1
|
Zhao X, Chen C, Qiu H, Liu J, Shao N, Guo M, Jiang Y, Zhao J, Xu L. The landscape of ATF3 in tumors: Metabolism, expression regulation, therapy approach, and open concerns. Pharmacol Res 2025; 214:107666. [PMID: 39978658 DOI: 10.1016/j.phrs.2025.107666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/09/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Cellular stress response is a pivotal process in tumor development and therapy. Activating transcription factor 3 (ATF3), a representative stress-responsive protein, plays pleiotropic roles in various biological processes. Over the past decade, studies have described not only the general role of ATF3 in tumor metabolism but also the complexity of ATF3 expression regulation and its associated modifications, including phosphorylation, ubiquitination, SUMOylation, and NEDDylation. Interestingly, beyond being a transcription factor, ATF3 can act as a modifier to control the ubiquitination of target molecules, such as p53, to exert its function in tumors. These advances in uncovering ATF3 biological function have yielded new insights into the cellular stress response during tumor development and will be instrumental in developing novel interventions. In this review, we update the role of ATF3 as a nexus in amino acid metabolism, lipid metabolism, glycometabolism, and other metabolic pathways in tumors; delineate the underlying mechanisms involving DNA level regulation, epigenetic regulation, and post-translational modifications of ATF3; and summarize the progression of tumor mono/combination therapies related to ATF3. In particular, we discuss the challenges that need to be addressed to provide a new conceptual framework for further understanding the potential therapeutic value of ATF3 in ongoing clinical trials.
Collapse
Affiliation(s)
- Xu Zhao
- Medical College, Guizhou University, Guiyang, Guizhou Province 550025, China; Key Laboratory for Cancer Prevention and Treatment of Guizhou Province, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China
| | - Chao Chen
- Medical College, Guizhou University, Guiyang, Guizhou Province 550025, China; Key Laboratory for Cancer Prevention and Treatment of Guizhou Province, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China
| | - Hui Qiu
- Key Laboratory for Cancer Prevention and Treatment of Guizhou Province, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China
| | - Jing Liu
- Key Laboratory for Cancer Prevention and Treatment of Guizhou Province, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China
| | - Nan Shao
- Key Laboratory for Cancer Prevention and Treatment of Guizhou Province, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China
| | - Mengmeng Guo
- Key Laboratory for Cancer Prevention and Treatment of Guizhou Province, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China
| | - Yuanye Jiang
- Department of Gastroenterology, Putuo hospital, Shanghai University of Tradtional Chinese Medicine, Shanghai 200062, China.
| | - Juanjuan Zhao
- Key Laboratory for Cancer Prevention and Treatment of Guizhou Province, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China.
| | - Lin Xu
- Medical College, Guizhou University, Guiyang, Guizhou Province 550025, China; Key Laboratory for Cancer Prevention and Treatment of Guizhou Province, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China; Innovation Center for Tissue Damage Repair, Ministry of Education, Zunyi, Guizhou 563000, China.
| |
Collapse
|
2
|
Jiang Y, Le F, Huang S, Chen X, Deng Z. MLN4924 Suppresses head and neck squamous cell carcinoma progression by inactivating the mTOR signaling pathway via the NEDD8/CUL4/TSC2 axis. Int J Biochem Cell Biol 2024; 177:106696. [PMID: 39566655 DOI: 10.1016/j.biocel.2024.106696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/08/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is an aggressive cancer with a five-year survival rate below 50 %. Standard treatments for HNSCC include surgery, radiotherapy, chemotherapy, and targeted therapies, but they still have significant limitations. Neddylation, a post-translational modification involving the attachment of NEDD8 (neural precursor cells expressed developmentally down-regulated 8) to proteins, is frequently dysregulated in HNSCC, thereby promoting tumor growth. MLN4924, also known as Pevonedistat, is a Neddylation inhibitor that has shown promise in suppressing HNSCC cell proliferation and invasion, establishing it as a potential therapeutic option. However, its precise molecular mechanism remains unclear. This study aims to investigate the mechanism of MLN4924 in HNSCC. This study examined the effects of MLN4924 on HNSCC and its associated molecular pathways. Bioinformatic analysis indicated that NEDD8, a critical component of the Neddylation pathway, is linked to poor prognosis and the mTOR (mammalian target of rapamycin) signaling pathway in HNSCC. MLN4924 significantly suppressed cell migration, invasion, and the epithelial-mesenchymal transition (EMT) pathway, and downregulated NEDD8 expression. Mechanistic studies demonstrated that MLN4924 inhibited the binding of NEDD8 to cullin4 (CUL4) and prevented the Neddylation of tuberous sclerosis complex 2 (TSC2), leading to the inactivation of the mTOR pathway. These findings were confirmed in vivo, where MLN4924 effectively inhibited tumor growth. Overall, MLN4924 disrupted Neddylation pathway and stabilized TSC2, thereby inactivating the mTOR pathway. The study provided a theoretical basis for the clinical potential of MLN4924 in improving treatment outcomes for HNSCC patients, offering a novel strategy for addressing this challenging disease.
Collapse
Affiliation(s)
- Youfang Jiang
- Jiangxi Cancer Hospital & Institute, Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, China; Department of head and neck Surgery, Jiangxi Cancer hospital, Nanchang Medical College, Nanchang, Jiangxi 330029, China
| | - Fei Le
- Jiangxi Cancer Hospital & Institute, Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, China; Department of head and neck Surgery, Jiangxi Cancer hospital, Nanchang Medical College, Nanchang, Jiangxi 330029, China
| | - Shuangling Huang
- Department of neurosurgery, Jiangxi Cancer hospital, Nanchang Medical College, Nanchang, Jiangxi 330029, China
| | - Xuezhong Chen
- Department of Nuclear Medicine, First affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, China
| | - Ziqing Deng
- Department of General Surgery, The Third Hospital of Nanchang, Nanchang, Jiangxi 330000, China.
| |
Collapse
|
3
|
Wang Y, Cao Y, Wang Y, Sun J, Wang L, Song X, Zhao X. Construction and analysis of protein-protein interaction network for esophageal squamous cell carcinoma. Comput Biol Med 2024; 182:109156. [PMID: 39276610 DOI: 10.1016/j.compbiomed.2024.109156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a prevalent malignant tumor of the digestive tract. Clinical findings reveal that the five-year survival rate for mid-to late-stage ESCC patients is merely around 20 %, whereas those diagnosed at an early stage can achieve up to a 95 % survival rate. Consequently, early detection is paramount to improving ESCC patient survival. Protein markers are essential for diagnosing diseases, and the identification of new candidate proteins associated with ESCC through the protein-protein interaction (PPI) network is aimed for in this paper. The PPI network related to ESCC was constructed using protein data, comprising 2094 nodes and 19,660 edges. To assess the nodes' importance in the network, three metrics-degree centrality, betweenness centrality, and closeness centrality-were employed, leading to the identification of 81 key proteins. Subsequently, the biological significance of these proteins in the network was explored, combining biomedical knowledge from three perspectives: network, node, and cluster. The results demonstrated that 52 out of 81 key proteins were confirmed to be linked to ESCC. Among the remaining 29 unreported proteins, 18 displayed significant biological significance, indicating their potential as protein markers related to ESCC.
