1
|
Luan L, Cao X, Baskin JM. Inhibition of SQSTM1/p62 oligomerization and Keap1 sequestration by the Cullin-3 adaptor SHKBP1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.634088. [PMID: 39896619 PMCID: PMC11785107 DOI: 10.1101/2025.01.21.634088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
SQSTM1/p62 is a master regulator of the autophagic and ubiquitination pathways of protein degradation and the antioxidant response. p62 functions in these pathways via reversible assembly and sequestration of additional factors into cytoplasmic phase-separated structures termed p62 bodies. The physiological roles of p62 in these various pathways depends on numerous mechanisms for regulating p62 body formation and dynamics that are incompletely understood. Here, we identify a new mechanism for regulation of p62 oligomerization and incorporation into p62 bodies by SHKBP1, a Cullin-3 E3 ubiquitin ligase adaptor, that is independent of its potential functions in ubiquitination. We map a SHKBP1-p62 protein-protein interaction outside of p62 bodies that limits p62 assembly into p62 bodies and affects the antioxidant response by preventing sequestration and degradation of Keap1. These studies provide a non-ubiquitination-based mechanism for an E3 ligase adaptor in regulating p62 phase separation and cellular responses to oxidative stress.
Collapse
Affiliation(s)
- Lin Luan
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Xiaofu Cao
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | - Jeremy M. Baskin
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
2
|
Shi YX, Wang J, Jiang ZL, Yan JH. Multi-omics analysis of core E3 ubiquitin ligase identifies prognostic biomarkers associated with immune infiltration and drug sensitivity in lung adenocarcinoma. J Cancer 2025; 16:1363-1378. [PMID: 39895786 PMCID: PMC11786024 DOI: 10.7150/jca.104837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/05/2025] [Indexed: 02/04/2025] Open
Abstract
Background: Ubiquitination is involved in several tumor immunomodulatory processes, and targeting E3 ubiquitin ligases has substantial potential in cancer therapy. Methods: In this study, the key E3 ubiquitin ligases involved in regulating the malignant progression of LUAD were studied. We first systematically investigated the expression landscape, prognosis, immune infiltration, drug sensitivity, and potential molecular mechanisms of these hub genes in LUAD. CDC20 was localized by immunofluorescence analysis in tumor cell lines, and its expression level was determined by immunohistochemistry on tissue chips. Single-cell analysis and spatial transcriptomics were used to determine CDC20 expression in multiple cell types. Molecular docking was performed via computer simulation to verify the ability of drugs to bind to target genes. Results: We found that these hub genes are specifically overexpressed in LUAD and are associated with poor patient prognosis. All five E3 ubiquitin ligase genes were negatively correlated with B cells and dendritic cells but positively related to neutrophil immune infiltration. In addition, analysis of the CTRP and GDSC databases revealed that the sensitivity to multiple antitumor drugs increased when CCNF was highly expressed. GSEA enrichment analysis demonstrated that the G2M_CHECKPOINT, MTORC1_SIGNALING, OXIDATIVE_PHOSPHORYLATION, and GLYCOLYSIS signaling pathways were enriched when CDC20 was highly expressed. Further correlation analysis indicated that CDC20 was positively correlated with the expression of the key genes mTOR, S6K1, and 4E-BP1 and the autophagy-related gene ULK1 in the mTORC1 signaling pathway. Conclusions: These key E3 ubiquitin ligases serve as potential molecular biomarkers for predicting the prognosis, immune response, and drug sensitivity of LUAD patients.
Collapse
Affiliation(s)
- Yuan-Xiang Shi
- Institute of Clinical Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Jia Wang
- Institute of Clinical Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Zhen-Lin Jiang
- Department of Cardiac Thoracic Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Jian-Hua Yan
- Department of Cardiac Thoracic Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| |
Collapse
|
3
|
Moon JY, Park JB, Lee KW, Park D, Yoo GS, Choi C, Park S, Yu JI, Lim DH, Kim JE, Kim SJ, Park WY, Kim WD. Identification and validation of soft tissue sarcoma-specific transcriptomic model for predicting radioresistance. Int J Radiat Biol 2025; 101:283-291. [PMID: 39792988 DOI: 10.1080/09553002.2024.2447509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025]
Abstract
PURPOSE We aimed to identify the transcriptomic signatures of soft tissue sarcoma (STS) related to radioresistance and establish a model to predict radioresistance. MATERIALS AND METHODS Nine STS cell lines were cultured. Adenosine triphosphate-based viability was determined 5 days after irradiation with 8 Gy of X-rays in a single fraction. Radiosensitive and radioresistant groups were stratified according to the survival rates. Whole transcriptomic sequencing analysis was performed and differentially expressed genes (DEGs) were identified between the radiosensitive and radioresistant groups. For model generation, a cohort of 59 patients with sarcomas from The Cancer Genome Atlas (TCGA) was used. DEGs of the responder and non-responder groups according to the radiotherapy-best response were identified. The overlapping DEGs between those from TCGA data and the STS cell line were subjected to linear regression to develop a formula, namely the STS-specific radioresistance index (STS-RRI), and its performance was compared with that of the previously established radiosensitivity index (RSI). RESULTS We selected thirteen overlapping DEGs and established STS-RRI using seven of them: STS-RRI = 1.5185 × MYO16-0.01575 × MYH11 + 3.900375 × KCTD16 + 0.105375 × SYNPO2-0.777375 × MYPN-0.849875 × PCSK6-0.700125 × LTK + 39.4635. Delong's test revealed that the STS-RRI performed better at stratifying responder and non-responder in TCGA cohort than the RSI (p = .002). The progression-free survival curves of the TCGA cohort were significantly discriminated by STS-RRI (p = .013) but not by RSI (p = .241). CONCLUSION We developed the STS-RRI to predict the radioresistance of patients with STS in the TCGA dataset, showing a higher performance than RSI.
Collapse
Affiliation(s)
- Jae Yun Moon
- Molecular Science and Technology Research Center, Ajou University, Suwon, Republic of Korea
| | - Jae Berm Park
- Department of General Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyo Won Lee
- Department of General Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Daechan Park
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Gyu Sang Yoo
- Chungbuk National University College of Medicine, Cheongju, Republic of Korea
- Department of Radiation Oncology, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | - Changhoon Choi
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sohee Park
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jeong Il Yu
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Do Hoon Lim
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | | | - Sung Joo Kim
- Department of Surgery, Cheju Halla General Hospital, Jeju, Republic of Korea
| | - Woo-Yoon Park
- Chungbuk National University College of Medicine, Cheongju, Republic of Korea
- Department of Radiation Oncology, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | - Won Dong Kim
- Chungbuk National University College of Medicine, Cheongju, Republic of Korea
- Department of Radiation Oncology, Chungbuk National University Hospital, Cheongju, Republic of Korea
| |
Collapse
|
4
|
Stathopoulou KM, Georgakopoulos S, Tasoulis S, Plagianakos VP. Investigating the overlap of machine learning algorithms in the final results of RNA-seq analysis on gene expression estimation. Health Inf Sci Syst 2024; 12:14. [PMID: 38435719 PMCID: PMC10904690 DOI: 10.1007/s13755-023-00265-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 12/05/2023] [Indexed: 03/05/2024] Open
Abstract
Advances in computer science in combination with the next-generation sequencing have introduced a new era in biology, enabling advanced state-of-the-art analysis of complex biological data. Bioinformatics is evolving as a union field between computer Science and biology, enabling the representation, storage, management, analysis and exploration of many types of data with a plethora of machine learning algorithms and computing tools. In this study, we used machine learning algorithms to detect differentially expressed genes between different types of cancer and showing the existence overlap to final results from RNA-sequencing analysis. The datasets were obtained from the National Center for Biotechnology Information resource. Specifically, dataset GSE68086 which corresponds to PMID:200,068,086. This dataset consists of 171 blood platelet samples collected from patients with six different tumors and healthy individuals. All steps for RNA-sequencing analysis (preprocessing, read alignment, transcriptome reconstruction, expression quantification and differential expression analysis) were followed. Machine Learning- based Random Forest and Gradient Boosting algorithms were applied to predict significant genes. The Rstudio statistical tool was used for the analysis.
Collapse
Affiliation(s)
- Kalliopi-Maria Stathopoulou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, Papasiopoulou 2-4, 35100 Lamia, Greece
| | | | - Sotiris Tasoulis
- Department of Computer Science and Biomedical Informatics, University of Thessaly, Papasiopoulou 2-4, 35100 Lamia, Greece
| | - Vassilis P. Plagianakos
- Department of Computer Science and Biomedical Informatics, University of Thessaly, Papasiopoulou 2-4, 35100 Lamia, Greece
| |
Collapse
|
5
|
Liu Y, Ren J, Ma S, Wu C. The spike-and-slab quantile LASSO for robust variable selection in cancer genomics studies. Stat Med 2024; 43:4928-4983. [PMID: 39260448 PMCID: PMC11585335 DOI: 10.1002/sim.10196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 05/28/2024] [Accepted: 07/31/2024] [Indexed: 09/13/2024]
Abstract
Data irregularity in cancer genomics studies has been widely observed in the form of outliers and heavy-tailed distributions in the complex traits. In the past decade, robust variable selection methods have emerged as powerful alternatives to the nonrobust ones to identify important genes associated with heterogeneous disease traits and build superior predictive models. In this study, to keep the remarkable features of the quantile LASSO and fully Bayesian regularized quantile regression while overcoming their disadvantage in the analysis of high-dimensional genomics data, we propose the spike-and-slab quantile LASSO through a fully Bayesian spike-and-slab formulation under the robust likelihood by adopting the asymmetric Laplace distribution (ALD). The proposed robust method has inherited the prominent properties of selective shrinkage and self-adaptivity to the sparsity pattern from the spike-and-slab LASSO (Roc̆ková and George, J Am Stat Associat, 2018, 113(521): 431-444). Furthermore, the spike-and-slab quantile LASSO has a computational advantage to locate the posterior modes via soft-thresholding rule guided Expectation-Maximization (EM) steps in the coordinate descent framework, a phenomenon rarely observed for robust regularization with nondifferentiable loss functions. We have conducted comprehensive simulation studies with a variety of heavy-tailed errors in both homogeneous and heterogeneous model settings to demonstrate the superiority of the spike-and-slab quantile LASSO over its competing methods. The advantage of the proposed method has been further demonstrated in case studies of the lung adenocarcinomas (LUAD) and skin cutaneous melanoma (SKCM) data from The Cancer Genome Atlas (TCGA).
Collapse
Affiliation(s)
- Yuwen Liu
- Department of Statistics, Kansas State University, Manhattan, KS
| | - Jie Ren
- Department of Biostatistics and Health Data Sciences, Indiana University School of Medicine, Indianapolis, IN
| | - Shuangge Ma
- Department of Biostatistics, Yale University, New Haven, CT
| | - Cen Wu
- Department of Statistics, Kansas State University, Manhattan, KS
| |
Collapse
|
6
|
Li P, Liu P, Zang D, Li C, Wang C, Zhu Y, Liu M, Lu L, Wu X, Nie H. Genome-Wide Identification and Expression Analysis of the BTB Gene Superfamily Provides Insight into Sex Determination and Early Gonadal Development of Alligator sinensis. Int J Mol Sci 2024; 25:10771. [PMID: 39409099 PMCID: PMC11477308 DOI: 10.3390/ijms251910771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/29/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
The BTB gene superfamily is widely distributed among higher eukaryotes and plays a significant role in numerous biological processes. However, there is limited knowledge about the structure and function of BTB genes in the critically endangered species Alligator sinensis, which is endemic to China. A total of 170 BTB genes were identified from the A. sinensis genome, classified into 13 families, and unevenly distributed across 16 chromosomes. Analysis of gene duplication events yielded eight pairs of tandem duplication genes and six pairs of segmental duplication genes. Phylogenetics shows that the AsBTB genes are evolutionarily conserved. The cis-regulatory elements in the AsBTB family promoter region reveal their involvement in multiple biological processes. Protein interaction network analysis indicates that the protein interactions of the AsBTB genes are centered around CLU-3, mainly participating in the regulation of biological processes through the ubiquitination pathway. The expression profile and protein interaction network analysis of AsBTB genes during sex differentiation and early gonadal development indicate that AsBTB genes are widely expressed in this process and involves numerous genes and pathways for regulation. This study provides a basis for further investigation of the role of the BTB gene in sex differentiation and gonadal development in A. sinensis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiaobing Wu
- The Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, College of Life Science, Anhui Normal University, Wuhu 241000, China; (P.L.); (P.L.); (D.Z.); (C.L.); (C.W.); (Y.Z.); (M.L.); (L.L.)
| | - Haitao Nie
- The Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, College of Life Science, Anhui Normal University, Wuhu 241000, China; (P.L.); (P.L.); (D.Z.); (C.L.); (C.W.); (Y.Z.); (M.L.); (L.L.)
| |
Collapse
|
7
|
Balasco N, Ruggiero A, Smaldone G, Pecoraro G, Coppola L, Pirone L, Pedone EM, Esposito L, Berisio R, Vitagliano L. Structural studies of KCTD1 and its disease-causing mutant P20S provide insights into the protein function and misfunction. Int J Biol Macromol 2024; 277:134390. [PMID: 39111466 DOI: 10.1016/j.ijbiomac.2024.134390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/18/2024] [Accepted: 07/30/2024] [Indexed: 08/11/2024]
Abstract
Members of the KCTD protein family play key roles in fundamental physio-pathological processes including cancer, neurodevelopmental/neuropsychiatric, and genetic diseases. Here, we report the crystal structure of the KCTD1 P20S mutant, which causes the scalp-ear-nipple syndrome, and molecular dynamics (MD) data on the wild-type protein. Surprisingly, the structure unravels that the N-terminal region, which precedes the BTB domain (preBTB) and bears the disease-associated mutation, adopts a folded polyproline II (PPII) state. The KCTD1 pentamer is characterized by an intricate architecture in which the different subunits mutually exchange domains to generate a closed domain swapping motif. Indeed, the BTB of each chain makes peculiar contacts with the preBTB and the C-terminal domain (CTD) of an adjacent chain. The BTB-preBTB interaction consists of a PPII-PPII recognition motif whereas the BTB-CTD contacts are mediated by an unusual (+/-) helix discontinuous association. The inspection of the protein structure, along with the data emerged from the MD simulations, provides an explanation of the pathogenicity of the P20S mutation and unravels the role of the BTB-preBTB interaction in the insurgence of the disease. Finally, the presence of potassium bound to the central cavity of the CTD pentameric assembly provides insights into the role of KCTD1 in metal homeostasis.
