapse
|
47
|
Xu Z, Gao H, Zhang Y, Feng W, Miao Y, Xu Z, Li W, Chen F, Lv Z, Huo J, Liu W, Shen X, Zong Y, Zhao J, Lu A. CCL7 and TGF-β secreted by MSCs play opposite roles in regulating CRC metastasis in a KLF5/CXCL5 dependent manner. Mol Ther 2022; 30:2327-2341. [DOI: 10.1016/j.ymthe.2022.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/12/2022] [Accepted: 03/07/2022] [Indexed: 11/29/2022] Open
|
48
|
Golinelli G, Talami R, Frabetti S, Candini O, Grisendi G, Spano C, Chiavelli C, Arnaud GF, Mari G, Dominici M. A 3D Platform to Investigate Dynamic Cell-to-Cell Interactions Between Tumor Cells and Mesenchymal Progenitors. Front Cell Dev Biol 2022; 9:767253. [PMID: 35111750 PMCID: PMC8802911 DOI: 10.3389/fcell.2021.767253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
We here investigated the dynamic cell-to-cell interactions between tumor and mesenchymal stromal/stem cells (MSCs) by the novel VITVOⓇ 3D bioreactor that was customized to develop in vivo-like metastatic nodules of Ewing’s sarcoma (ES). MSCs are known to contribute to tumor microenvironment as cancer associated fibroblast (CAF) precursors and, for this reason, they have also been used as anti-cancer tools. Using dynamic conditions, the process of tissue colonization and formation of metastatic niches was recreated through tumor cell migration aiming to mimic ES development in patients. ES is an aggressive tumor representing the second most common malignant bone cancer in children and young adults. An urgent and unmet need exists for the development of novel treatment strategies to improve the outcomes of metastatic ES. The tumor-tropic ability of MSCs offers an alternative approach, in which these cells can be used as vehicles for the delivery of antitumor molecules, such as the proapoptotic TNF-related apoptosis inducing ligand (TRAIL). However, the therapeutic targeting of metastases remains challenging and the interaction occurring between tumor cells and MSCs has not yet been deeply investigated. Setting up in vitro and in vivo models to study this interaction is a prerequisite for novel approaches where MSCs affinity for tumor is optimized to ultimately increase their therapeutic efficacy. Here, VITVOⓇ integrating a customized scaffold with an increased inter-fiber distance (VITVO50) was used to develop a dynamic model where MSCs and tumor nodules were evaluated under flow conditions. Colonization and interaction between cell populations were explored by droplet digital PCR (ddPCR). VITVO50 findings were then applied in vivo. An ES metastatic model was established in NSG mice and biodistribution of TRAIL-expressing MSCs in mice organs affected by metastases was investigated using a 4-plex ddPCR assay. VITVOⓇ proved to be an easy handling and versatile bioreactor to develop in vivo-like tumor nodules and investigate dynamic cell-to-cell interactions with MSCs. The proposed fluidic system promises to facilitate the understanding of tumor-stroma interaction for the development of novel tumor targeting strategies, simplifying the analysis of in vivo data, and ultimately accelerating the progress towards the early clinical phase.
Collapse
Affiliation(s)
- Giulia Golinelli
- Division of Oncology, Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
- *Correspondence: Giulia Golinelli, ; Massimo Dominici,
| | - Rebecca Talami
- Division of Oncology, Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | | | | | - Giulia Grisendi
- Division of Oncology, Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | | | - Chiara Chiavelli
- Division of Oncology, Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Gaëlle F. Arnaud
- Science and Technology Park for Medicine, Tecnopolo di Mirandola “Mario Veronesi”, Mirandola, Italy
| | - Giorgio Mari
- Rigenerand Srl, Medolla, Modena, Italy
- Science and Technology Park for Medicine, Tecnopolo di Mirandola “Mario Veronesi”, Mirandola, Italy
| | - Massimo Dominici
- Division of Oncology, Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
- Rigenerand Srl, Medolla, Modena, Italy
- *Correspondence: Giulia Golinelli, ; Massimo Dominici,
| |
Collapse
|
49
|
Wang B, Chao S, Guo B. Integrated weighted gene co-expression network analysis reveals biomarkers associated with prognosis of high-grade serous ovarian cancer. J Clin Lab Anal 2022; 36:e24165. [PMID: 34997982 PMCID: PMC8841170 DOI: 10.1002/jcla.24165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/16/2021] [Accepted: 11/26/2021] [Indexed: 11/10/2022] Open
Abstract
Background Ovarian cancer is the gynecologic tumor with the highest fatality rate, and high‐grade serous ovarian cancer (HGSOC) is the most common and malignant type of ovarian cancer. One important reason for the poor prognosis of HGSOC is the lack of effective diagnostic and prognostic biomarkers. New biomarkers are necessary for the improvement of treatment strategies and to ensure appropriate healthcare decisions. Methods To construct the co‐expression network of HGSOC samples, we applied weighted gene co‐expression network analysis (WGCNA) to assess the proteomic data obtained from the Clinical Proteomic Tumor Analysis Consortium (CPTAC), and module‐trait relationship was then analyzed and plotted in a heatmap to choose key module associated with HGSOC. Subsequently, hub genes with high connectivity in key module were identified by Cytoscape software. Furthermore, the biomarkers were selected through survival analysis, followed by evaluation using the relative operating characteristic (ROC) analysis. Results A total of 9 modules were identified by WGCNA, and module‐trait analysis revealed that the brown module was significantly associated with HGSOC (cor = 0.7). Ten hub genes with the highest connectivity were selected by protein‐protein interaction analysis. After survival and ROC analysis, ALB, APOB and SERPINA1 were suggested to be the biomarkers, and their protein levels were positively correlated with HGSOC prognosis. Conclusion We conducted the first gene co‐expression analysis using proteomic data from HGSOC samples, and found that ALB, APOB and SERPINA1 had prognostic value, which might be applied for the treatment of HGSOC in the future.