Collapse
Affiliation(s)
- Yanfeng Wang
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Yuhan Cao
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Yingcong Wang
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China.
| | - Junwei Sun
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Lidong Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of the First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China
| | - Xin Song
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of the First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China
| | - Xueke Zhao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of the First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
4
|
Zhang X, Li Z, Zhang X, Yuan Z, Zhang L, Miao P. ATF family members as therapeutic targets in cancer: From mechanisms to pharmacological interventions. Pharmacol Res 2024; 208:107355. [PMID: 39179052 DOI: 10.1016/j.phrs.2024.107355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
The activating transcription factor (ATF)/ cAMP-response element binding protein (CREB) family represents a large group of basic zone leucine zip (bZIP) transcription factors (TFs) with a variety of physiological functions, such as endoplasmic reticulum (ER) stress, amino acid stress, heat stress, oxidative stress, integrated stress response (ISR) and thus inducing cell survival or apoptosis. Interestingly, ATF family has been increasingly implicated in autophagy and ferroptosis in recent years. Thus, the ATF family is important for homeostasis and its dysregulation may promote disease progression including cancer. Current therapeutic approaches to modulate the ATF family include direct modulators, upstream modulators, post-translational modifications (PTMs) modulators. This review summarizes the structural domain and the PTMs feature of the ATF/CREB family and comprehensively explores the molecular regulatory mechanisms. On this basis, their pathways affecting proliferation, metastasis, and drug resistance in various types of cancer cells are sorted out and discussed. We then systematically summarize the status of the therapeutic applications of existing ATF family modulators and finally look forward to the future prospect of clinical applications in the treatment of tumors by modulating the ATF family.
Collapse
Affiliation(s)
- Xueyao Zhang
- Department of Anus and Intestine Surgery, Department of Cardiology, and Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang 110001, China
| | - Zhijia Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xiaochun Zhang
- Department of Anus and Intestine Surgery, Department of Cardiology, and Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang 110001, China
| | - Ziyue Yuan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Peng Miao
- Department of Anus and Intestine Surgery, Department of Cardiology, and Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
5
|
Skrzeszewski M, Maciejewska M, Kobza D, Gawrylak A, Kieda C, Waś H. Risk factors of using late-autophagy inhibitors: Aspects to consider when combined with anticancer therapies. Biochem Pharmacol 2024; 225:116277. [PMID: 38740222 DOI: 10.1016/j.bcp.2024.116277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Cancer resistance to therapy is still an unsolved scientific and clinical problem. In 2022, the hallmarks of cancer have been expanded to include four new features, including cellular senescence. Therapy-induced senescence (TIS) is a stressor-based response to conventional treatment methods, e.g. chemo- and radiotherapy, but also to non-conventional targeted therapies. Since TIS reinforces resistance in cancers, new strategies for sensitizing cancer cells to therapy are being adopted. These include macroautophagy as a potential target for inhibition due to its potential cytoprotective role in many cancers. The mechanism of late-stage autophagy inhibitors is based on blockage of autophagolysosome formation or an increase in lysosomal pH, resulting in disrupted cargo degradation. Such inhibitors are relevant candidates for increasing anticancer therapy effectiveness. In particular, 4-aminoquoline derivatives: chloroquine/hydroxychloroquine (CQ/HCQ) have been tested in multiple clinical trials in combination with senescence-inducing anti-cancer drugs. In this review, we summarize the properties of selected late-autophagy inhibitors and their role in the regulation of autophagy and senescent cell phenotype in vitro and in vivo models of cancer as well as treatment response in clinical trials on oncological patients. Additionally, we point out that, although these compounds increase the effectiveness of treatment in some cases, their practical usage might be hindered due to systemic toxicity, hypoxic environment, dose- ant time-dependent inhibitory effects, as well as a possible contribution to escaping from TIS.
Collapse
Affiliation(s)
- Maciej Skrzeszewski
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland; Doctoral School of Translational Medicine, Centre of Postgraduate Medical Education, Poland
| | - Monika Maciejewska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland
| | - Dagmara Kobza
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland; School of Chemistry, University of Leeds, Leeds, UK
| | - Aleksandra Gawrylak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland; Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Poland
| | - Claudine Kieda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland; Centre for Molecular Biophysics, UPR CNRS 4301, Orléans, France; Department of Molecular and Translational Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Halina Waś
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland.
| |
Collapse
|
6
|
Qi Z, Bai X, Wu L, Zhang P, Guo Z, Yu Y. CAPN2 promotes apalutamide resistance in metastatic hormone-sensitive prostate cancer by activating protective autophagy. J Transl Med 2024; 22:538. [PMID: 38844946 PMCID: PMC11155045 DOI: 10.1186/s12967-024-05335-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/20/2024] [Indexed: 06/10/2024] Open
Abstract
Apalutamide, a novel endocrine therapy agent, has been shown to significantly improve the prognosis of patients with metastatic hormone-sensitive prostate cancer (mHSPC). However, resistance to apalutamide has also been reported, and the underlying mechanism for this response has yet to be clearly elucidated. First, this study established apalutamide-resistant prostate cancer (PCa) cells, and confirmed that apalutamide activated the release of calcium ions (Ca2+) and endoplasmic reticulum stress (ERS) to enhance autophagy. Second, RNA sequencing, western blotting, and immunohistochemistry revealed significantly decreased Calpain 2 (CAPN2) expression in the apalutamide-resistant PCa cells and tissues. Furthermore, immunofluorescence and transmission electron microscopy (TEM) showed that CAPN2 promoted apalutamide resistance by activating protective autophagy. CAPN2 promoted autophagy by reducing Forkhead Box O1 (FOXO1) degradation while increasing nuclear translocation via nucleoplasmic protein isolation and immunofluorescence. In addition, FOXO1 promoted protective autophagy through the transcriptional regulation of autophagy-related gene 5 (ATG5). Furthermore, a dual-fluorescence assay confirmed that transcription factor 3 (ATF3) stimulation promoted CAPN2-mediated autophagy activation via transcriptional regulation. In summary, CAPN2 activated protective autophagy by inhibiting FOXO1 degradation and promoting its nuclear translocation via transcriptional ATG5 regulation. ATF3 activation and transcriptional CAPN2 regulation jointly promoted this bioeffect. Thus, our findings have not only revealed the mechanism underlying apalutamide resistance, but also provided a promising new target for the treatment of metastatic PCa.
Collapse
Affiliation(s)
- Zihao Qi
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P. R. China
- Huaihe Hospital of Henan University, Kaifeng, 475000, P. R. China
| | - Xiaojie Bai
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P. R. China
| | - Linjie Wu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P. R. China
| | - Peng Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P. R. China.
| | - Zhongqiang Guo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P. R. China.
| | - Ying Yu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P. R. China.