Collapse
Affiliation(s)
- Nicole Balasco
- Institute of Molecular Biology and Pathology, CNR c/o Department Chemistry, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessia Ruggiero
- Institute of Molecular Biology and Pathology, CNR c/o Department Chemistry, Sapienza University of Rome, 00185 Rome, Italy
| | | | | | | | - Luciano Pirone
- Institute of Biostructures and Bioimaging, CNR, 80131 Naples, Italy
| | - Emilia M Pedone
- Institute of Biostructures and Bioimaging, CNR, 80131 Naples, Italy
| | - Luciana Esposito
- Institute of Biostructures and Bioimaging, CNR, 80131 Naples, Italy
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, CNR, 80131 Naples, Italy.
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, CNR, 80131 Naples, Italy.
| |
Collapse
|
8
|
Navratil J, Kratochvilova M, Raudenska M, Balvan J, Vicar T, Petrlakova K, Suzuki K, Jadrna L, Bursa J, Kräter M, Kim K, Masarik M, Gumulec J. Long-term zinc treatment alters the mechanical properties and metabolism of prostate cancer cells. Cancer Cell Int 2024; 24:313. [PMID: 39261823 PMCID: PMC11389562 DOI: 10.1186/s12935-024-03495-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024] Open
Abstract
The failure of intracellular zinc accumulation is a key process in prostate carcinogenesis. Although prostate cancer cells can accumulate zinc after long-term exposure, chronic zinc oversupply may accelerate prostate carcinogenesis or chemoresistance. Because cancer progression is associated with energetically demanding cytoskeletal rearrangements, we investigated the effect of long-term zinc presence on biophysical parameters, ATP production, and EMT characteristics of two prostate cancer cell lines (PC-3, 22Rv1). Prolonged exposure to zinc increased ATP production, spare respiratory capacity, and induced a response in PC-3 cells, characterized by remodeling of vimentin and a shift of cell dry mass density and caveolin-1 to the perinuclear region. This zinc-induced remodeling correlated with a greater tendency to maintain actin architecture despite inhibition of actin polymerization by cytochalasin. Zinc partially restored epithelial characteristics in PC-3 cells by decreasing vimentin expression and increasing E-cadherin. Nevertheless, the expression of E-cadherin remained lower than that observed in predominantly oxidative, low-invasive 22Rv1 cells. Following long-term zinc exposure, we observed an increase in cell stiffness associated with an increased refractive index in the perinuclear region and an increased mitochondrial content. The findings of the computational simulations indicate that the mechanical response cannot be attributed exclusively to alterations in cytoskeletal composition. This observation suggests the potential involvement of an additional, as yet unidentified, mechanical contributor. These findings indicate that long-term zinc exposure alters a group of cellular parameters towards an invasive phenotype, including an increase in mitochondrial number, ATP production, and cytochalasin resistance. Ultimately, these alterations are manifested in the biomechanical properties of the cells.
Collapse
Affiliation(s)
- Jiri Navratil
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Monika Kratochvilova
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Martina Raudenska
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Jan Balvan
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Tomas Vicar
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Katerina Petrlakova
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Kanako Suzuki
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Lucie Jadrna
- Department of Biomechanics, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2, 61669, Brno, Czech Republic
| | - Jiri Bursa
- Department of Biomechanics, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2, 61669, Brno, Czech Republic
| | - Martin Kräter
- Max Planck Institute for the Science of Light, and Max-Planck-Zentrum für Physik Und Medizin, Staudtstraße 2, 91058, Erlangen, Germany
- Rivercyte GmbH, Henkestraße 91, 91052, Erlangen, Germany
| | - Kyoohyun Kim
- Max Planck Institute for the Science of Light, and Max-Planck-Zentrum für Physik Und Medizin, Staudtstraße 2, 91058, Erlangen, Germany
| | - Michal Masarik
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - Jaromir Gumulec
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| |
Collapse
|
9
|
Li J, Yao J. CD8 + T cell‑related KCTD5 contributes to malignant progression and unfavorable clinical outcome of patients with triple‑negative breast cancer. Mol Med Rep 2024; 30:166. [PMID: 39027992 PMCID: PMC11267436 DOI: 10.3892/mmr.2024.13290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/06/2024] [Indexed: 07/20/2024] Open
Abstract
Triple‑negative breast cancer (TNBC) is a highly aggressive and heterogeneous subtype of breast cancer that lacks expression of estrogen receptor, progesterone receptor, and HER2, making it more challenging to treat with targeted therapies. The present study aimed to identify CD8+ T cell‑associated genes, which could provide insight into the mechanisms underlying TNBC to facilitate developing novel immunotherapies. TNBC datasets were downloaded from public databases including The Cancer Genome Atlas, Molecular Taxonomy of Breast Cancer International Consortium, and Gene Expression Omnibus. Candidate genes were identified integrating weighted gene co‑expression network analysis (WGCNA), differential gene expression, protein‑protein‑interaction network construction and univariate Cox regression analysis. Kaplan‑Meier survival, multivariate Cox regression and receiver operating characteristic analysis were performed to evaluate the prognostic value of hub genes. Knockdown experiments, alongside wound healing, Cell Counting Kit‑8 and Transwell migration and invasion assays were performed. In total, seven gene modules were associated with CD8+ T cells using WGCNA, among which potassium channel tetramerization domain 5 (KCTD5) was significantly upregulated in TNBC samples and was associated with poor prognosis. KCTD5 expression inversely associated with infiltration ratios of 'Macrophages M1', 'Plasma cells', and 'γδ T cells', but positively with 'activated Mast cells', 'Macrophages M0', and 'Macrophages M2'. As an independent prognostic indicator for TNBC, KCTD5 was also associated with drug sensitivity and the expression of programmed cell death protein 1, Cytotoxic T‑Lymphocyte‑Associated Protein 4 (CTLA4), CD274), Cluster of Differentiation 86 (CD86), Lymphocyte‑Activation Gene 3 (LAG3), T Cell Immunoreceptor with Ig and ITIM Domains (TIGIT). Knockdown of KCTD5 significantly inhibited viability, migration and invasion of TNBC cells in vitro. KCTD5 was suggested to impact the tumor immune microenvironment by influencing the infiltration of immune cells and may serve as a potential therapeutic target for TNBC.
Collapse
Affiliation(s)
- Jia Li
- Department of Breast Surgical Oncology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030013, P.R. China
| | - Jingchun Yao
- Department of Head and Neck, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030013, P.R. China
| |
Collapse
|
10
|
Zhou J, Zhang M, Gao A, Herman JG, Guo M. Epigenetic silencing of KCTD8 promotes hepatocellular carcinoma growth by activating PI3K/AKT signaling. Epigenomics 2024; 16:929-944. [PMID: 39023358 PMCID: PMC11370965 DOI: 10.1080/17501911.2024.2370590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Aim: The aim of current study is to explore the epigenetic changes and function of KCTD8 in human hepatocellular carcinoma (HCC). Materials & methods: HCC cell lines and tissue samples were employed. Methylation specific PCR, flow cytometry, immunoprecipitation and xenograft mouse models were used.Results: KCTD8 was methylated in 44.83% (104/232) of HCC and its methylation may act as an independent poor prognostic marker. KCTD8 expression was regulated by DNA methylation. KCTD8 suppressed HCC cell growth both in vitro and in vivo via inhibiting PI3K/AKT pathway.Conclusion: Methylation of KCTD8 is an independent poor prognostic marker, and epigenetic silencing of KCTD8 increases the malignant tendency in HCC.
Collapse
Affiliation(s)
- Jing Zhou
- School of Medicine, NanKai University, Tianjin, 300071, China
- Department of Gastroenterology & Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Meiying Zhang
- Department of Gastroenterology & Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Aiai Gao
- Department of Gastroenterology & Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - James G Herman
- The Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA15213, USA
| | - Mingzhou Guo
- School of Medicine, NanKai University, Tianjin, 300071, China
- Department of Gastroenterology & Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- National Key Laboratory of Kidney Diseases, Beijing, 100853, China
| |
Collapse
|
11
|
Huang P, Zhao H, Sun R, Liu C, Wu L, Wang Y, Gan Z, Yang X, Du J. MiR-1976/NCAPH/P65 axis inhibits the malignant phenotypes of lung adenocarcinoma. Sci Rep 2024; 14:11211. [PMID: 38755247 PMCID: PMC11099075 DOI: 10.1038/s41598-024-61261-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 05/03/2024] [Indexed: 05/18/2024] Open
Abstract
Lung adenocarcinoma (LUAD) is a malignancy with an abysmal survival rate. High metastasis is the leading cause of the low survival rate of LUAD. NCAPH, an oncogene, is involved in the carcinogenesis of LUAD. However, the regulation of NCAPH in LUAD remains controversial. In this work, we identified an up-regulation of NCAPH in LUAD tissues. Patients who expressed more NCAPH had shorter overall survival (OS). Furthermore, NCAPH overexpression promoted LUAD cell migration while inhibiting apoptosis. MiR-1976 and miR-133b were predicted to target NCAPH expression by searching TargetScan and linkedomics databases. Following that, we confirmed that miR-1976 suppressed NCAPH by directly targeting a 7-bp region of NCAPH 3' untranslated regions (UTR). In addition, increased expression of miR-1976 decreased the proliferation & migration and promoted apoptosis of LUAD cells, and the re-introduction of NCAPH reversed these influences. Furthermore, the xenograft and metastasis mouse models also confirmed that miR-1976 inhibited tumor growth and metastasis in vivo by targeting NCAPH. Finally, we found that MiR-1976 targeting NCAPH blocked the activation of NF-κB. In conclusion, miR-1976 inhibits NCAPH activity in LUAD and acts as a tumor suppressor. The miR-1976/NCAPH/NF-κB axis may, in the future, represent crucial diagnostic and prognostic biomarkers and promising therapeutic options.