Collapse
Affiliation(s)
- Bo Wang
- Maternal & Child Health Research Institute, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Shan Chao
- Institutes for Shanghai Pudong Decoding Life, Shanghai, China
| | - Bo Guo
- Maternal & Child Health Research Institute, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| |
Collapse
|
50
|
Lee J, Ung A, Kim H, Lee K, Cho HJ, Bandaru P, Ahadian S, Dokmeci MR, Khademhosseini A. Engineering liver microtissues to study the fusion of HepG2 with mesenchymal stem cells and invasive potential of fused cells. Biofabrication 2021; 14. [PMID: 34740205 DOI: 10.1088/1758-5090/ac36de] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/05/2021] [Indexed: 12/26/2022]
Abstract
Increasing evidence from cancer cell fusion with different cell types in the tumor microenvironment has suggested a probable mechanism for how metastasis-initiating cells could be generated in tumors. Although human mesenchymal stem cells (hMSCs) have been known as promising candidates to create hybrid cells with cancer cells, the role of hMSCs in fusion with cancer cells is still controversial. Here, we fabricated a liver-on-a-chip platform to monitor the fusion of liver hepatocellular cells (HepG2) with hMSCs and study their invasive potential. We demonstrated that hMSCs might play dual roles in HepG2 spheroids. The analysis of tumor growth with different fractions of hMSCs in HepG2 spheroids revealed hMSCs' role in preventing HepG2 growth and proliferation, while the hMSCs presented in the HepG2 spheroids led to the generation of HepG2-hMSC hybrid cells with much higher invasiveness compared to HepG2. These invasive HepG2-hMSC hybrid cells expressed high levels of markers associated with stemness, proliferation, epithelial to mesenchymal transition, and matrix deposition, which corresponded to the expression of these markers for hMSCs escaping from hMSC spheroids. In addition, these fused cells were responsible for collective invasion following HepG2 by depositing Collagen I and Fibronectin in their surrounding microenvironment. Furthermore, we showed that hepatic stellate cells (HSCs) could also be fused with HepG2, and the HepG2-HSC hybrid cells possessed similar features to those from HepG2-hMSC fusion. This fusion of HepG2 with liver-resident HSCs may propose a new potential mechanism of hepatic cancer metastasis.
Collapse
Affiliation(s)
- Junmin Lee
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, United States of America.,Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.,Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA 90095, United States of America
| | - Aly Ung
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA 90095, United States of America
| | - Hanjun Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, United States of America.,Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA 90095, United States of America
| | - KangJu Lee
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, United States of America.,Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA 90095, United States of America.,School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu, 59626, Republic of Korea
| | - Hyun-Jong Cho
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA 90095, United States of America.,College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Praveen Bandaru
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, United States of America.,Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA 90095, United States of America
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, United States of America.,Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA 90095, United States of America
| | - Mehmet R Dokmeci
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, United States of America.,Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA 90095, United States of America.,Department of Radiological Sciences, University of California-Los Angeles, Los Angeles, CA 90095, United States of America
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, United States of America.,Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA 90095, United States of America.,Department of Radiological Sciences, University of California-Los Angeles, Los Angeles, CA 90095, United States of America.,Department of Chemical and Biomolecular Engineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA 90095, United States of America.,Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, CA 90095, United States of America
| |
Collapse
|