- Cancer Precision Diagnosis and Treatment and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P. R. China.
| |
Collapse
|
7
|
Liu Y, Cao Y, Liu P, Zhai S, Liu Y, Tang X, Lin J, Shi M, Qi D, Deng X, Zhu Y, Wang W, Shen B. ATF3-induced activation of NF-κB pathway results in acquired PARP inhibitor resistance in pancreatic adenocarcinoma. Cell Oncol (Dordr) 2024; 47:939-950. [PMID: 38097870 DOI: 10.1007/s13402-023-00907-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2023] [Indexed: 07/04/2024] Open
Abstract
PURPOSE Olaparib, an inhibitor of poly-(adenosine diphosphate-ribose) polymerase (PARP), has been shown to have anticancer benefits in patients with pancreatic cancer who have a germline mutation in BRCA1/2. However, resistance acquired on long-term exposure to olaparib significantly impedes clinical efficacy. METHODS In this study, the chromatin accessibility and differentially expressed transcripts of parental and olaparib-resistant pancreatic cancer cell lines were assessed using the Assay for Transposase Accessible Chromatin with sequencing (ATAC-seq) and mRNA-seq. Detection of downstream genes regulated by transcription factors using ChIP (Chromatin immunoprecipitation assay). RESULTS According to pathway enrichment analysis, differentially expressed genes in olaparib-resistant cells were remarkably enriched in the NF-κB signaling pathway. With ATAC-seq, we identified chromatin regions with higher accessibility in olaparib-resistant cells and predicted a series of important transcription factors. Among them, activating transcription factor 3 (ATF3) was significantly highly expressed. Functional experiments verified that inhibition of ATF3 suppressed the NF-κB pathway significantly and restored olaparib sensitivity in olaparib-resistant cells. CONCLUSION Experiments in vitro and in vivo indicate ATF3 enhances olaparib resistance through the NF-κB signaling pathway, suggesting that ATF3 could be employed as an olaparib sensitivity and prognostic indicator in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Yang Liu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Yizhi Cao
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Pengyi Liu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Shuyu Zhai
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Yihao Liu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Xiaomei Tang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Jiayu Lin
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Minmin Shi
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Debin Qi
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Xiaxing Deng
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Youwei Zhu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China.
| | - Weishen Wang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China.
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China.
| |
Collapse
|
8
|
Zeng R, Lv B, Lin Z, Chu X, Xiong Y, Knoedler S, Cao F, Lin C, Chen L, Yu C, Liao J, Zhou W, Dai G, Shahbazi MA, Mi B, Liu G. Neddylation suppression by a macrophage membrane-coated nanoparticle promotes dual immunomodulatory repair of diabetic wounds. Bioact Mater 2024; 34:366-380. [PMID: 38269308 PMCID: PMC10806270 DOI: 10.1016/j.bioactmat.2023.12.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/26/2024] Open
Abstract
Oxidative stress, infection, and vasculopathy caused by hyperglycemia are the main barriers for the rapid repair of foot ulcers in patients with diabetes mellitus (DM). In recent times, the discovery of neddylation, a new type of post-translational modification, has been found to regulate various crucial biological processes including cell metabolism and the cell cycle. Nevertheless, its capacity to control the healing of wounds in diabetic patients remains unknown. This study shows that MLN49224, a compound that inhibits neddylation at low concentrations, enhances the healing of diabetic wounds by inhibiting the polarization of M1 macrophages and reducing the secretion of inflammatory factors. Moreover, it concurrently stimulates the growth, movement, and formation of blood vessel endothelial cells, leading to expedited healing of wounds in individuals with diabetes. The drug is loaded into biomimetic macrophage-membrane-coated PLGA nanoparticles (M-NPs/MLN4924). The membrane of macrophages shields nanoparticles from being eliminated in the reticuloendothelial system and counteracts the proinflammatory cytokines to alleviate inflammation in the surrounding area. The extended discharge of MLN4924 from M-NPs/MLN4924 stimulates the growth of endothelial cells and the formation of tubes, along with the polarization of macrophages towards the anti-inflammatory M2 phenotype. By loading M-NPs/MLN4924 into a hydrogel, the final formulation is able to meaningfully repair a diabetic wound, suggesting that M-NPs/MLN4924 is a promising engineered nanoplatform for tissue engineering.
Collapse
Affiliation(s)
- Ruiyin Zeng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bin Lv
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ze Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiangyu Chu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Samuel Knoedler
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, 81377, Munich, Germany
| | - Faqi Cao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chuanlu Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chenyan Yu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiewen Liao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wu Zhou
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guandong Dai
- Department of Orthopaedics, Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen, Guangdong, 518118, China
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, the Netherlands
| | - Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
9
|
Chen X, Wang Z, Li C, Zhang Z, Lu S, Wang X, Liang Q, Zhu X, Pan C, Wang Q, Ji Z, Wang Y, Piao M, Chi G, Ge P. SIRT1 activated by AROS sensitizes glioma cells to ferroptosis via induction of NAD+ depletion-dependent activation of ATF3. Redox Biol 2024; 69:103030. [PMID: 38181705 PMCID: PMC10791567 DOI: 10.1016/j.redox.2024.103030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024] Open
Abstract
Ferroptosis is a type of programmed cell death resulting from iron overload-dependent lipid peroxidation, and could be promoted by activating transcription factor 3 (ATF3). SIRT1 is an enzyme accounting for removing acetylated lysine residues from target proteins by consuming NAD+, but its role remains elusive in ferroptosis and activating ATF3. In this study, we found SIRT1 was activated during the process of RSL3-induced glioma cell ferroptosis. Moreover, the glioma cell death was aggravated by SIRT1 activator SRT2183, but suppressed by SIRT inhibitor EX527 or when SIRT1 was silenced with siRNA. These indicated SIRT1 sensitized glioma cells to ferroptosis. Furthermore, we found SIRT1 promoted RSL3-induced expressional upregulation and nuclear translocation of ATF3. Silence of ATF3 with siRNA attenuated RSL3-induced increases of ferrous iron and lipid peroxidation, downregulation of SLC7A11 and GPX4 and depletion of cysteine and GSH. Thus, SIRT1 promoted glioma cell ferroptosis by inducting ATF3 activation. Mechanistically, ATF3 activation was reinforced when RSL3-induced decline of NAD+ was aggravated by FK866 that could inhibit NAD + synthesis via salvage pathway, but suppressed when intracellular NAD+ was maintained at higher level by supplement of exogenous NAD+. Notably, the NAD + decline caused by RSL3 was enhanced when SIRT1 was further activated by SRT2183, but attenuated when SIRT1 activation was inhibited by EX527. These indicated SIRT1 promoted ATF3 activation via consumption of NAD+. Finally, we found RSL3 activated SIRT1 by inducing reactive oxygen species-dependent upregulation of AROS. Together, our study revealed SIRT1 activated by AROS sensitizes glioma cells to ferroptosis via activation of ATF3-dependent inhibition of SLC7A11 and GPX4.