Collapse
Affiliation(s)
- Peiluo Huang
- Department of Immunology, College of Basic Medicine, Guilin Medical University, Guilin, 541199, Guangxi, China
- College of Pharmacy, Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Hongtao Zhao
- Department of Immunology, College of Basic Medicine, Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Ruonan Sun
- Department of Immunology, College of Basic Medicine, Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Chunyan Liu
- Central Laboratory, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, 250014, Shandong, China
| | - Lei Wu
- College of Department of Information & Library Science, Guilin Medical University, Guilin, 541004, China
| | - Yao Wang
- Central Laboratory, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, 250014, Shandong, China
| | - Zhengwei Gan
- School of Clinical Medicine, Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Xiuzhen Yang
- Department of Clinical Laboratory, Zibo Central Hospital, 54 Gongqingtuan Xi Road, Zibo, 255036, China.
| | - Juan Du
- Department of Immunology, College of Basic Medicine, Guilin Medical University, Guilin, 541199, Guangxi, China.
| |
Collapse
|
12
|
Ruangchan C, Ngamphiw C, Krasaesin A, Intarak N, Tongsima S, Kaewgahya M, Kawasaki K, Mahawong P, Paripurana K, Sookawat B, Jatooratthawichot P, Cox TC, Ohazama A, Ketudat Cairns JR, Porntaveetus T, Kantaputra P. Genetic Variants in KCTD1 Are Associated with Isolated Dental Anomalies. Int J Mol Sci 2024; 25:5179. [PMID: 38791218 PMCID: PMC11121487 DOI: 10.3390/ijms25105179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
KCTD1 plays crucial roles in regulating both the SHH and WNT/β-catenin signaling pathways, which are essential for tooth development. The objective of this study was to investigate if genetic variants in KCTD1 might also be associated with isolated dental anomalies. We clinically and radiographically investigated 362 patients affected with isolated dental anomalies. Whole exome sequencing identified two unrelated families with rare (p.Arg241Gln) or novel (p.Pro243Ser) variants in KCTD1. The variants segregated with the dental anomalies in all nine patients from the two families. Clinical findings of the patients included taurodontism, unseparated roots, long roots, tooth agenesis, a supernumerary tooth, torus palatinus, and torus mandibularis. The role of Kctd1 in root development is supported by our immunohistochemical study showing high expression of Kctd1 in Hertwig epithelial root sheath. The KCTD1 variants in our patients are the first variants found to be located in the C-terminal domain, which might disrupt protein-protein interactions and/or SUMOylation and subsequently result in aberrant WNT-SHH-BMP signaling and isolated dental anomalies. Functional studies on the p.Arg241Gln variant are consistent with an impact on β-catenin levels and canonical WNT signaling. This is the first report of the association of KCTD1 variants and isolated dental anomalies.
Collapse
Affiliation(s)
- Cholaporn Ruangchan
- Center of Excellence in Medical Genetics Research, Chiang Mai University, Chiang Mai 50200, Thailand; (C.R.); (M.K.)
- Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chumpol Ngamphiw
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani 12120, Thailand; (C.N.); (S.T.)
| | - Annop Krasaesin
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; (A.K.); (N.I.)
| | - Narin Intarak
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; (A.K.); (N.I.)
| | - Sissades Tongsima
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani 12120, Thailand; (C.N.); (S.T.)
| | - Massupa Kaewgahya
- Center of Excellence in Medical Genetics Research, Chiang Mai University, Chiang Mai 50200, Thailand; (C.R.); (M.K.)
| | - Katsushige Kawasaki
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 950-2180, Japan; (K.K.); (A.O.)
| | - Phitsanu Mahawong
- Division of Urology, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Kullaya Paripurana
- Dental Department, Suanphueng Hospital, Ratchaburi 70180, Thailand; (K.P.); (B.S.)
| | - Bussaneeya Sookawat
- Dental Department, Suanphueng Hospital, Ratchaburi 70180, Thailand; (K.P.); (B.S.)
| | - Peeranat Jatooratthawichot
- School of Chemistry, Institute of Science, and Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (P.J.); (J.R.K.C.)
| | - Timothy C. Cox
- Departments of Oral & Craniofacial Sciences, School of Dentistry, and Pediatrics, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64110, USA;
| | - Atsushi Ohazama
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 950-2180, Japan; (K.K.); (A.O.)
| | - James R. Ketudat Cairns
- School of Chemistry, Institute of Science, and Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (P.J.); (J.R.K.C.)
| | - Thantrira Porntaveetus
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; (A.K.); (N.I.)
| | - Piranit Kantaputra
- Center of Excellence in Medical Genetics Research, Chiang Mai University, Chiang Mai 50200, Thailand; (C.R.); (M.K.)
- Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
13
|
Rizk R, Devost D, Pétrin D, Hébert TE. KCTD Proteins Have Redundant Functions in Controlling Cellular Growth. Int J Mol Sci 2024; 25:4993. [PMID: 38732215 PMCID: PMC11084553 DOI: 10.3390/ijms25094993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
We explored the functional redundancy of three structurally related KCTD (Potassium Channel Tetramerization Domain) proteins, KCTD2, KCTD5, and KCTD17, by progressively knocking them out in HEK 293 cells using CRISPR/Cas9 genome editing. After validating the knockout, we assessed the effects of progressive knockout on cell growth and gene expression. We noted that the progressive effects of knockout of KCTD isoforms on cell growth were most pervasive when all three isoforms were deleted, suggesting some functions were conserved between them. This was also reflected in progressive changes in gene expression. Our previous work indicated that Gβ1 was involved in the transcriptional control of gene expression, so we compared the gene expression patterns between GNB1 and KCTD KO. Knockout of GNB1 led to numerous changes in the expression levels of other G protein subunit genes, while knockout of KCTD isoforms had the opposite effect, presumably because of their role in regulating levels of Gβ1. Our work demonstrates a unique relationship between KCTD proteins and Gβ1 and a global role for this subfamily of KCTD proteins in maintaining the ability of cells to survive and proliferate.
Collapse
Affiliation(s)
| | | | | | - Terence E. Hébert
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Room 1303, Montréal, QC H3G 1Y6, Canada; (R.R.); (D.D.); (D.P.)
| |
Collapse
|
14
|
Nguyen DM, Rath DH, Devost D, Pétrin D, Rizk R, Ji AX, Narayanan N, Yong D, Zhai A, Kuntz DA, Mian MUQ, Pomroy NC, Keszei AFA, Benlekbir S, Mazhab-Jafari MT, Rubinstein JL, Hébert TE, Privé GG. Structure and dynamics of a pentameric KCTD5/CUL3/Gβγ E3 ubiquitin ligase complex. Proc Natl Acad Sci U S A 2024; 121:e2315018121. [PMID: 38625940 PMCID: PMC11047111 DOI: 10.1073/pnas.2315018121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/07/2024] [Indexed: 04/18/2024] Open
Abstract
Heterotrimeric G proteins can be regulated by posttranslational modifications, including ubiquitylation. KCTD5, a pentameric substrate receptor protein consisting of an N-terminal BTB domain and a C-terminal domain, engages CUL3 to form the central scaffold of a cullin-RING E3 ligase complex (CRL3KCTD5) that ubiquitylates Gβγ and reduces Gβγ protein levels in cells. The cryo-EM structure of a 5:5:5 KCTD5/CUL3NTD/Gβ1γ2 assembly reveals a highly dynamic complex with rotations of over 60° between the KCTD5BTB/CUL3NTD and KCTD5CTD/Gβγ moieties of the structure. CRL3KCTD5 engages the E3 ligase ARIH1 to ubiquitylate Gβγ in an E3-E3 superassembly, and extension of the structure to include full-length CUL3 with RBX1 and an ARIH1~ubiquitin conjugate reveals that some conformational states position the ARIH1~ubiquitin thioester bond to within 10 Å of lysine-23 of Gβ and likely represent priming complexes. Most previously described CRL/substrate structures have consisted of monovalent complexes and have involved flexible peptide substrates. The structure of the KCTD5/CUL3NTD/Gβγ complex shows that the oligomerization of a substrate receptor can generate a polyvalent E3 ligase complex and that the internal dynamics of the substrate receptor can position a structured target for ubiquitylation in a CRL3 complex.
Collapse
Affiliation(s)
- Duc Minh Nguyen
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
| | - Deanna H. Rath
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
| | - Dominic Devost
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QCH3G 1Y6, Canada
| | - Darlaine Pétrin
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QCH3G 1Y6, Canada
| | - Robert Rizk
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QCH3G 1Y6, Canada
| | - Alan X. Ji
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
| | - Naveen Narayanan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
| | - Darren Yong
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
| | - Andrew Zhai
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
| | - Douglas A. Kuntz
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
| | - Maha U. Q. Mian
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
| | - Neil C. Pomroy
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
| | | | - Samir Benlekbir
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
| | - Mohammad T. Mazhab-Jafari
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ONM5G 2M9, Canada
| | - John L. Rubinstein
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ONM5G 2M9, Canada
| | - Terence E. Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QCH3G 1Y6, Canada
| | - Gilbert G. Privé
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ONM5G 2M9, Canada
| |
Collapse
|
15
|
Miller KA, Cruz Walma DA, Pinkas DM, Tooze RS, Bufton JC, Richardson W, Manning CE, Hunt AE, Cros J, Hartill V, Parker MJ, McGowan SJ, Twigg SRF, Chalk R, Staunton D, Johnson D, Wilkie AOM, Bullock AN. BTB domain mutations perturbing KCTD15 oligomerisation cause a distinctive frontonasal dysplasia syndrome. J Med Genet 2024; 61:490-501. [PMID: 38296633 DOI: 10.1136/jmg-2023-109531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/21/2023] [Indexed: 02/02/2024]
Abstract
INTRODUCTION KCTD15 encodes an oligomeric BTB domain protein reported to inhibit neural crest formation through repression of Wnt/beta-catenin signalling, as well as transactivation by TFAP2. Heterozygous missense variants in the closely related paralogue KCTD1 cause scalp-ear-nipple syndrome. METHODS Exome sequencing was performed on a two-generation family affected by a distinctive phenotype comprising a lipomatous frontonasal malformation, anosmia, cutis aplasia of the scalp and/or sparse hair, and congenital heart disease. Identification of a de novo missense substitution within KCTD15 led to targeted sequencing of DNA from a similarly affected sporadic patient, revealing a different missense mutation. Structural and biophysical analyses were performed to assess the effects of both amino acid substitutions on the KCTD15 protein. RESULTS A heterozygous c.310G>C variant encoding p.(Asp104His) within the BTB domain of KCTD15 was identified in an affected father and daughter and segregated with the phenotype. In the sporadically affected patient, a de novo heterozygous c.263G>A variant encoding p.(Gly88Asp) was present in KCTD15. Both substitutions were found to perturb the pentameric assembly of the BTB domain. A crystal structure of the BTB domain variant p.(Gly88Asp) revealed a closed hexameric assembly, whereas biophysical analyses showed that the p.(Asp104His) substitution resulted in a monomeric BTB domain likely to be partially unfolded at physiological temperatures. CONCLUSION BTB domain substitutions in KCTD1 and KCTD15 cause clinically overlapping phenotypes involving craniofacial abnormalities and cutis aplasia. The structural analyses demonstrate that missense substitutions act through a dominant negative mechanism by disrupting the higher order structure of the KCTD15 protein complex.
Collapse
Affiliation(s)
- Kerry A Miller
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - David A Cruz Walma
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel M Pinkas
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
- Department of Biological Sciences, Universidad Loyola Andalucía, Seville, Spain
| | - Rebecca S Tooze
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Joshua C Bufton
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | | | | | - Alice E Hunt
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Julien Cros
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Verity Hartill
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
- Yorkshire Regional Genetics Service, Leeds Teaching Hospitals NHS Trust, Chapel Allerton Hospital, Leeds, UK
| | - Michael J Parker
- Sheffield Clinical Genomics Service, Sheffield Children's Hospital NHS Foundation Trust, Sheffield, UK
| | - Simon J McGowan
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Stephen R F Twigg
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Rod Chalk
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - David Staunton
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - David Johnson
- Craniofacial Unit, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Andrew O M Wilkie
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Craniofacial Unit, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Alex N Bullock
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| |
Collapse
|
16
|
Ai LJ, Li GD, Chen G, Sun ZQ, Zhang JN, Liu M. Molecular subtyping and the construction of a predictive model of colorectal cancer based on ion channel genes. Eur J Med Res 2024; 29:219. [PMID: 38576045 PMCID: PMC10993535 DOI: 10.1186/s40001-024-01819-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/29/2024] [Indexed: 04/06/2024] Open
Abstract
PURPOSE Colorectal cancer (CRC) is a highly heterogeneous malignancy with an unfavorable prognosis. The purpose of this study was to address the heterogeneity of CRC by categorizing it into ion channel subtypes, and to develop a predictive modeling based on ion channel genes to predict the survival and immunological states of patients with CRC. The model will provide guidance for personalized immunotherapy and drug treatment. METHODS A consistent clustering method was used to classify 619 CRC samples based on the expression of 279 ion channel genes. Such a method was allowed to investigate the relationship between molecular subtypes, prognosis, and immune infiltration. Furthermore, a predictive modeling was constructed for ion channels to evaluate the ion channel properties of individual tumors using the least absolute shrinkage and selection operator. The expression patterns of the characteristic genes were validated through molecular biology experiments. The effect of potassium channel tetramerization domain containing 9 (KCTD9) on CRC was verified by cellular functional experiments. RESULTS Four distinct ion channel subtypes were identified in CRC, each characterized by unique prognosis and immune infiltration patterns. Notably, Ion Cluster3 exhibited high levels of immune infiltration and a favorable prognosis, while Ion Cluster4 showed relatively lower levels of immune infiltration and a poorer prognosis. The ion channel score could predict overall survival, with lower scores correlated with longer survival. This score served as an independent prognostic factor and presented an excellent predictive efficacy in the nomogram. In addition, the score was closely related to immune infiltration, immunotherapy response, and chemotherapy sensitivity. Experimental evidence further confirmed that low expression of KCTD9 in tumor tissues was associated with an unfavorable prognosis in patients with CRC. The cellular functional experiments demonstrated that KCTD9 inhibited the proliferation, migration and invasion capabilities of LOVO cells. CONCLUSIONS Ion channel subtyping and scoring can effectively predict the prognosis and evaluate the immune microenvironment, immunotherapy response, and drug sensitivity in patients with CRC.