Collapse
Affiliation(s)
- Xi Chen
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Zhenchuan Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Chen Li
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Zhao Zhang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Shan Lu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Xuanzhong Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Qi Liang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Xiaoxi Zhu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Chengliang Pan
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Qingxuan Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Zhilin Ji
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Yubo Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Meihua Piao
- Department of Anesthesiology, First Hospital of Jilin University, Changchun, 130021, China
| | - Guangfan Chi
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Pengfei Ge
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
10
|
Shan M, Xiao M, Xu J, Sun W, Wang Z, Du W, Liu X, Nie M, Wang X, Liang Z, Liu H, Hao Y, Xia Y, Zhu L, Song K, Feng C, Meng T, Wang Z, Cao W, Wang L, Zheng Z, Wang Y, Huang Y. Multi-omics analyses reveal bacteria and catalase associated with keloid disease. EBioMedicine 2024; 99:104904. [PMID: 38061241 PMCID: PMC10749884 DOI: 10.1016/j.ebiom.2023.104904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/29/2023] Open
Abstract
BACKGROUND The pathology of keloid and especially the roles of bacteria on it were not well understood. METHODS In this study, multi-omics analyses including microbiome, metaproteomics, metabolomic, single-cell transcriptome and cell-derived xenograft (CDX) mice model were used to explore the roles of bacteria on keloid disease. FINDINGS We found that the types of bacteria are significantly different between keloid and healthy skin. The 16S rRNA sequencing and metaproteomics showed that more catalase (CAT) negative bacteria, Clostridium and Roseburia existed in keloid compared with the adjacent healthy skin. In addition, protein mass spectrometry shows that CAT is one of the differentially expressed proteins (DEPs). Overexpression of CAT inhibited the proliferation, migration and invasion of keloid fibroblasts, and these characteristics were opposite when CAT was knocked down. Furthermore, the CDX model showed that Clostridium butyricum promote the growth of patient's keloid fibroblasts in BALB/c female nude mice, while CAT positive bacteria Bacillus subtilis inhibited it. Single-cell RNA sequencing verified that oxidative stress was up-regulated and CAT was down-regulated in mesenchymal-like fibroblasts of keloid. INTERPRETATION In conclusion, our findings suggest that bacteria and CAT contribute to keloid disease. FUNDING A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.
Collapse
Affiliation(s)
- Mengjie Shan
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China; Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Meng Xiao
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| | - Jiyu Xu
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Sun
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zerui Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wenbin Du
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoyu Liu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| | - Meng Nie
- School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| | - Xing Wang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| | - Zhengyun Liang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China; Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hao Liu
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China; Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yan Hao
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China; Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yijun Xia
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China; Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lin Zhu
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Kexin Song
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Cheng Feng
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Tian Meng
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Zhi Wang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Weifang Cao
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Wang
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhi Zheng
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Youbin Wang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China.
| | - Yongsheng Huang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China; Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; School of Basic Medical Science, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
11
|
Jiang Y, Ni S, Xiao B, Jia L. Function, mechanism and drug discovery of ubiquitin and ubiquitin-like modification with multiomics profiling for cancer therapy. Acta Pharm Sin B 2023; 13:4341-4372. [PMID: 37969742 PMCID: PMC10638515 DOI: 10.1016/j.apsb.2023.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/21/2023] [Accepted: 07/17/2023] [Indexed: 11/17/2023] Open
Abstract
Ubiquitin (Ub) and ubiquitin-like (Ubl) pathways are critical post-translational modifications that determine whether functional proteins are degraded or activated/inactivated. To date, >600 associated enzymes have been reported that comprise a hierarchical task network (e.g., E1-E2-E3 cascade enzymatic reaction and deubiquitination) to modulate substrates, including enormous oncoproteins and tumor-suppressive proteins. Several strategies, such as classical biochemical approaches, multiomics, and clinical sample analysis, were combined to elucidate the functional relations between these enzymes and tumors. In this regard, the fundamental advances and follow-on drug discoveries have been crucial in providing vital information concerning contemporary translational efforts to tailor individualized treatment by targeting Ub and Ubl pathways. Correspondingly, emphasizing the current progress of Ub-related pathways as therapeutic targets in cancer is deemed essential. In the present review, we summarize and discuss the functions, clinical significance, and regulatory mechanisms of Ub and Ubl pathways in tumorigenesis as well as the current progress of small-molecular drug discovery. In particular, multiomics analyses were integrated to delineate the complexity of Ub and Ubl modifications for cancer therapy. The present review will provide a focused and up-to-date overview for the researchers to pursue further studies regarding the Ub and Ubl pathways targeted anticancer strategies.
Collapse
Affiliation(s)
| | | | - Biying Xiao
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
12
|
He ZX, Yang WG, Zengyangzong D, Gao G, Zhang Q, Liu HM, Zhao W, Ma LY. Targeting cullin neddylation for cancer and fibrotic diseases. Theranostics 2023; 13:5017-5056. [PMID: 37771770 PMCID: PMC10526667 DOI: 10.7150/thno.78876] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 04/12/2023] [Indexed: 09/30/2023] Open
Abstract
Protein neddylation is a post-translational modification, and its best recognized substrates are cullin family proteins, which are the core component of Cullin-RING ligases (CRLs). Given that most neddylation pathway proteins are overactivated in different cancers and fibrotic diseases, targeting neddylation becomes an emerging approach for the treatment of these diseases. To date, numerous neddylation inhibitors have been developed, of which MLN4924 has entered phase I/II/III clinical trials for cancer treatment, such as acute myeloid leukemia, melanoma, lymphoma and solid tumors. Here, we systematically describe the structures and biological functions of the critical enzymes in neddylation, highlight the medicinal chemistry advances in the development of neddylation inhibitors and propose the perspectives concerning targeting neddylation for cancer and fibrotic diseases.
Collapse
Affiliation(s)
- Zhang-Xu He
- Pharmacy College, Henan University of Chinese Medicine, 450046, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Wei-guang Yang
- Children's hospital affiliated of Zhengzhou university; Henan children's hospital; Zhengzhou children's hospital, Henan Zhengzhou 450000, China
| | - Dan Zengyangzong
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ge Gao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Qian Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Wen Zhao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Li-Ying Ma
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
- China Meheco Topfond Pharmaceutical Co., Zhumadian 463000, China
- Key Laboratory of Cardio-cerebrovascular Drug, Henan Province, Zhumadian 463000, China
| |
Collapse
|
13
|
Li D, Jing J, Dong X, Zhang C, Wang J, Wan X. Activating transcription factor 3: A potential therapeutic target for inflammatory pulmonary diseases. Immun Inflamm Dis 2023; 11:e1028. [PMID: 37773692 PMCID: PMC10515505 DOI: 10.1002/iid3.1028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 09/05/2023] [Accepted: 09/09/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Activating transcription factor 3 (ATF3) is a nuclear protein that is widely expressed in a variety of cells. It is a stress-inducible transcription gene and a member of the activating transcription factor/cAMP responsive element-binding protein (ATF/CREB) family. METHODS The comprehensive literature review was conducted by searching PubMed and Google Scholar. Search terms used were "ATF3", "ATF3 and (ALI or ARDS)", "ATF3 and COPD", "ATF3 and PF", and "ATF3 and Posttranslational modifications". RESULTS Recent studies have shown that ATF3 plays a critical role in many inflammatory pulmonary diseases, including acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), chronic obstructive pulmonary disease (COPD), and pulmonary fibrosis (PF). ATF3 participates in many signaling pathways and complex pathophysiological processes, such as inflammation, immunity, endoplasmic reticulum stress, and cell proliferation. However, the role of ATF3 in current studies is controversial, and there are reports showing that ATF3 plays different roles in different pulmonary diseases. CONCLUSIONS In this review, we first summarized the structure, function, and mechanism of ATF3 in various inflammatory pulmonary diseases. The impact of ATF3 on disease pathogenesis and the clinical implications was particularly focused on, with an overall aim to identify new targets for treating inflammatory pulmonary diseases.
Collapse
Affiliation(s)
- Dandan Li
- Department of Critical Care MedicineThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Juanjuan Jing
- Department of Critical Care MedicineThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Xue Dong
- Department of Critical Care MedicineThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Chenyang Zhang
- Department of Critical Care MedicineThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Jia Wang
- Department of Critical Care MedicineThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Xianyao Wan
- Department of Critical Care MedicineThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
| |
Collapse
|
14
|
Wang XZ, Liang SP, Chen X, Wang ZC, Li C, Feng CS, Lu S, He C, Wang YB, Chi GF, Ge PF. TAX1BP1 contributes to deoxypodophyllotoxin-induced glioma cell parthanatos via inducing nuclear translocation of AIF by activation of mitochondrial respiratory chain complex I. Acta Pharmacol Sin 2023; 44:1906-1919. [PMID: 37186123 PMCID: PMC10462642 DOI: 10.1038/s41401-023-01091-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023]
Abstract
Parthanatos is a type of programmed cell death initiated by over-activated poly (ADP-ribose) polymerase 1 (PARP1). Nuclear translocation of apoptosis inducing factor (AIF) is a prominent feature of parthanatos. But it remains unclear how activated nuclear PARP1 induces mitochondrial AIF translocation into nuclei. Evidence has shown that deoxypodophyllotoxin (DPT) induces parthanatos in glioma cells via induction of excessive ROS. In this study we explored the downstream signal of activated PARP1 to induce nuclear translocation of AIF in DPT-triggered glioma cell parthanatos. We showed that treatment with DPT (450 nM) induced PARP1 over-activation and Tax1 binding protein 1 (TAX1BP1) distribution to mitochondria in human U87, U251 and U118 glioma cells. PARP1 activation promoted TAX1BP1 distribution to mitochondria by depleting nicotinamide adenine dinucleotide (NAD+). Knockdown of TAX1BP1 with siRNA not only inhibited TAX1BP1 accumulation in mitochondria, but also alleviated nuclear translocation of AIF and glioma cell death. We demonstrated that TAX1BP1 enhanced the activity of respiratory chain complex I not only by upregulating the expression of ND1, ND2, NDUFS2 and NDUFS4, but also promoting their assemblies into complex I. The activated respiratory complex I generated more superoxide to cause mitochondrial depolarization and nuclear translocation of AIF, while the increased mitochondrial superoxide reversely reinforced PARP1 activation by inducing ROS-dependent DNA double strand breaks. In mice bearing human U87 tumor xenograft, administration of DPT (10 mg· kg-1 ·d-1, i.p., for 8 days) markedly inhibited the tumor growth accompanied by NAD+ depletion, TAX1BP1 distribution to mitochondria, AIF distribution to nuclei as well as DNA DSBs and PARP1 activation in tumor tissues. Taken together, these data suggest that TAX1BP1 acts as a downstream signal of activated PARP1 to trigger nuclear translocation of AIF by activation of mitochondrial respiratory chain complex I.
Collapse
Affiliation(s)
- Xuan-Zhong Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Shi-Peng Liang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Xi Chen
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Zhen-Chuan Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Chen Li
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Chun-Sheng Feng
- Department of Anesthesiology, First Hospital of Jilin University, Changchun, 130021, China
| | - Shan Lu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Chuan He
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Yu-Bo Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Guang-Fan Chi
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Peng-Fei Ge
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China.
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
15
|
Miceli C, Leri M, Stefani M, Bucciantini M. Autophagy-related proteins: Potential diagnostic and prognostic biomarkers of aging-related diseases. Ageing Res Rev 2023; 89:101967. [PMID: 37270146 DOI: 10.1016/j.arr.2023.101967] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
Autophagy plays a key role in cellular, tissue and organismal homeostasis and in the production of the energy load needed at critical times during development and in response to nutrient shortage. Autophagy is generally considered as a pro-survival mechanism, although its deregulation has been linked to non-apoptotic cell death. Autophagy efficiency declines with age, thus contributing to many different pathophysiological conditions, such as cancer, cardiomyopathy, diabetes, liver disease, autoimmune diseases, infections, and neurodegeneration. Accordingly, it has been proposed that the maintenance of a proper autophagic activity contributes to the extension of the lifespan in different organisms. A better understanding of the interplay between autophagy and risk of age-related pathologies is important to propose nutritional and life-style habits favouring disease prevention as well as possible clinical applications aimed at promoting long-term health.
Collapse
Affiliation(s)
- Caterina Miceli
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Manuela Leri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Massimo Stefani
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Monica Bucciantini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy.
| |
Collapse
|
16
|
Li J, Gu X, Wan G, Wang Y, Chen K, Chen Q, Lu C. Rocuronium bromide suppresses esophageal cancer via blocking the secretion of C-X-C motif chemokine ligand 12 from cancer associated fibroblasts. J Transl Med 2023; 21:248. [PMID: 37029408 PMCID: PMC10082495 DOI: 10.1186/s12967-023-04081-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/25/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND Cancer associated fibroblasts (CAFs) communicate metabolically with tumor genesis and development. Rocuronium bromide (RB) is reported to exert certain inhibitory effect on tumor. Here, we investigate the role of RB in esophageal cancer (EC) malignant progression. METHODS Tumor xenograft models with EC cells were locally and systemically administrated with RB to detect the influence of different administrations on tumor progression. Mouse CAFs PDGFRα+/F4/80- were sorted by Flow cytometry with specific antibodies. CAFs were treated with RB and co-cultured with EC cells. The proliferation, invasion and apoptosis assays of EC cells were performed to detect the influences of RB targeting CAFs on EC cell malignant progression. Human fibroblasts were employed to perform these detections to confirm RB indirect effect on EC cells. The gene expression changes of CAFs response to RB treatment were detected using RNA sequencing and verified by Western blot, immunohistochemistry and ELISA. RESULTS Tumors in xenograft mice were observed significantly inhibited by local RB administration, but not by systemic administration. Moreover EC cells did not show obvious change in viability when direct stimulated with RB in vitro. However, when CAFs treated with RB were co-cultured with EC cells, obvious suppressions were observed in EC cell malignancy, including proliferation, invasion and apoptosis. Human fibroblasts were employed to perform these assays and similar results were obtained. RNA sequencing data of human fibroblast treated with RB, and Western blot, immunohistochemistry and ELISA results all showed that CXCL12 expression was significantly diminished in vivo and in vitro by RB. EC cells direct treated with CXCL12 showed much higher malignancy. Moreover cell autophagy and PI3K/AKT/mTOR signaling pathway in CAFs were both suppressed by RB which can be reversed by Rapamycin pretreatment. CONCLUSIONS Our data suggest that RB could repress PI3K/AKT/mTOR signaling pathway and autophagy to block the CXCL12 expression in CAFs, thereby weakening the CXCL12-mediated EC tumor progression. Our data provide a novel insight into the underlying mechanism of RB inhibiting EC, and emphasize the importance of tumor microenvironment (cytokines from CAFs) in modulating cancer malignant progression.