Collapse
Affiliation(s)
- Lian-Jie Ai
- Colorectal Tumor Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Guo-Dong Li
- General Surgery, The 4th Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Gang Chen
- General Surgery, The 4th Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Zi-Quan Sun
- Colorectal Tumor Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Jin-Ning Zhang
- Colorectal Tumor Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Ming Liu
- General Surgery, The 4th Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
17
|
Zhang H, Cao C, Xiong H. Construction and validation of a prognostic model for stemness-related genes in lung adenocarcinoma. Transl Cancer Res 2024; 13:1351-1366. [PMID: 38617509 PMCID: PMC11009808 DOI: 10.21037/tcr-23-1847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/29/2024] [Indexed: 04/16/2024]
Abstract
Background Lung adenocarcinoma (LUAD) is the most common histological type of lung cancer with poor overall prognosis. Early identification of high-risk patients and individualized treatment can help extend the survival time of patients. This study aimed to construct and validate a prognostic prediction least absolute shrinkage and selection operator (LASSO) model for stemness-related genes in LUAD. Methods Firstly, LUAD RNA-sequencing data and clinical data were downloaded from The Cancer Genome Atlas (TCGA) database. The tumor stemness index based on mRNA expression (mRNAsi) was calculated, and the relationship between mRNAsi and the survival prognosis as well as clinical features of LUAD patients was analyzed. Then, the weighted gene co-expression network analysis (WGCNA) method was used to screen for gene modules highly correlated with mRNAsi, and functional annotation [Gene Ontology (GO) analysis] and pathway enrichment analysis [Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis] were performed for the selected stemness-related gene module. Furthermore, prognosis-associated genes were determined from the stemness-related genes through univariate Cox analysis, and a prognostic model was constructed using LASSO analysis. Finally, a series of validations including survival curve analysis, receiver operating characteristic (ROC) curve analysis, and risk analysis were conducted for the prognostic model, and nomogram based on the risk model and various clinicopathological features were constructed. Results LUAD patients with high mRNAsi had a higher mortality rate than those with low mRNAsi. GO analysis showed that stemness-related genes were mainly involved in mRNA processing and extracellular matrix organization, while KEGG analysis revealed their involvement in cell cycle and PI3K-Akt signaling pathways. A prognostic model based on 12 stemness-related genes was constructed using LASSO regression. Validation of the prognostic model demonstrated its good accuracy in predicting the prognosis of LUAD patients. Conclusions mRNAsi plays an important role in the occurrence and development of LUAD. This study successfully constructed a prognostic prediction LASSO model for stemness-related genes in LUAD, which can serve as a novel prognostic indicator for LUAD and may be an effective complement to the current Tumor Node Metastasis (TNM) clinical staging of LUAD.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenlin Cao
- Department of the Second Clinical College, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Zhang FY, Wu L, Zhang TN, Chen HH. KCTD15 acts as an anti-tumor factor in colorectal cancer cells downstream of the demethylase FTO and the m6A reader YTHDF2. Commun Biol 2024; 7:262. [PMID: 38438714 PMCID: PMC10912199 DOI: 10.1038/s42003-024-05880-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 02/01/2024] [Indexed: 03/06/2024] Open
Abstract
Potassium Channel Tetramerization Domain Containing 15 (KCTD15) participates in the carcinogenesis of several solid malignancies; however, its role in colorectal cancer (CRC) remains unclear. Here we find that KCTD15 exhibits lower expression in CRC tissues as compared to para-carcinoma tissues. Tetracycline (tet)-induced overexpression and knockdown of KCTD15 confirms KCTD15 as an anti-proliferative and pro-apoptotic factor in CRC both in vitro and in xenografted tumors. N6-methyladenosine (m6A) is known to affect the expression, stabilization, and degradation of RNAs with this modification. We demonstrate that upregulation of fat mass and obesity-associated protein (FTO), a classical m6A eraser, prevents KCTD15 mRNA degradation in CRC cells. Less KCTD15 RNA is recognized by m6A 'reader' YTH N6-Methyladenosine RNA Binding Protein F2 (YTHDF2) in FTO-overexpressed cells. Moreover, KCTD15 overexpression decreases protein expression of histone deacetylase 1 (HDAC1) but increases acetylation of critical tumor suppressor p53 at Lys373 and Lys382. Degradation of p53 is delayed in CRC cells post-KCTD15 overexpression. We further show that the regulatory effects of KCTD15 on p53 are HDAC1-dependent. Collectively, we conclude that KCTD15 functions as an anti-growth factor in CRC cells, and its expression is orchestrated by the FTO-YTHDF2 axis. Enhanced p53 protein stabilization may contribute to KCTD15's actions in CRC cells.
Collapse
Affiliation(s)
- Fang-Yuan Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lin Wu
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tie-Ning Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Huan-Huan Chen
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
19
|
Jiang J, Li X, Zhang C, Wang J, Li J. Anti-cancer effects of Coix seed extract through KCTD9-mediated ubiquitination of TOP2A in lung adenocarcinoma. Cell Div 2024; 19:6. [PMID: 38374109 PMCID: PMC10877835 DOI: 10.1186/s13008-024-00112-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/16/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Coix seed extract (CSE), a traditional Chinese medicine, has been reported as an adjunctive therapy in cancers. However, the molecular targets are largely unclear. The study is designed to unveil its function in lung adenocarcinoma (LUAD) and the possible molecular mechanism. METHODS The HERB database was utilized to predict the molecular targets of the Coix seed, followed by prognostic value prediction in the Kaplan-Meier Plotter database. LUAD cells were infected with sh-KCTD9 after co-culture with CSE, and cell viability, growth, proliferation, and apoptosis were determined. The substrates of KCTD9 were predicted using a protein-protein interaction network and verified. The expression of PD-L1, the contents of TNF-α, IFN-γ, CXCL10, and CXCL9 in the co-culture system of LUAD cells and T cells and the proliferation of T cells were evaluated to study the immune escape of LUAD cells in response to CSE and sh-KCTD9. Lastly, tumor growth and immune escape were observed in tumor-bearing mice. RESULTS CSE inhibited malignant behavior and immune escape of LUAD cells, and the reduction of KCTD9 reversed the inhibitory effect of CSE on malignant behavior and immune escape of LUAD cells. Knockdown of KCTD9 expression inhibited ubiquitination modification of TOP2A, and knockdown of TOP2A suppressed immune escape of LUAD cells in the presence of knockdown of KCTD9. CSE exerted anticancer effects in mice, but the reduction of KCTD9 partially compromised the anticancer effect of CSE. CONCLUSION CSE inhibits immune escape and malignant progression of LUAD through KCTD9-mediated ubiquitination modification of TOP2A.
Collapse
Affiliation(s)
- Jiuyang Jiang
- Department of Thoracic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Xue Li
- Department of Internal Medicine, Daoli District People's Hospital, Harbin, 150016, Heilongjiang, People's Republic of China
| | - Chun Zhang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Jiafu Wang
- Department of PET-CT, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Jin Li
- Department of Traditional Chinese Medicine, The Fourth Affiliated Hospital of Harbin Medical University Songbei, No. 766, Xiang'an North Street, Songbei District, Harbin, 150070, Heilongjiang, People's Republic of China.
| |
Collapse
|
20
|
Balasco N, Esposito L, Smaldone G, Salvatore M, Vitagliano L. A Comprehensive Analysis of the Structural Recognition between KCTD Proteins and Cullin 3. Int J Mol Sci 2024; 25:1881. [PMID: 38339159 PMCID: PMC10856315 DOI: 10.3390/ijms25031881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/19/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
KCTD ((K)potassium Channel Tetramerization Domain-containing) proteins constitute an emerging class of proteins involved in fundamental physio-pathological processes. In these proteins, the BTB domain, which represents the defining element of the family, may have the dual role of promoting oligomerization and favoring functionally important partnerships with different interactors. Here, by exploiting the potential of recently developed methodologies for protein structure prediction, we report a comprehensive analysis of the interactions of all KCTD proteins with their most common partner Cullin 3 (Cul3). The data here presented demonstrate the impressive ability of this approach to discriminate between KCTDs that interact with Cul3 and those that do not. Indeed, reliable and stable models of the complexes were only obtained for the 15 members of the family that are known to interact with Cul3. The generation of three-dimensional models for all KCTD-Cul3 complexes provides interesting clues on the determinants of the structural basis of this partnership as clear structural differences emerged between KCTDs that bind or do not bind Cul3. Finally, the availability of accurate three-dimensional models for KCTD-Cul3 interactions may be valuable for the ad hoc design and development of compounds targeting specific KCTDs that are involved in several common diseases.
Collapse
Affiliation(s)
- Nicole Balasco
- Institute of Molecular Biology and Pathology, CNR c/o Department Chemistry, Sapienza University of Rome, 00185 Rome, Italy
| | - Luciana Esposito
- Institute of Biostructures and Bioimaging, CNR, 80131 Naples, Italy;
| | | | | | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, CNR, 80131 Naples, Italy;
| |
Collapse
|
21
|
Bao Y, Pan Q, Xu P, Liu Z, Zhang Z, Liu Y, Xu Y, Yu Y, Zhou Z, Wei W. Unbiased interrogation of functional lysine residues in human proteome. Mol Cell 2023; 83:4614-4632.e6. [PMID: 37995688 DOI: 10.1016/j.molcel.2023.10.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/06/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023]
Abstract
CRISPR screens have empowered the high-throughput dissection of gene functions; however, more explicit genetic elements, such as codons of amino acids, require thorough interrogation. Here, we establish a CRISPR strategy for unbiasedly probing functional amino acid residues at the genome scale. By coupling adenine base editors and barcoded sgRNAs, we target 215,689 out of 611,267 (35%) lysine codons, involving 85% of the total protein-coding genes. We identify 1,572 lysine codons whose mutations perturb human cell fitness, with many of them implicated in cancer. These codons are then mirrored to gene knockout screen data to provide functional insights into the role of lysine residues in cellular fitness. Mining these data, we uncover a CUL3-centric regulatory network in which lysine residues of CUL3 CRL complex proteins control cell fitness by specifying protein-protein interactions. Our study offers a general strategy for interrogating genetic elements and provides functional insights into the human proteome.
Collapse
Affiliation(s)
- Ying Bao
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Changping Laboratory, Beijing 102206, China
| | - Qian Pan
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ping Xu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhiheng Liu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhixuan Zhang
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yongshuo Liu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yiyuan Xu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ying Yu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhuo Zhou
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China.
| | - Wensheng Wei
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Changping Laboratory, Beijing 102206, China.
| |
Collapse
|
22
|
He Y, Wang X. Identifying biomarkers associated with immunotherapy response in melanoma by multi-omics analysis. Comput Biol Med 2023; 167:107591. [PMID: 37875043 DOI: 10.1016/j.compbiomed.2023.107591] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/26/2023] [Accepted: 10/17/2023] [Indexed: 10/26/2023]
Abstract
Despite immune checkpoint inhibitors (ICIs) have shown the greatest success in melanoma treatment, only a subset of melanoma patients responds well to ICIs. Thus, identifying predictive biomarkers for immunotherapy response is crucial. In this study, we took complementary advantages of immunotherapy data and The Cancer Genome Atlas (TCGA) multi-omics data to explore the predictive biomarkers for the response to immunotherapy in melanoma. We first predicted responsive and non-responsive melanomas in the TCGA skin cutaneous melanoma (SKCM) cohort based on both somatic mutation and transcriptome datasets which involved immunotherapy data for melanoma. This method identified 170 responsive and 56 non-responsive melanomas in TCGA-SKCM. Based on the TCGA-SKCM data, we performed a comprehensive comparison of multi-omics molecular features between responsive and non-responsive melanomas. We identified the molecular features significantly associated with immunotherapy response in melanoma at the genome, transcriptome, epigenome, and proteome levels, respectively. Our analysis confirmed certain immunotherapy response-associated biomarkers, such as tumor mutation burden (TMB), copy number alteration (CNA), intratumor heterogeneity (ITH), PD-L1 expression, and tumor immunity. Moreover, we identified some novel molecular features associated with immunotherapy response: (1) the activation of mast cells and dendritic cells correlating negatively with immunotherapy response; (2) the enrichment of many oncogenic pathways correlating positively with immunotherapy response, such as JAK-STAT, RAS, MAPK, HIF-1, PI3K-Akt, and VEGF pathways; and (3) a number of microRNAs and proteins whose expression correlates with immunotherapy response. In addition, the mTOR signaling pathway has a negative association with immunotherapy response. The novel biomarkers have potential predictive values in immunotherapy response and warrant further investigation.