Collapse
Affiliation(s)
- Jingyi Li
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine & Health Sciences, No. 279, Zhouzhu Road, Shanghai, 201318, China
- Qiqihar Medical University, Qiqihar, 161006, Heilongjiang Province, China
| | - Xuefeng Gu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine & Health Sciences, No. 279, Zhouzhu Road, Shanghai, 201318, China
| | - Guoqing Wan
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine & Health Sciences, No. 279, Zhouzhu Road, Shanghai, 201318, China
| | - Yuhan Wang
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine & Health Sciences, No. 279, Zhouzhu Road, Shanghai, 201318, China
| | - Kaijie Chen
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine & Health Sciences, No. 279, Zhouzhu Road, Shanghai, 201318, China
| | - Qi Chen
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine & Health Sciences, No. 279, Zhouzhu Road, Shanghai, 201318, China
| | - Changlian Lu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine & Health Sciences, No. 279, Zhouzhu Road, Shanghai, 201318, China.
| |
Collapse
|
17
|
Song JM, Kang M, Lee S, Kim J, Park S, Park DH, Lee S, Suh YH. Deneddylating enzyme SENP8 regulates neuronal development. J Neurochem 2023; 165:348-361. [PMID: 36847487 DOI: 10.1111/jnc.15797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/16/2023] [Accepted: 02/13/2023] [Indexed: 03/01/2023]
Abstract
Neddylation is a cellular process in which the neural precursor cell expressed, developmentally down-regulated 8 (NEDD8) is conjugated to the lysine residue of target proteins via serial enzymatic cascades. Recently, it has been demonstrated that neddylation is required for synaptic clustering of metabotropic glutamate receptor 7 (mGlu7) and postsynaptic density protein 95 (PSD-95), and the inhibition of neddylation impairs neurite outgrowth and excitatory synaptic maturation. Similar to the balanced role of deubiquitylating enzymes (DUBs) in the ubiquitination process, we hypothesized that deneddylating enzymes can regulate neuronal development by counteracting the process of neddylation. We find that the SUMO peptidase family member, NEDD8 specific (SENP8) acts as a key neuronal deneddylase targeting the global neuronal substrates in primary rat cultured neurons. We demonstrate that SENP8 expression levels are developmentally regulated, peaking around the first postnatal week and gradually diminishing in mature brain and neurons. We find that SENP8 negatively regulates neurite outgrowth through multiple pathways, including actin dynamics, Wnt/β-catenin signaling, and autophagic processes. Alterations in neurite outgrowth by SENP8 subsequently result in the impairment of excitatory synapse maturation. Our data indicate that SENP8 plays an essential role in neuronal development and is a promising therapeutic target for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Jae-Man Song
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,Transplantation Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Minji Kang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,Transplantation Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Seungha Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,Transplantation Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Jungho Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,Transplantation Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Sunha Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,Transplantation Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Da-Ha Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,Transplantation Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Sanghyeon Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,Transplantation Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Young Ho Suh
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,Transplantation Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
18
|
Chen H, Shi X, Ren L, Zhuo H, Zeng L, Qin Q, Wan Y, Sangdan W, Zhou L. Identification of the miRNA-mRNA regulatory network associated with radiosensitivity in esophageal cancer based on integrative analysis of the TCGA and GEO data. BMC Med Genomics 2022; 15:249. [PMID: 36456979 PMCID: PMC9714096 DOI: 10.1186/s12920-022-01392-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The current study set out to identify the miRNA-mRNA regulatory networks that influence the radiosensitivity in esophageal cancer based on the The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. METHODS Firstly, esophageal cancer-related miRNA-seq and mRNA-seq data were retrieved from the TCGA database, and the mRNA dataset of esophageal cancer radiotherapy was downloaded from the GEO database to analyze the differential expressed miRNAs (DEmiRNAs) and mRNAs (DEmRNAs) in radiosensitive and radioresistant samples, followed by the construction of the miRNA-mRNA regulatory network and Gene Ontology and KEGG enrichment analysis. Additionally, a prognostic risk model was constructed, and its accuracy was evaluated by means of receiver operating characteristic analysis. RESULTS A total of 125 DEmiRNAs and 42 DEmRNAs were closely related to the radiosensitivity in patients with esophageal cancer. Based on 47 miRNA-mRNA interactions, including 21 miRNAs and 21 mRNAs, the miRNA-mRNA regulatory network was constructed. The prognostic risk model based on 2 miRNAs (miR-132-3p and miR-576-5p) and 4 mRNAs (CAND1, ZDHHC23, AHR, and MTMR4) could accurately predict the prognosis of esophageal cancer patients. Finally, it was verified that miR-132-3p/CAND1/ZDHHC23 and miR-576-5p/AHR could affect the radiosensitivity in esophageal cancer. CONCLUSION Our study demonstrated that miR-132-3p/CAND1/ZDHHC23 and miR-576-5p/AHR were critical molecular pathways related to the radiosensitivity of esophageal cancer.
Collapse
Affiliation(s)
- Hongmin Chen
- grid.412901.f0000 0004 1770 1022Cancer Center, West China Hospital of Sichuan University, No. 37 Guoxue Lane, Wuhou District, Chengdu, 610041 People’s Republic of China
| | - Xiaoxiao Shi
- grid.13291.380000 0001 0807 1581Department of Medical Oncology, Chengdu Shang Jin Nan Fu Hospital (West China Hospital, S.C.U.), Chengdu, 611730 People’s Republic of China
| | - Li Ren
- grid.412901.f0000 0004 1770 1022Cancer Center, West China Hospital of Sichuan University, No. 37 Guoxue Lane, Wuhou District, Chengdu, 610041 People’s Republic of China
| | - Hongyu Zhuo
- grid.412901.f0000 0004 1770 1022Cancer Center, West China Hospital of Sichuan University, No. 37 Guoxue Lane, Wuhou District, Chengdu, 610041 People’s Republic of China
| | - Li Zeng
- grid.412901.f0000 0004 1770 1022Cancer Center, West China Hospital of Sichuan University, No. 37 Guoxue Lane, Wuhou District, Chengdu, 610041 People’s Republic of China
| | - Qing Qin
- grid.412901.f0000 0004 1770 1022Cancer Center, West China Hospital of Sichuan University, No. 37 Guoxue Lane, Wuhou District, Chengdu, 610041 People’s Republic of China
| | - Yuming Wan
- grid.412901.f0000 0004 1770 1022Cancer Center, West China Hospital of Sichuan University, No. 37 Guoxue Lane, Wuhou District, Chengdu, 610041 People’s Republic of China
| | - Wangmu Sangdan
- Department of Oncology, People’s Hospital of Tibet Autonomous Region, Lhasa, 850000 People’s Republic of China
| | - Lin Zhou
- grid.412901.f0000 0004 1770 1022Cancer Center, West China Hospital of Sichuan University, No. 37 Guoxue Lane, Wuhou District, Chengdu, 610041 People’s Republic of China ,grid.13291.380000 0001 0807 1581Department of Thoracic Oncology, State Key Laboratory of Biotherapy, Sichuan University, No. 1, Keyuan 4th Road, Gaopeng Avenue, Chengdu, 610041 People’s Republic of China
| |
Collapse
|
19
|
Ge M, Huang L, Ma Y, Sun S, Wu L, Xu W, Yang D. MLN4924 Treatment Diminishes Excessive Lipid Storage in High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease (NAFLD) by Stimulating Hepatic Mitochondrial Fatty Acid Oxidation and Lipid Metabolites. Pharmaceutics 2022; 14:pharmaceutics14112460. [PMID: 36432651 PMCID: PMC9696831 DOI: 10.3390/pharmaceutics14112460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
MLN4924 is a selective neddylation inhibitor that has shown great potential in treating several cancer and metabolic diseases, including obesity. However, it remains largely unknown whether MLN4924 has similar effect on non-alcoholic liver disease (NAFLD), which is closely associated with metabolic disorders. Here, we investigated the role of MLN4924 in NAFLD treatment and the underlying mechanism of the action using primary hepatocytes stimulated with free fatty acid, as well as high-fat diet (HFD)-induced NAFLD mouse models. We found that MLN4924 can inhibit the accumulation of lipid and reduce the expression of peroxisome proliferator-activated receptor γ (PPARγ), a key player in adipocyte differentiation and function in both in vivo and in vitro models. Moreover, we verified its important role in decreasing the synthesis and accumulation of fat in the liver, thus mitigating the development of NAFLD in the mouse model. The body weight and fat mass in MLN4924-treated animals were significantly reduced compared to the control group, while the metabolic activity, including O2 consumption, CO2 and heat production, also increased in these animals. Importantly, we demonstrated for the first time that MLN4924 can markedly boost mitochondrial fat acid oxidation (FAO) to alter liver lipid metabolism. Finally, we compared the metabolites between MLN4924-treated and untreated Huh7 cells after fatty acid induction using lipidomics methods and techniques. We found induction of several metabolites in the treated cells, including Beta-guanidinopropionic acid (b-GPA) and Fluphenazine, which was in accordance with the increase of FAO and metabolism. Together, our study provided a link between neddylation modification and energy metabolism, as well as evidence for targeting neddylation as an emerging therapeutic approach to tackle NAFLD.
Collapse
Affiliation(s)
- Mengxiao Ge
- Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Linlin Huang
- Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yinjun Ma
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Shuangyi Sun
- Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Lijun Wu
- Department of Library, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Wei Xu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Correspondence: (W.X.); (D.Y.)
| | - Dongqin Yang
- Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai 200040, China
- Correspondence: (W.X.); (D.Y.)
| |
Collapse
|
20
|
Yang X, Li M, Ji Y, Lin Y, Xu L, Gu X, Sun H, Wang W, Shen Y, Liu H, Zhu J. Changes of Gene Expression Patterns of Muscle Pathophysiology-Related Transcription Factors During Denervated Muscle Atrophy. Front Physiol 2022; 13:923190. [PMID: 35812340 PMCID: PMC9263185 DOI: 10.3389/fphys.2022.923190] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/07/2022] [Indexed: 12/11/2022] Open
Abstract
Peripheral nerve injury is common, and can lead to skeletal muscle atrophy and dysfunction. However, the underlying molecular mechanisms are not fully understood. The transcription factors have been proved to play a key role in denervated muscle atrophy. In order to systematically analyze transcription factors and obtain more comprehensive information of the molecular regulatory mechanisms in denervated muscle atrophy, a new transcriptome survey focused on transcription factors are warranted. In the current study, we used microarray to identify and analyze differentially expressed genes encoding transcription factors in denervated muscle atrophy in a rat model of sciatic nerve dissection. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were used to explore the biological functions of differentially expressed transcription factors and their target genes related to skeletal muscle pathophysiology. We found that the differentially expressed transcription factors were mainly involved in the immune response. Based on correlation analysis and the expression trends of transcription factors, 18 differentially expressed transcription factors were identified. Stat3, Myod1, Runx1, Atf3, Junb, Runx2, Myf6, Stat5a, Tead4, Klf5, Myog, Mef2a, and Hes6 were upregulated. Ppargc1a, Nr4a1, Lhx2, Ppara, and Rxrg were downregulated. Functional network mapping revealed that these transcription factors are mainly involved in inflammation, development, aging, proteolysis, differentiation, regeneration, autophagy, oxidative stress, atrophy, and ubiquitination. These findings may help understand the regulatory mechanisms of denervated muscle atrophy and provide potential targets for future therapeutic interventions for muscle atrophy following peripheral nerve injury.
Collapse
Affiliation(s)
- Xiaoming Yang
- School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Ming Li
- Department of Laboratory Medicine, Binhai County People’s Hospital affiliated to Kangda College of Nanjing Medical University, Yancheng, China
| | - Yanan Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Yinghao Lin
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
| | - Lai Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Wei Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
- *Correspondence: Yuntian Shen, ; Hua Liu, ; Jianwei Zhu,
| | - Hua Liu
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Nantong, China
- *Correspondence: Yuntian Shen, ; Hua Liu, ; Jianwei Zhu,
| | - Jianwei Zhu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Yuntian Shen, ; Hua Liu, ; Jianwei Zhu,
| |
Collapse
|
21
|
Kim WD, Mathavarajah S, Huber RJ. The Cellular and Developmental Roles of Cullins, Neddylation, and the COP9 Signalosome in Dictyostelium discoideum. Front Physiol 2022; 13:827435. [PMID: 35586714 PMCID: PMC9108976 DOI: 10.3389/fphys.2022.827435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/03/2022] [Indexed: 12/02/2022] Open
Abstract
Cullins (CULs) are a core component of cullin-RING E3 ubiquitin ligases (CRLs), which regulate the degradation, function, and subcellular trafficking of proteins. CULs are post-translationally regulated through neddylation, a process that conjugates the ubiquitin-like modifier protein neural precursor cell expressed developmentally downregulated protein 8 (NEDD8) to target cullins, as well as non-cullin proteins. Counteracting neddylation is the deneddylase, COP9 signalosome (CSN), which removes NEDD8 from target proteins. Recent comparative genomics studies revealed that CRLs and the CSN are highly conserved in Amoebozoa. A well-studied representative of Amoebozoa, the social amoeba Dictyostelium discoideum, has been used for close to 100 years as a model organism for studying conserved cellular and developmental processes owing to its unique life cycle comprised of unicellular and multicellular phases. The organism is also recognized as an exceptional model system for studying cellular processes impacted by human diseases, including but not limited to, cancer and neurodegeneration. Recent work shows that the neddylation inhibitor, MLN4924 (Pevonedistat), inhibits growth and multicellular development in D. discoideum, which supports previous work that revealed the cullin interactome in D. discoideum and the roles of cullins and the CSN in regulating cellular and developmental processes during the D. discoideum life cycle. Here, we review the roles of cullins, neddylation, and the CSN in D. discoideum to guide future work on using this biomedical model system to further explore the evolutionarily conserved functions of cullins and neddylation.