Collapse
Affiliation(s)
- Yin He
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
23
|
Zheng C, Yu X, Xu T, Liu Z, Jiang Z, Xu J, Yang J, Zhang G, He Y, Yang H, Shi X, Li Z, Liu J, Xu WW. KCTD4 interacts with CLIC1 to disrupt calcium homeostasis and promote metastasis in esophageal cancer. Acta Pharm Sin B 2023; 13:4217-4233. [PMID: 37799381 PMCID: PMC10547965 DOI: 10.1016/j.apsb.2023.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/12/2023] [Accepted: 07/10/2023] [Indexed: 10/07/2023] Open
Abstract
Increasing evidences suggest the important role of calcium homeostasis in hallmarks of cancer, but its function and regulatory network in metastasis remain unclear. A comprehensive investigation of key regulators in cancer metastasis is urgently needed. Transcriptome sequencing (RNA-seq) of primary esophageal squamous cell carcinoma (ESCC) and matched metastatic tissues and a series of gain/loss-of-function experiments identified potassium channel tetramerization domain containing 4 (KCTD4) as a driver of cancer metastasis. KCTD4 expression was found upregulated in metastatic ESCC. High KCTD4 expression is associated with poor prognosis in patients with ESCC and contributes to cancer metastasis in vitro and in vivo. Mechanistically, KCTD4 binds to CLIC1 and disrupts its dimerization, thus increasing intracellular Ca2+ level to enhance NFATc1-dependent fibronectin transcription. KCTD4-induced fibronectin secretion activates fibroblasts in a paracrine manner, which in turn promotes cancer cell invasion via MMP24 signaling as positive feedback. Furthermore, a lead compound K279-0738 significantly suppresses cancer metastasis by targeting the KCTD4‒CLIC1 interaction, providing a potential therapeutic strategy. Taken together, our study not only uncovers KCTD4 as a regulator of calcium homeostasis, but also reveals KCTD4/CLIC1-Ca2+-NFATc1-fibronectin signaling as a novel mechanism of cancer metastasis. These findings validate KCTD4 as a potential prognostic biomarker and therapeutic target for ESCC.
Collapse
Affiliation(s)
- Cancan Zheng
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China
| | - Xiaomei Yu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China
| | - Taoyang Xu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China
| | - Zhichao Liu
- Department of Thoracic Surgery, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zhili Jiang
- Department of Radiation Oncology, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China
| | - Jiaojiao Xu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China
| | - Jing Yang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China
| | - Guogeng Zhang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China
| | - Yan He
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China
| | - Han Yang
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xingyuan Shi
- Department of Radiation Oncology, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China
| | - Zhigang Li
- Department of Thoracic Surgery, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jinbao Liu
- Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, and School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511495, China
| | - Wen Wen Xu
- Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, and School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511495, China
| |
Collapse
|
24
|
Liao Y, Sloan DC, Widjaja JH, Muntean BS. KCTD5 Forms Hetero-Oligomeric Complexes with Various Members of the KCTD Protein Family. Int J Mol Sci 2023; 24:14317. [PMID: 37762619 PMCID: PMC10531988 DOI: 10.3390/ijms241814317] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Potassium Channel Tetramerization Domain 5 (KCTD5) regulates diverse aspects of physiology, ranging from neuronal signaling to colorectal cancer. A key feature of KCTD5 is its self-assembly into multi-subunit oligomers that seemingly enables participation in an array of protein-protein interactions. KCTD5 has recently been reported to form hetero-oligomeric complexes with two similar KCTDs (KCTD2 and KCTD17). However, it is not known if KCTD5 forms hetero-oligomeric complexes with the remaining KCTD protein family which contains over two dozen members. Here, we demonstrate that KCTD5 interacts with various KCTD proteins when assayed through co-immunoprecipitation in lysed cells. We reinforced this dataset by examining KCTD5 interactions in a live-cell bioluminescence resonance energy transfer (BRET)-based approach. Finally, we developed an IP-luminescence approach to map regions on KCTD5 required for interaction with a selection of KCTD that have established roles in neuronal signaling. We report that different regions on KCTD5 are responsible for uniquely contributing to interactions with other KCTD proteins. While our results help unravel additional interaction partners for KCTD5, they also reveal additional complexities in KCTDs' biology. Moreover, our findings also suggest that KCTD hetero-oligomeric interactions may occur throughout the KCTD family.
Collapse
Affiliation(s)
| | | | | | - Brian S. Muntean
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (Y.L.); (J.H.W.)
| |
Collapse
|
25
|
Di Fiore A, Bellardinelli S, Pirone L, Russo R, Angrisani A, Terriaca G, Bowen M, Bordin F, Besharat ZM, Canettieri G, Fabretti F, Di Gaetano S, Di Marcotullio L, Pedone E, Moretti M, De Smaele E. KCTD1 is a new modulator of the KCASH family of Hedgehog suppressors. Neoplasia 2023; 43:100926. [PMID: 37597490 PMCID: PMC10462845 DOI: 10.1016/j.neo.2023.100926] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/21/2023]
Abstract
The Sonic Hedgehog (Hh) signal transduction pathway plays a critical role in many developmental processes and, when deregulated, may contribute to several cancers, including basal cell carcinoma, medulloblastoma, colorectal, prostate, and pancreatic cancer. In recent years, several Hh inhibitors have been developed, mainly acting on the Smo receptor. However, drug resistance due to Smo mutations or non-canonical Hh pathway activation highlights the need to identify further mechanisms of Hh pathway modulation. Among these, deacetylation of the Hh transcription factor Gli1 by the histone deacetylase HDAC1 increases Hh activity. On the other end, the KCASH family of oncosuppressors binds HDAC1, leading to its ubiquitination and subsequent proteasomal degradation, leaving Gli1 acetylated and not active. It was recently demonstrated that the potassium channel containing protein KCTD15 is able to interact with KCASH2 protein and stabilize it, enhancing its effect on HDAC1 and Hh pathway. KCTD15 and KCTD1 proteins share a high homology and are clustered in a specific KCTD subfamily. We characterize here KCTD1 role on the Hh pathway. Therefore, we demonstrated KCTD1 interaction with KCASH1 and KCASH2 proteins, and its role in their stabilization by reducing their ubiquitination and proteasome-mediated degradation. Consequently, KCTD1 expression reduces HDAC1 protein levels and Hh/Gli1 activity, inhibiting Hh dependent cell proliferation in Hh tumour cells. Furthermore, analysis of expression data on publicly available databases indicates that KCTD1 expression is reduced in Hh dependent MB samples, compared to normal cerebella, suggesting that KCTD1 may represent a new putative target for therapeutic approaches against Hh-dependent tumour.
Collapse
Affiliation(s)
- A Di Fiore
- Department of Experimental Medicine, Sapienza University of Rome, Italy; Department of Molecular Medicine, Sapienza University of Rome, Italy
| | - S Bellardinelli
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - L Pirone
- Institute of Biostructures and Bioimaging, CNR, Naples 80131, Italy
| | - R Russo
- Institute of Biostructures and Bioimaging, CNR, Naples 80131, Italy; Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli, Caserta, Italy
| | - A Angrisani
- Department of Experimental Medicine, Sapienza University of Rome, Italy; Department of Molecular Medicine, Sapienza University of Rome, Italy
| | - G Terriaca
- Department of Experimental Medicine, Sapienza University of Rome, Italy; Department of Molecular Medicine, Sapienza University of Rome, Italy
| | - M Bowen
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - F Bordin
- Department of Experimental Medicine, Sapienza University of Rome, Italy; Department of Molecular Medicine, Sapienza University of Rome, Italy
| | - Z M Besharat
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - G Canettieri
- Department of Molecular Medicine, Sapienza University of Rome, Italy
| | - F Fabretti
- Department of Molecular Medicine, Sapienza University of Rome, Italy
| | - S Di Gaetano
- Institute of Biostructures and Bioimaging, CNR, Naples 80131, Italy
| | - L Di Marcotullio
- Department of Molecular Medicine, Sapienza University of Rome, Italy
| | - E Pedone
- Institute of Biostructures and Bioimaging, CNR, Naples 80131, Italy
| | - M Moretti
- Department of Experimental Medicine, Sapienza University of Rome, Italy; Neuromed Institute, Pozzilli 86077, Italy
| | - E De Smaele
- Department of Experimental Medicine, Sapienza University of Rome, Italy.
| |
Collapse
|
26
|
Liu J, Rahim F, Zhou J, Fan S, Jiang H, Yu C, Chen J, Xu J, Yang G, Shah W, Zubair M, Khan A, Li Y, Shah B, Zhao D, Iqbal F, Jiang X, Guo T, Xu P, Xu B, Wu L, Ma H, Zhang Y, Zhang H, Shi Q. Loss-of-function variants in KCTD19 cause non-obstructive azoospermia in humans. iScience 2023; 26:107193. [PMID: 37485353 PMCID: PMC10362269 DOI: 10.1016/j.isci.2023.107193] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/19/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Azoospermia is a significant cause of male infertility, with non-obstructive azoospermia (NOA) being the most severe type of spermatogenic failure. NOA is mostly caused by congenital factors, but our understanding of its genetic causes is very limited. Here, we identified a frameshift variant (c.201_202insAC, p.Tyr68Thrfs∗17) and two nonsense variants (c.1897C>T, p.Gln633∗; c.2005C>T, p.Gln669∗) in KCTD19 (potassium channel tetramerization domain containing 19) from two unrelated infertile Chinese men and a consanguineous Pakistani family with three infertile brothers. Testicular histological analyses revealed meiotic metaphase I (MMI) arrest in the affected individuals. Mice modeling KCTD19 variants recapitulated the same MMI arrest phenotype due to severe disrupted individualization of MMI chromosomes. Further analysis showed a complete loss of KCTD19 protein in both Kctd19 mutant mouse testes and affected individual testes. Collectively, our findings demonstrate the pathogenicity of the identified KCTD19 variants and highlight an essential role of KCTD19 in MMI chromosome individualization.
Collapse
Affiliation(s)
- Junyan Liu
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230027, China
| | - Fazal Rahim
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230027, China
| | - Jianteng Zhou
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230027, China
| | - Suixing Fan
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230027, China
| | - Hanwei Jiang
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230027, China
| | - Changping Yu
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230027, China
| | - Jing Chen
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230027, China
| | - Jianze Xu
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230027, China
| | - Gang Yang
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230027, China
| | - Wasim Shah
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230027, China
| | - Muhammad Zubair
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230027, China
| | - Asad Khan
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230027, China
| | - Yang Li
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230027, China
| | - Basit Shah
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230027, China
| | - Daren Zhao
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230027, China
| | - Furhan Iqbal
- Institute of Pure and Applied Biology, Zoology Division, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Xiaohua Jiang
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230027, China
| | - Tonghang Guo
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230027, China
| | - Peng Xu
- Hainan Jinghua Hejing Hospital for Reproductive Medicine, Hainan 570125, China
| | - Bo Xu
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230027, China
| | - Limin Wu
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230027, China
| | - Hui Ma
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230027, China
| | - Yuanwei Zhang
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230027, China
| | - Huan Zhang
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230027, China
| | - Qinghua Shi
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
27
|
Buono L, Iside C, Pecoraro G, De Matteo A, Beneduce G, Penta de Vera d'Aragona R, Parasole R, Mirabelli P, Vitagliano L, Salvatore M, Smaldone G. A Comprehensive Analysis of the Expression Profiles of KCTD Proteins in Acute Lymphoblastic Leukemia: Evidence of Selective Expression of KCTD1 in T-ALL. J Clin Med 2023; 12:jcm12113669. [PMID: 37297863 DOI: 10.3390/jcm12113669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Acute leukemia is the most common pediatric cancer. In most cases, this disease results from the malignant transformation of either the B-cell (B-ALL) or, less frequently, T-cell progenitors (T-ALL). Recently, a marked overexpression of KCTD15, a member of the emerging class of the potassium (K) channel tetramerization domain-containing proteins (KCTDs) has been detected in both patients and continuous cell lines as in vitro model systems. Because there is growing evidence of the key, yet diversified, roles played by KCTDs in cancers, we here report an exhaustive analysis of their expression profiles in both B-ALL and T-ALL patients. Although for most KCTDs, no significant alterations were found in these pathological states, for some members of the family, significant up- and down-regulations were detected in comparison with the values found in healthy subjects in the transcriptome analysis. Among these, particularly relevant is the upregulation of the closely related KCTD1 and KCTD15 in T-ALL patients. Interestingly, KCTD1 is barely expressed in both unaffected controls and B-ALL patients. Therefore, not only does this analysis represent the first study in which the dysregulation of all KCTDs is simultaneously evaluated in specific pathological contexts, but it also provides a promising T-ALL biomarker that could be suitable for clinical applications.