Collapse
Affiliation(s)
- William D. Kim
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | | | - Robert J. Huber
- Department of Biology, Trent University, Peterborough, ON, Canada
| |
Collapse
|
22
|
Chen X, Mu P, Zhu L, Mao X, Chen S, Zhong H, Deng Y. T-2 Toxin Induces Oxidative Stress at Low Doses via Atf3ΔZip2a/2b-Mediated Ubiquitination and Degradation of Nrf2. Int J Mol Sci 2021; 22:ijms22157936. [PMID: 34360702 PMCID: PMC8348355 DOI: 10.3390/ijms22157936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/10/2021] [Accepted: 07/19/2021] [Indexed: 01/14/2023] Open
Abstract
T-2 toxin is mainly produced by Fusarium species, which is an extremely toxic mycotoxin to humans and animals. It is well known that T-2 toxin induces oxidative stress, but the molecular mechanism is still unknown. In this study, we found that T-2 toxin significantly promoted reactive oxygen species (ROS) accumulation in MCF-7 cells at low doses which maintains cell viability at least 80%. Further analysis showed that T-2 toxin downregulated the expression of the master regulator of antioxidant defense gene, nuclear factor erythroid 2-related factor (Nrf2), and its targeted antioxidant genes. Overexpression of Nrf2 or its target gene heme oxygenase 1 (HO1) significantly blocked the ROS accumulation in MCF-7 cells under T-2 toxin treatment. Moreover, we found that T-2 toxin downregulated the antioxidant genes via inducing the expression of ATF3ΔZip2a/2b. Importantly, overexpression of ATF3ΔZip2a/2b promoted the ubiquitination and degradation of Nrf2. Altogether, our results demonstrated that T-2 toxin-induced ROS accumulation via ATF3ΔZip2a/2b mediated ubiquitination and degradation of Nrf2, which provided a new insight into the mechanism of T-2 toxin-induced oxidative stress.
Collapse
Affiliation(s)
- Xiaoxuan Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou 510642, China; (X.C.); (P.M.); (L.Z.); (X.M.); (S.C.); (H.Z.)
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Peiqiang Mu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou 510642, China; (X.C.); (P.M.); (L.Z.); (X.M.); (S.C.); (H.Z.)
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Lang Zhu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou 510642, China; (X.C.); (P.M.); (L.Z.); (X.M.); (S.C.); (H.Z.)
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoxiao Mao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou 510642, China; (X.C.); (P.M.); (L.Z.); (X.M.); (S.C.); (H.Z.)
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Shuang Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou 510642, China; (X.C.); (P.M.); (L.Z.); (X.M.); (S.C.); (H.Z.)
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Huali Zhong
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou 510642, China; (X.C.); (P.M.); (L.Z.); (X.M.); (S.C.); (H.Z.)
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yiqun Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou 510642, China; (X.C.); (P.M.); (L.Z.); (X.M.); (S.C.); (H.Z.)
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Correspondence: ; Tel.: +86-20-38294890; Fax: +86-20-38604987
| |
Collapse
|
23
|
Jiang Y, Li L, Li Y, Liu G, Hoffman RM, Jia L. Neddylation Regulates Macrophages and Implications for Cancer Therapy. Front Cell Dev Biol 2021; 9:681186. [PMID: 34164400 PMCID: PMC8215544 DOI: 10.3389/fcell.2021.681186] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/05/2021] [Indexed: 12/24/2022] Open
Abstract
Tumor-associated macrophages (TAMs) promote cancer progression via stimulating angiogenesis, invasion/metastasis, and suppressing anti-cancer immunity. Targeting TAMs is a potential promising cancer therapeutic strategy. Neddylation adds the ubiquitin-like protein NEDD8 to substrates, and thereby regulates diverse biological processes in multiple cell types, including macrophages. By controlling cellular responses, the neddylation pathway regulates the function, migration, survival, and polarization of macrophages. In the present review we summarized how the neddylation pathway modulates Macrophages and its implications for cancer therapy.
Collapse
Affiliation(s)
- Yanyu Jiang
- Longhua Hospital, Cancer Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lihui Li
- Longhua Hospital, Cancer Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Li
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Guangwei Liu
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Robert M Hoffman
- Department of Surgery, University of California, San Diego, San Diego, CA, United States.,AntiCancer Inc., San Diego, CA, United States
| | - Lijun Jia
- Longhua Hospital, Cancer Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
24
|
Gai W, Peng Z, Liu CH, Zhang L, Jiang H. Advances in Cancer Treatment by Targeting the Neddylation Pathway. Front Cell Dev Biol 2021; 9:653882. [PMID: 33898451 PMCID: PMC8060460 DOI: 10.3389/fcell.2021.653882] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/10/2021] [Indexed: 12/16/2022] Open
Abstract
Developmental down-regulation protein 8 (NEDD8), expressed by neural progenitors, is a ubiquitin-like protein that conjugates to and regulates the biological function of its substrates. The main target of NEDD8 is cullin-RING E3 ligases. Upregulation of the neddylation pathway is closely associated with the progression of various tumors, and MLN4924, which inhibits NEDD8-activating enzyme (NAE), is a promising new antitumor compound for combination therapy. Here, we summarize the latest progress in anticancer strategies targeting the neddylation pathway and their combined applications, providing a theoretical reference for developing antitumor drugs and combination therapies.
Collapse
Affiliation(s)
- Wenbin Gai
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Zhiqiang Peng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lingqiang Zhang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.,Peixian People's Hospital, Xuzhou, China
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
25
|
Yao J, Liang X, Liu Y, Zheng M. Neddylation: A Versatile Pathway Takes on Chronic Liver Diseases. Front Med (Lausanne) 2020; 7:586881. [PMID: 33195347 PMCID: PMC7604315 DOI: 10.3389/fmed.2020.586881] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/31/2020] [Indexed: 12/20/2022] Open
Abstract
Neddylation is a ubiquitin-like posttranslational modification that conjugates neural precursor cell expressed developmentally downregulated-8 (Nedd8) to specific substrates for regulation of protein activity. In light of current researches, the neddylation pathway is aberrant in the pathogenesis of many diseases. In our review, we summarize the versatile roles of neddylation in chronic liver diseases (CLDs). CLDs are one of the leading causes of chronic disease-associated deaths worldwide. There are diverse etiologic agents causing CLDs, mainly including hepatitis B virus (HBV) infection, nonalcoholic fatty liver disease (NAFLD), chronic exposure to alcohol or drugs, and autoimmune causes. So far, however, there remains a paucity of effective therapeutic approach to CLDs. In this review, we summarized the role of the neddylation pathway which runs through the chronic hepatitis B/NAFLD-liver fibrosis-cirrhosis-hepatocellular carcinoma (HCC) axis, a canonical pattern in the process of CLD development and progression. The dysregulation of neddylation may provide a better understanding of CLD pathology and even a novel therapeutic strategy. Correspondingly, inhibiting neddylation via MLN4924, a small molecule compound targeting NEDD8-activating enzyme (NAE), can potently alleviate CLD progression and improve the outcome. On this basis, profiling and characterization of the neddylation pathway can provide new insights into the CLD pathology as well as novel therapeutic strategies, independently of the etiology of CLD.
Collapse
Affiliation(s)
- Jiping Yao
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xue Liang
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yanning Liu
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Min Zheng
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|