Collapse
Affiliation(s)
- Lorena Buono
- IRCCS SYNLAB SDN, Via E. Gianturco 113, 80143 Naples, Italy
| | - Concetta Iside
- IRCCS SYNLAB SDN, Via E. Gianturco 113, 80143 Naples, Italy
| | | | - Antonia De Matteo
- Department of Pediatric Hemato-Oncology, Santobono-Pausilipon Children's Hospital, AORN, 80122 Naples, Italy
| | - Giuliana Beneduce
- Department of Pediatric Hemato-Oncology, Santobono-Pausilipon Children's Hospital, AORN, 80122 Naples, Italy
| | | | - Rosanna Parasole
- Department of Pediatric Hemato-Oncology, Santobono-Pausilipon Children's Hospital, AORN, 80122 Naples, Italy
| | - Peppino Mirabelli
- Department of Pediatric Hemato-Oncology, Santobono-Pausilipon Children's Hospital, AORN, 80122 Naples, Italy
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, C.N.R., 80134 Napoli, Italy
| | | | | |
Collapse
|
28
|
Wang W, Su L, Meng L, He J, Tan C, Yi D, Cheng D, Zhang H, Lu G, Du J, Lin G, Zhang Q, Tu C, Tan YQ. Biallelic variants in KCTD19 associated with male factor infertility and oligoasthenoteratozoospermia. Hum Reprod 2023:7165695. [PMID: 37192818 DOI: 10.1093/humrep/dead095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 04/14/2023] [Indexed: 05/18/2023] Open
Abstract
STUDY QUESTION Can whole-exome sequencing (WES) reveal new genetic factors responsible for male infertility characterized by oligozoospermia? SUMMARY ANSWER We identified biallelic missense variants in the Potassium Channel Tetramerization Domain Containing 19 gene (KCTD19) and confirmed it to be a novel pathogenic gene for male infertility. WHAT IS KNOWN ALREADY KCTD19 is a key transcriptional regulator that plays an indispensable role in male fertility by regulating meiotic progression. Kctd19 gene-disrupted male mice exhibit infertility due to meiotic arrest. STUDY DESIGN, SIZE, DURATION We recruited a cohort of 536 individuals with idiopathic oligozoospermia from 2014 to 2022 and focused on five infertile males from three unrelated families. Semen analysis data and ICSI outcomes were collected. WES and homozygosity mapping were performed to identify potential pathogenic variants. The pathogenicity of the identified variants was investigated in silico and in vitro. PARTICIPANTS/MATERIALS, SETTING, METHODS Male patients diagnosed with primary infertility were recruited from the Reproductive and Genetic Hospital of CITIC-Xiangya. Genomic DNA extracted from affected individuals was used for WES and Sanger sequencing. Sperm phenotype, sperm nuclear maturity, chromosome aneuploidy, and sperm ultrastructure were assessed using hematoxylin and eosin staining and toluidine blue staining, FISH and transmission electron microscopy. The functional effects of the identified variants in HEK293T cells were investigated via western blotting and immunofluorescence. MAIN RESULTS AND THE ROLE OF CHANCE We identified three homozygous missense variants (NM_001100915, c.G628A:p.E210K, c.C893T:p.P298L, and c.G2309A:p.G770D) in KCTD19 in five infertile males from three unrelated families. Abnormal morphology of the sperm heads with immature nuclei and/or nuclear aneuploidy were frequently observed in individuals with biallelic KCTD19 variants, and ICSI was unable to rescue these deficiencies. These variants reduced the abundance of KCTD19 due to increased ubiquitination and impaired its nuclear colocalization with its functional partner, zinc finger protein 541 (ZFP541), in HEK293T cells. LIMITATIONS, REASONS FOR CAUTION The exact pathogenic mechanism remains unclear, and warrants further studies using knock-in mice that mimic the missense mutations found in individuals with biallelic KCTD19 variants. WIDER IMPLICATIONS OF THE FINDINGS Our study is the first to report a likely causal relationship between KCTD19 deficiency and male infertility, confirming the critical role of KCTD19 in human reproduction. Additionally, this study provided evidence for the poor ICSI clinical outcomes in individuals with biallelic KCTD19 variants, which may guide clinical treatment strategies. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the National Key Research and Developmental Program of China (2022YFC2702604 to Y.-Q.T.), the National Natural Science Foundation of China (81971447 and 82171608 to Y.-Q.T., 82101961 to C.T.), a key grant from the Prevention and Treatment of Birth Defects from Hunan Province (2019SK1012 to Y.-Q.T.), a Hunan Provincial Grant for Innovative Province Construction (2019SK4012), and the China Postdoctoral Science Foundation (2022M721124 to W.W.). The authors declare no conflicts of interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Weili Wang
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Lilan Su
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
| | - Lanlan Meng
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Jiaxin He
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
| | - Chen Tan
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
| | - Duo Yi
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Dehua Cheng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Huan Zhang
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Guangxiu Lu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Juan Du
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Ge Lin
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Qianjun Zhang
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- College of Life Science, Hunan Normal University, Changsha, China
| | - Chaofeng Tu
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Yue-Qiu Tan
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- College of Life Science, Hunan Normal University, Changsha, China
| |
Collapse
|
29
|
Shi YX, Yan JH, Liu W, Deng J. Identifies KCTD5 as a novel cancer biomarker associated with programmed cell death and chemotherapy drug sensitivity. BMC Cancer 2023; 23:408. [PMID: 37149576 PMCID: PMC10163697 DOI: 10.1186/s12885-023-10895-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/27/2023] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND More and more studies have demonstrated that potassium channel tetramerization domain-containing 5 (KCTD5) plays an important role in the development of cancer, but there is a lack of comprehensive research on the biological function of this protein in pan-cancer. This study systematically analyzed the expression landscape of KCTD5 in terms of its correlations with tumor prognosis, the immune microenvironment, programmed cell death, and drug sensitivity. METHODS We investigated a number of databases, including TCGA, GEPIA2, HPA, TISIDB, PrognoScan, GSCA, CellMiner, and TIMER2.0. The study evaluated the expression of KCTD5 in human tumors, as well as its prognostic value and its association with genomic alterations, the immune microenvironment, tumor-associated fibroblasts, functional enrichment analysis, and anticancer drug sensitivity. Real-time quantitative PCR and flow cytometry analysis were performed to determine the biological functions of KCTD5 in lung adenocarcinoma cells. RESULTS The results indicated that KCTD5 is highly expressed in most cancers and that its expression is significantly correlated with tumor prognosis. Moreover, KCTD5 expression was related to the immune microenvironment, infiltration by cancer-associated fibroblasts, and the expression of immune-related genes. Functional enrichment analysis revealed that KCTD5 is associated with apoptosis, necroptosis, and other types of programmed cell death. In vitro experiments showed that knockdown of KCTD5 promoted apoptosis of A549 cells. Correlation analysis confirmed that KCTD5 was positively correlated with the expression of the anti-apoptotic genes Bcl-xL and Mcl-1. Additionally, KCTD5 was significantly associated with sensitivity to multiple antitumor drugs. CONCLUSION Our results suggest that KCTD5 is a potential molecular biomarker that can be used to predict patient prognosis, immunoreactions and drug sensitivity in pan-cancer. KCTD5 plays an important role in regulating programmed cell death, especially apoptosis.
Collapse
Affiliation(s)
- Yuan-Xiang Shi
- Institute of Clinical Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, P.R. China.
| | - Jian-Hua Yan
- Department of Cardiac Thoracic Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Wen Liu
- Department of Pharmacy, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, P.R. China
| | - Jun Deng
- Department of Pharmacy, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, P.R. China
| |
Collapse
|
30
|
Smaldone G, Pecoraro G, Pane K, Franzese M, Ruggiero A, Vitagliano L, Salvatore M. The Oncosuppressive Properties of KCTD1: Its Role in Cell Growth and Mobility. BIOLOGY 2023; 12:biology12030481. [PMID: 36979172 PMCID: PMC10045846 DOI: 10.3390/biology12030481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
The KCTD protein family is traditionally regarded as proteins that play key roles in neurological physiopathology. However, new studies are increasingly demonstrating their involvement in many other biological processes, including cancers. This is particularly evident for KCTD proteins not involved in protein ubiquitination and degradation, such as KCTD1. We explored the role of KCTD1 in colorectal cancer by knocking down this protein in the human colon adenocarcinoma cell line, SW480. We re-assessed its ability to downregulate β-catenin, a central actor in the WNT/β-catenin signalling pathway. Interestingly, opposite effects are observed when the protein is upregulated in CACO2 colorectal cancer cells. Moreover, interrogation of the TCGA database indicates that KCTD1 downregulation is associated with β-catenin overexpression in colorectal cancer patients. Indeed, knocking down KCTD1 in SW480 cells led to a significant increase in their motility and stemness, two important tumorigenesis traits, suggesting an oncosuppressor role for KCTD1. It is worth noting that similar effects are induced on colorectal cancer cells by the misregulation of KCTD12, a protein that is distantly related to KCTD1. The presented results further expand the spectrum of KCTD1 involvement in apparently unrelated physiopathological processes. The similar effects produced on colorectal cancer cell lines by KCTD1 and KCTD12 suggest novel, previously unreported analogous activities among members of the KCTD protein family.
Collapse
Affiliation(s)
| | | | - Katia Pane
- IRCCS SYNLAB SDN, Via E. Gianturco 113, 80143 Naples, Italy
| | | | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging, C.N.R., 80134 Napoli, Italy
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, C.N.R., 80134 Napoli, Italy
| | | |
Collapse
|
31
|
Multiple potassium channel tetramerization domain (KCTD) family members interact with Gβγ, with effects on cAMP signaling. J Biol Chem 2023; 299:102924. [PMID: 36736897 PMCID: PMC9976452 DOI: 10.1016/j.jbc.2023.102924] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 02/04/2023] Open
Abstract
G protein-coupled receptors (GPCRs) initiate an array of intracellular signaling programs by activating heterotrimeric G proteins (Gα and Gβγ subunits). Therefore, G protein modifiers are well positioned to shape GPCR pharmacology. A few members of the potassium channel tetramerization domain (KCTD) protein family have been found to adjust G protein signaling through interaction with Gβγ. However, comprehensive details on the KCTD interaction with Gβγ remain unresolved. Here, we report that nearly all the 25 KCTD proteins interact with Gβγ. In this study, we screened Gβγ interaction capacity across the entire KCTD family using two parallel approaches. In a live cell bioluminescence resonance energy transfer-based assay, we find that roughly half of KCTD proteins interact with Gβγ in an agonist-induced fashion, whereas all KCTD proteins except two were found to interact through coimmunoprecipitation. We observed that the interaction was dependent on an amino acid hot spot in the C terminus of KCTD2, KCTD5, and KCTD17. While KCTD2 and KCTD5 require both the Bric-à-brac, Tramtrack, Broad complex domain and C-terminal regions for Gβγ interaction, we uncovered that the KCTD17 C terminus is sufficient for Gβγ interaction. Finally, we demonstrated the functional consequence of the KCTD-Gβγ interaction by examining sensitization of the adenylyl cyclase-cAMP pathway in live cells. We found that Gβγ-mediated sensitization of adenylyl cyclase 5 was blunted by KCTD. We conclude that the KCTD family broadly engages Gβγ to shape GPCR signal transmission.
Collapse
|
32
|
Huang P, Wu L, Zhu N, Zhao H, Du J. The polymerase δ-interacting protein family and their emerging roles in diseases. Front Med (Lausanne) 2022; 9:1026931. [PMID: 36425112 PMCID: PMC9679015 DOI: 10.3389/fmed.2022.1026931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/24/2022] [Indexed: 10/08/2023] Open
Abstract
The polymerase δ-interacting protein (POLDIP) family is a new family that can interact with DNA polymerase δ (delta). The members of the POLDIP family include POLDIP1, POLDIP2, and POLDIP3. Screened by the two-hybrid method, POLDIP1, POLDIP2, and POLDIP3 were initially discovered and named for their ability to bind to the p50 subunit of DNA polymerase δ. Recent studies have confirmed that POLDIPs are involved in the regulation of signal transduction pathways in neurodevelopment, neuropsychiatric diseases, cardiovascular diseases, tumors, and other diseases. However, each protein participates in different signaling pathways. In this review, we elucidate upon the family in terms of their genes and protein structures, their biological functions, in addition to the pathways that they are involved in during the development of diverse diseases. Finally, to provide new insights to the scientific community, we used the TCGA database to analyze and summarize the gene expressions of POLDIP family members in various tumors, as well as the correlations between their expressions and the overall survival times of tumor patients. Our data summary will give researchers working on cancer new concepts.
Collapse
Affiliation(s)
- Peiluo Huang
- Department of Immunology, College of Basic Medicine, Guilin Medical University, Guilin, China
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Lei Wu
- College of Continuing Education, Guilin Medical University, Guilin, China
| | - Ningxia Zhu
- Department of Pathophysiology, College of Basic Medicine, Guilin Medical University, Guilin, China
| | - Hongtao Zhao
- Department of Immunology, College of Basic Medicine, Guilin Medical University, Guilin, China
| | - Juan Du
- Department of Immunology, College of Basic Medicine, Guilin Medical University, Guilin, China
| |
Collapse
|
33
|
Inhibition of KCTD10 Affects Diabetic Retinopathy Progression by Reducing VEGF and Affecting Angiogenesis. Genet Res (Camb) 2022; 2022:4112307. [PMID: 36381427 PMCID: PMC9629933 DOI: 10.1155/2022/4112307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/17/2022] [Indexed: 11/26/2022] Open
Abstract
Aim We purposed to evaluate the KCTD10 effects of angiogenesis in diabetic retinopathy (DR). Methods We induced a DR cell model using high glucose (HG) treatment of HRECs and ARPE-19 cells. A DR rat was established by injecting streptozotocin. Small interference RNA targeted KCTD10 (si-KCTD10) was used to mediate KCTD10 inhibition in cell and animal models. The roles of KCTD10 on cell viability, apoptosis, angiogenesis, and related proteins (VEGF and HIF-1α) were observed by RT-qPCR, Western blot, CCK-8 assay, TUNEL staining, tube formation assay, ELISA, and immunohistochemistry assay. Results KCTD10 expression was upregulated in DR cells and retinal tissue of DR rats. Treatment of the cells with si-KCTD10 increased cell viability and decreased apoptosis and angiogenesis in DR cells. Inhibition of KCTD10 could reduce the expression of VEGF and HIF-1α in DR cells. Furthermore, KCTD10 inhibition reduced VEGF levels in the retinal tissue of DR rats. Conclusion This work showed that inhibition of KCTD10 relieved angiogenesis in DR.
Collapse
|
34
|
Yao H, Ren D, Wang Y, Wu L, Wu Y, Wang W, Li Q, Liu L. KCTD9 inhibits the Wnt/β-catenin pathway by decreasing the level of β-catenin in colorectal cancer. Cell Death Dis 2022; 13:761. [PMID: 36055981 PMCID: PMC9440223 DOI: 10.1038/s41419-022-05200-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 01/21/2023]
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer mortality worldwide. However, the molecular mechanisms underlying CRC progression remain to be further defined to improve patient outcomes. In this study, we found that KCTD9, a member of the potassium channel tetramerization domain-containing (KCTD) gene family, was commonly downregulated in CRC tissues and that KCTD9 expression was negatively correlated with the clinical CRC stage. Survival analysis showed that patients whose tumors expressed low KCTD9 levels had poorer outcomes. Functional analyses revealed that KCTD9 overexpression inhibited CRC cell proliferation and metastasis, whereas KCTD9 knockdown promoted CRC cell proliferation and metastasis in both in vitro and in vivo models. Manipulating KCTD9 levels in CRC cells via overexpression or knockdown showed KCTD9 expression positively influenced the degradation of β-catenin levels leading to inhibition of Wnt signaling and reductions in Wnt pathway target gene expression. Mechanistically, we found KCTD9 associated with ZNT9 (Zinc Transporter 9), a coactivator of β-catenin-mediated gene transcription. The overexpression of KCTD9 or knockdown of ZNT9 in CRC cells increased the polyubiquitination and proteasomal degradation of β-catenin. In turn, the KCTD9-ZNT9 interaction disrupted interactions between β-catenin and ZNT9, thereby leading to decreased β-catenin target gene expression and the inhibition of Wnt signaling. In conclusion, our findings propose that KCTD9 functions as a tumor suppressor that inhibits CRC cell proliferation and metastasis by inactivating the Wnt/β-catenin pathway. Moreover, its frequent downregulation in CRC suggests KCTD9 as a potential prognostic and therapeutic target in CRC.
Collapse
Affiliation(s)
- Hanhui Yao
- grid.59053.3a0000000121679639Department of Hepatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 China
| | - Delong Ren
- grid.59053.3a0000000121679639Department of Hepatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 China
| | - Yichun Wang
- grid.59053.3a0000000121679639Department of Hepatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 China
| | - Liang Wu
- grid.59053.3a0000000121679639Department of Hepatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 China
| | - Yang Wu
- grid.59053.3a0000000121679639Department of Hepatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 China
| | - Wei Wang
- grid.59053.3a0000000121679639Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 China
| | - Qidong Li
- grid.59053.3a0000000121679639Department of Hepatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 China
| | - Lianxin Liu
- grid.59053.3a0000000121679639Department of Hepatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 China
| |
Collapse
|
35
|
Liang JH, Alevy J, Akhanov V, Seo R, Massey CA, Jiang D, Zhou J, Sillitoe RV, Noebels JL, Samuel MA. Kctd7 deficiency induces myoclonic seizures associated with Purkinje cell death and microvascular defects. Dis Model Mech 2022; 15:dmm049642. [PMID: 35972048 PMCID: PMC9509889 DOI: 10.1242/dmm.049642] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/29/2022] [Indexed: 01/27/2023] Open
Abstract
Mutations in the potassium channel tetramerization domain-containing 7 (KCTD7) gene are associated with a severe neurodegenerative phenotype characterized by childhood onset of progressive and intractable myoclonic seizures accompanied by developmental regression. KCTD7-driven disease is part of a large family of progressive myoclonic epilepsy syndromes displaying a broad spectrum of clinical severity. Animal models of KCTD7-related disease are lacking, and little is known regarding how KCTD7 protein defects lead to epilepsy and cognitive dysfunction. We characterized Kctd7 expression patterns in the mouse brain during development and show that it is selectively enriched in specific regions as the brain matures. We further demonstrate that Kctd7-deficient mice develop seizures and locomotor defects with features similar to those observed in human KCTD7-associated diseases. We also show that Kctd7 is required for Purkinje cell survival in the cerebellum and that selective degeneration of these neurons is accompanied by defects in cerebellar microvascular organization and patterning. Taken together, these results define a new model for KCTD7-associated epilepsy and identify Kctd7 as a modulator of neuron survival and excitability linked to microvascular alterations in vulnerable regions.
Collapse
Affiliation(s)
- Justine H. Liang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jonathan Alevy
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Viktor Akhanov
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ryan Seo
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cory A. Massey
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Danye Jiang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joy Zhou
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX 77030, USA
| | - Roy V. Sillitoe
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX 77030, USA
| | - Jeffrey L. Noebels
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Melanie A. Samuel
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
36
|
Wang Y, Cao X, Liu P, Zeng W, Peng R, Shi Q, Feng K, Zhang P, Sun H, Wang C, Wang H. KCTD7 mutations impair the trafficking of lysosomal enzymes through CLN5 accumulation to cause neuronal ceroid lipofuscinoses. SCIENCE ADVANCES 2022; 8:eabm5578. [PMID: 35921411 PMCID: PMC9348797 DOI: 10.1126/sciadv.abm5578] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Lysosomes are central organelles for cellular degradation and energy metabolism. Neuronal ceroid lipofuscinoses (NCLs) are a group of the most common neurodegenerative lysosomal storage disorders characterized by intracellular accumulation of ceroid in neurons. Mutations in KCTD7, a gene encoding an adaptor of the CUL3-RING E3 ubiquitin ligase (CRL3) complex, are categorized as a unique NCL subtype. However, the underlying mechanisms remain elusive. Here, we report various lysosomal and autophagic defects in KCTD7-deficient cells. Mechanistically, the CRL3-KCTD7 complex degrades CLN5, whereas patient-derived KCTD7 mutations disrupt the interaction between KCTD7-CUL3 or KCTD7-CLN5 and ultimately lead to excessive accumulation of CLN5. The accumulated CLN5 disrupts the interaction between CLN6/8 and lysosomal enzymes at the endoplasmic reticulum (ER), subsequently impairing ER-to-Golgi trafficking of lysosomal enzymes. Our findings reveal previously unrecognized roles of KCTD7-mediated CLN5 proteolysis in lysosomal homeostasis and demonstrate that KCTD7 and CLN5 are biochemically linked and function in a common neurodegenerative pathway.
Collapse
Affiliation(s)
- Yalan Wang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, State Key Laboratory of Genetic Engineering, School of Life Sciences, Children’s Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Xiaotong Cao
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, State Key Laboratory of Genetic Engineering, School of Life Sciences, Children’s Hospital, Fudan University, Shanghai, China
| | - Pei Liu
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, State Key Laboratory of Genetic Engineering, School of Life Sciences, Children’s Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Weijia Zeng
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, State Key Laboratory of Genetic Engineering, School of Life Sciences, Children’s Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Rui Peng
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, State Key Laboratory of Genetic Engineering, School of Life Sciences, Children’s Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Qing Shi
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, State Key Laboratory of Genetic Engineering, School of Life Sciences, Children’s Hospital, Fudan University, Shanghai, China
| | - Kai Feng
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, State Key Laboratory of Genetic Engineering, School of Life Sciences, Children’s Hospital, Fudan University, Shanghai, China
| | - Pingzhao Zhang
- Department of Pathology, School of Basic Medical Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Huiru Sun
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, State Key Laboratory of Genetic Engineering, School of Life Sciences, Children’s Hospital, Fudan University, Shanghai, China
| | - Chenji Wang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, State Key Laboratory of Genetic Engineering, School of Life Sciences, Children’s Hospital, Fudan University, Shanghai, China
| | - Hongyan Wang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, State Key Laboratory of Genetic Engineering, School of Life Sciences, Children’s Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institute of Reproduction and Development, Fudan University, Shanghai, China
| |
Collapse
|
37
|
Synergistic Antitumoral Effect of Epigenetic Inhibitors and Gemcitabine in Pancreatic Cancer Cells. Pharmaceuticals (Basel) 2022; 15:ph15070824. [PMID: 35890123 PMCID: PMC9323654 DOI: 10.3390/ph15070824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/30/2022] Open
Abstract
Epigenetic modifications could drive some of the molecular events implicated in proliferation, drug resistance and metastasis of pancreatic ductal adenocarcinoma (PDAC). Thus, epigenetic enzyme inhibitors could be the key to revert those events and transform PDAC into a drug-sensitive tumor. We performed a systematic study with five different epigenetic enzyme inhibitors (1, UVI5008, MS275, psammaplin A, and BIX01294) targeting either Histone Deacetylase (HDAC) 1 or 1/4, DNA methyltransferase 3a (DNMT3a), Euchromatic histone lysine methyltransferase 2 (EHMT2), or Sirtuin 1 (SIRT1), as well as one drug that restores the p53 function (P53R3), in three different human PDAC cell lines (SKPC-1, MIA PaCa-2, and BxPC-3) using 2D and 3D cell cultures. The synergistic effect of these antitumoral drugs with gemcitabine was tested and the most efficient combinations were characterized by RNA-seq. The inhibition of HDAC1/4 (MS275), HDAC1/4/SIRT1/DNMT3a (UVI5008) or EHMT2 (BIX01294) induced a significant reduction on the cell viability, even in gemcitabine-resistance cells. The combination of UVI5008 or MS275 with gemcitabine induced a synergistic effect at low concentration and the RNA-Seq analysis revealed some synergy candidate genes as potential biomarkers. Reverting aberrant epigenetic modifications in combination with gemcitabine offers an alternative treatment for PDAC patients, with an important reduction of the therapeutic dose.
Collapse
|
38
|
Shi YX, Zhang WD, Dai PH, Deng J, Tan LH. Comprehensive analysis of KCTD family genes associated with hypoxic microenvironment and immune infiltration in lung adenocarcinoma. Sci Rep 2022; 12:9938. [PMID: 35705627 PMCID: PMC9200823 DOI: 10.1038/s41598-022-14250-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/03/2022] [Indexed: 11/09/2022] Open
Abstract
To obtain novel insights into the tumor biology and therapeutic targets of LUAD, we performed a comprehensive analysis of the KCTD family genes. The expression patterns and clinical significance of the KCTD family were identified through multiple bioinformatics mining. Moreover, the molecular functions and potential mechanisms of differentially expressed KCTDs were evaluated using TIMER 2.0, cBioPortal, GeneMANIA, LinkedOmics and GSEA. The results indicated that the mRNA and protein expression levels of KCTD9, KCTD10, KCTD12, KCTD15 and KCTD16 were significantly decreased in LUAD, while those of KCTD5 were significantly increased. High KCTD5 expression was significantly associated with advanced tumor stage, lymph node metastasis, TP53 mutation and poor prognosis. In addition, KCTD5 was positively correlated with CD8 + T cell, neutrophil, macrophage and dendritic cell infiltration. Additionally, KCTDs demonstrate promising prospects in the diagnosis of LUAD. Importantly, high KCTD5 expression was enriched in signaling pathways associated with the malignant progression of tumors, including the inflammatory response, the IL6/JAK/STAT3 signaling pathway, EMT and hypoxia. Further association analysis showed that KCTD5 was positively correlated with hypoxia-related genes such as HIF1. Overall, KCTDs can be used as molecular targets for the treatment of LUAD, as well as effective molecular biomarkers for diagnosis and prognosis prediction.
Collapse
Affiliation(s)
- Yuan-Xiang Shi
- Institute of Clinical Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, People's Republic of China.
| | - Wei-Dong Zhang
- Respiratory Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, People's Republic of China
| | - Peng-Hui Dai
- Department of Pathology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, People's Republic of China
| | - Jun Deng
- Department of Pharmacy, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, People's Republic of China
| | - Li-Hong Tan
- Institute of Clinical Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, People's Republic of China.
| |
Collapse
|
39
|
Kulyté A, Aman A, Strawbridge RJ, Arner P, Dahlman IA. Genome-Wide Association Study Identifies Genetic Loci Associated With Fat Cell Number and Overlap With Genetic Risk Loci for Type 2 Diabetes. Diabetes 2022; 71:1350-1362. [PMID: 35320353 PMCID: PMC9163556 DOI: 10.2337/db21-0804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 03/17/2022] [Indexed: 11/13/2022]
Abstract
Interindividual differences in generation of new fat cells determine body fat and type 2 diabetes risk. In the GENetics of Adipocyte Lipolysis (GENiAL) cohort, which consists of participants who have undergone abdominal adipose biopsy, we performed a genome-wide association study (GWAS) of fat cell number (n = 896). Candidate genes from the genetic study were knocked down by siRNA in human adipose-derived stem cells. We report 318 single nucleotide polymorphisms (SNPs) and 17 genetic loci displaying suggestive (P < 1 × 10-5) association with fat cell number. Two loci pass threshold for GWAS significance, on chromosomes 2 (lead SNP rs149660479-G) and 7 (rs147389390-deletion). We filtered for fat cell number-associated SNPs (P < 1.00 × 10-5) using evidence of genotype-specific expression. Where this was observed we selected genes for follow-up investigation and hereby identified SPATS2L and KCTD18 as regulators of cell proliferation consistent with the genetic data. Furthermore, 30 reported type 2 diabetes-associated SNPs displayed nominal and consistent associations with fat cell number. In functional follow-up of candidate genes, RPL8, HSD17B12, and PEPD were identified as displaying effects on cell proliferation consistent with genetic association and gene expression findings. In conclusion, findings presented herein identify SPATS2L, KCTD18, RPL8, HSD17B12, and PEPD of potential importance in controlling fat cell numbers (plasticity), the size of body fat, and diabetes risk.
Collapse
Affiliation(s)
- Agné Kulyté
- Lipid Laboratory, Endocrinology Unit, Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Alisha Aman
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - Rona J. Strawbridge
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, U.K
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Peter Arner
- Lipid Laboratory, Endocrinology Unit, Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Ingrid A. Dahlman
- Lipid Laboratory, Endocrinology Unit, Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
- Corresponding author: Ingrid A. Dahlman,
| |
Collapse
|
40
|
Hernández-Gómez C, Hernández-Lemus E, Espinal-Enríquez J. The Role of Copy Number Variants in Gene Co-Expression Patterns for Luminal B Breast Tumors. Front Genet 2022; 13:806607. [PMID: 35432489 PMCID: PMC9010943 DOI: 10.3389/fgene.2022.806607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/03/2022] [Indexed: 12/20/2022] Open
Abstract
Gene co-expression networks have become a usual approach to integrate the vast amounts of information coming from gene expression studies in cancer cohorts. The reprogramming of the gene regulatory control and the molecular pathways depending on such control are central to the characterization of the disease, aiming to unveil the consequences for cancer prognosis and therapeutics. There is, however, a multitude of factors which have been associated with anomalous control of gene expression in cancer. In the particular case of co-expression patterns, we have previously documented a phenomenon of loss of long distance co-expression in several cancer types, including breast cancer. Of the many potential factors that may contribute to this phenomenology, copy number variants (CNVs) have been often discussed. However, no systematic assessment of the role that CNVs may play in shaping gene co-expression patterns in breast cancer has been performed to date. For this reason we have decided to develop such analysis. In this study, we focus on using probabilistic modeling techniques to evaluate to what extent CNVs affect the phenomenon of long/short range co-expression in Luminal B breast tumors. We analyzed the co-expression patterns in chromosome 8, since it is known to be affected by amplifications/deletions during cancer development. We found that the CNVs pattern in chromosome 8 of Luminal B network does not alter the co-expression patterns significantly, which means that the co-expression program in this cancer phenotype is not determined by CNV structure. Additionally, we found that region 8q24.3 is highly dense in interactions, as well as region p21.3. The most connected genes in this network belong to those cytobands and are associated with several manifestations of cancer in different tissues. Interestingly, among the most connected genes, we found MAF1 and POLR3D, which may constitute an axis of regulation of gene transcription, in particular for non-coding RNA species. We believe that by advancing on our knowledge of the molecular mechanisms behind gene regulation in cancer, we will be better equipped, not only to understand tumor biology, but also to broaden the scope of diagnostic, prognostic and therapeutic interventions to ultimately benefit oncologic patients.
Collapse
Affiliation(s)
| | - Enrique Hernández-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
- *Correspondence: Jesús Espinal-Enríquez, ; Enrique Hernández-Lemus,
| | - Jesús Espinal-Enríquez
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
- *Correspondence: Jesús Espinal-Enríquez, ; Enrique Hernández-Lemus,
| |
Collapse
|
41
|
Gogleva A, Polychronopoulos D, Pfeifer M, Poroshin V, Ughetto M, Martin MJ, Thorpe H, Bornot A, Smith PD, Sidders B, Dry JR, Ahdesmäki M, McDermott U, Papa E, Bulusu KC. Knowledge graph-based recommendation framework identifies drivers of resistance in EGFR mutant non-small cell lung cancer. Nat Commun 2022; 13:1667. [PMID: 35351890 PMCID: PMC8964738 DOI: 10.1038/s41467-022-29292-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/09/2022] [Indexed: 12/25/2022] Open
Abstract
Resistance to EGFR inhibitors (EGFRi) presents a major obstacle in treating non-small cell lung cancer (NSCLC). One of the most exciting new ways to find potential resistance markers involves running functional genetic screens, such as CRISPR, followed by manual triage of significantly enriched genes. This triage process to identify 'high value' hits resulting from the CRISPR screen involves manual curation that requires specialized knowledge and can take even experts several months to comprehensively complete. To find key drivers of resistance faster we build a recommendation system on top of a heterogeneous biomedical knowledge graph integrating pre-clinical, clinical, and literature evidence. The recommender system ranks genes based on trade-offs between diverse types of evidence linking them to potential mechanisms of EGFRi resistance. This unbiased approach identifies 57 resistance markers from >3,000 genes, reducing hit identification time from months to minutes. In addition to reproducing known resistance markers, our method identifies previously unexplored resistance mechanisms that we prospectively validate.
Collapse
Affiliation(s)
- Anna Gogleva
- Biological Insight Knowledge Graph (BIKG), AI Engineering, R&D IT, AstraZeneca, Cambridge, UK
| | - Dimitris Polychronopoulos
- Early Computational Oncology, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Matthias Pfeifer
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | | | - Michaël Ughetto
- Biological Insight Knowledge Graph (BIKG), AI Engineering, R&D IT, AstraZeneca, Gothenburg, Sweden
| | - Matthew J Martin
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Hannah Thorpe
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Aurelie Bornot
- Data Sciences & Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Paul D Smith
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Ben Sidders
- Early Computational Oncology, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Jonathan R Dry
- Early Computational Oncology, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, MA, USA
| | - Miika Ahdesmäki
- Early Computational Oncology, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Ultan McDermott
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Eliseo Papa
- Biological Insight Knowledge Graph (BIKG), AI Engineering, R&D IT, AstraZeneca, Cambridge, UK.
| | - Krishna C Bulusu
- Early Computational Oncology, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
42
|
KCTD15 Is Overexpressed in her2+ Positive Breast Cancer Patients and Its Silencing Attenuates Proliferation in SKBR3 CELL LINE. Diagnostics (Basel) 2022; 12:diagnostics12030591. [PMID: 35328144 PMCID: PMC8947324 DOI: 10.3390/diagnostics12030591] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 12/10/2022] Open
Abstract
Studies carried out in the last decade have demonstrated that the members of the KCTD protein family play active roles in carcinogenesis. Very recently, it has been reported that KCTD15, a protein typically associated with other physio-pathological processes, is involved in medulloblastoma and leukemia. Starting with some preliminary indications that emerged from the analysis of online databases that suggested a possible overexpression of KCTD15 in breast cancer, in this study, we evaluated the expression levels of the protein in breast cancer cell lines and in patients and the effects of its silencing in the HER2+ cell model. The analysis of the KCTD15 levels indicates a significant overexpression of the protein in Luminal A and Luminal B breast cancer patients as well as in the related cell lines. The greatest level of over-expression of the protein was found in HER2+ patients and in the related SKBR3 cell line model system. The effects of KCTD15 silencing in terms of cell proliferation, cell cycle, and sensitivity to doxorubicin were evaluated in the SKBR3 cell line. Notably, the KCTD15 silencing in SKBR3 cells by CRISPR/CAS9 technology significantly attenuates their proliferation and cell cycle progression. Finally, we demonstrated that KCT15 silencing also sensitized SKBR3 cells to the cytotoxic agent doxorubicin, suggesting a possible role of the protein in anti HER2+ therapeutic strategies. Our results highlight a new possible player in HER2 breast cancer carcinogenesis, paving the way for its use in breast cancer diagnosis and therapy.
Collapse
|
43
|
AlphaFold-Predicted Structures of KCTD Proteins Unravel Previously Undetected Relationships among the Members of the Family. Biomolecules 2021; 11:biom11121862. [PMID: 34944504 PMCID: PMC8699099 DOI: 10.3390/biom11121862] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/26/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023] Open
Abstract
One of the most striking features of KCTD proteins is their involvement in apparently unrelated yet fundamental physio-pathological processes. Unfortunately, comprehensive structure–function relationships for this protein family have been hampered by the scarcity of the structural data available. This scenario is rapidly changing due to the release of the protein three-dimensional models predicted by AlphaFold (AF). Here, we exploited the structural information contained in the AF database to gain insights into the relationships among the members of the KCTD family with the aim of facilitating the definition of the structural and molecular basis of key roles that these proteins play in many biological processes. The most important finding that emerged from this investigation is the discovery that, in addition to the BTB domain, the vast majority of these proteins also share a structurally similar domain in the C-terminal region despite the absence of general sequence similarities detectable in this region. Using this domain as reference, we generated a novel and comprehensive structure-based pseudo-phylogenetic tree that unraveled previously undetected similarities among the protein family. In particular, we generated a new clustering of the KCTD proteins that will represent a solid ground for interpreting their many functions.
Collapse
|
44
|
Proteomic Signatures of Diffuse and Intestinal Subtypes of Gastric Cancer. Cancers (Basel) 2021; 13:cancers13235930. [PMID: 34885041 PMCID: PMC8656738 DOI: 10.3390/cancers13235930] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer is a leading cause of death from cancer globally. Gastric cancer is classified into intestinal, diffuse and indeterminate subtypes based on histology according to the Laurén classification. The intestinal and diffuse subtypes, although different in histology, demographics and outcomes, are still treated in the same fashion. This study was designed to discover proteomic signatures of diffuse and intestinal subtypes. Mass spectrometry-based proteomics using tandem mass tags (TMT)-based multiplexed analysis was used to identify proteins in tumor tissues from patients with diffuse or intestinal gastric cancer with adjacent normal tissue control. A total of 7448 or 4846 proteins were identified from intestinal or diffuse subtype, respectively. This quantitative mass spectrometric analysis defined a proteomic signature of differential expression across the two subtypes, which included gremlin1 (GREM1), bcl-2-associated athanogene 2 (BAG2), olfactomedin 4 (OLFM4), thyroid hormone receptor interacting protein 6 (TRIP6) and melanoma-associated antigen 9 (MAGE-A9) proteins. Although GREM1, BAG2, OLFM4, TRIP6 and MAGE-A9 have all been previously implicated in tumor progression and metastasis, they have not been linked to intestinal or diffuse subtypes of gastric cancer. Using immunohistochemical labelling of a tissue microarray comprising of 124 cases of gastric cancer, we validated the proteomic signature obtained by mass spectrometry in the discovery cohort. Our findings should help investigate the pathogenesis of these gastric cancer subtypes and potentially lead to strategies for early diagnosis and treatment.
Collapse
|