1
|
Blaya MO, Pressman Y, Andreu M, Moreno WJ, Sanchez-Molano J, Kerr NA, Umland O, Khan A, Bramlett HM, Dietrich WD. Human Schwann cell exosome treatment attenuates secondary injury mechanisms, histopathological consequences, and behavioral deficits after traumatic brain injury. Neurotherapeutics 2025; 22:e00555. [PMID: 39988499 DOI: 10.1016/j.neurot.2025.e00555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 02/25/2025] Open
Abstract
Traumatic brain injury (TBI) triggers a series of pathophysiological events, contributing significantly to secondary injury and long-term functional deficits. While exosome therapy is beginning to emerge as a promising avenue for various injuries, its efficacy in TBI, using preclinical models that mimic the biomechanics of human acceleration/deceleration TBI, remains largely unexplored. This study investigated the capacity of human Schwann cell-derived exosomes (hSC-Exo) to improve outcomes in a model of moderate fluid percussion injury (FPI). We found that jugular infusion of hSC-Exo 30 min after trauma attenuated acute proinflammatory responses in the ipsilateral cortex and hippocampus 24 h post-TBI, as demonstrated by a reduction in levels of key inflammasome components, and decreased activation of the STAT3/pSTAT3/SOCS3 pathway. Furthermore, exosome treatment mitigated subacute histopathological changes, including a significant decrease in cerebral edema and contusion volumes at 72 h post-injury. Immunohistochemical analysis revealed a decrease in microglial activation, characterized by a shift toward a more ramified morphology. Importantly, hSC-exosome therapy led to the preservation of both sensorimotor function subacutely and cognitive performance at chronic time points. Flow cytometry analysis of peripheral blood at 21 days post-TBI demonstrated a reduction in circulating neutrophils, indicating an attenuation of chronic systemic inflammation. These findings highlight the multifaceted therapeutic benefits of hSC-Exo in a clinically-relevant FPI model, targeting both acute and chronic neuroinflammatory processes to promote functional recovery. This study provides new evidence to support hSC-exosomes as a therapeutic strategy for TBI, and emphasizes the translational potential of human exosomes for treating acute and progressive neurological injury.
Collapse
Affiliation(s)
- Meghan O Blaya
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Yelena Pressman
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - MaryLourdes Andreu
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - William J Moreno
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Juliana Sanchez-Molano
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nadine A Kerr
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Oliver Umland
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Aisha Khan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Helen M Bramlett
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA; Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, USA
| | - W Dalton Dietrich
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
2
|
Li K, Wang J, Gao Y, Chen X, Peng R, Li L, Wang C, Li T, Zhang S, Yang G, Zhang J. Benzbromarone improves blood hypercoagulability after TBI by reducing phosphatidylserine externalization through inhibition of TMEM16F expression. Life Sci 2025; 366-367:123501. [PMID: 39983827 DOI: 10.1016/j.lfs.2025.123501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
AIMS Traumatic brain injury-induced coagulopathy (TBI-IC) frequently occurs after TBI, exacerbating the severity of TBI and affecting patient prognosis. Benzbromarone (BBR) is commonly used to treat hyperuricemia; however, its protective effects against TBI-IC remain unknown. Therefore, we explored whether BBR could improve TBI. MATERIALS AND METHODS C57BL/6 wild-type mice were subjected to fluid percussion injury to mimic TBI, and BBR was administered intraperitoneally 30 min after TBI. Magnetic resonance imaging (MRI) and Evans blue dye extravasation were used to assess the prognosis, tail bleeding time, ELISA, and coagulation tests assess coagulation function. We further explored the potential mechanism by which BBR alleviates hypercoagulation after TBI using flow cytometry. KEY FINDINGS The intraperitoneally injected BBR group showed improved survival and neurological severity scores compared to the TBI group. Subsequently, we found that hypercoagulability developed 3 h after TBI and that the administration of BBR improved this hypercoagulability. BBR also reduced the degree of platelet phosphatidylserine (PS) exposure after TBI, platelet activation, and Ca2+ overload, in addition to inhibition of scramblase activity in procoagulant platelets. SIGNIFICANCE Our findings indicate that BBR reduces PS externalization by inhibiting TMEM16F expression, thereby improving blood hypercoagulability after TBI.
Collapse
Affiliation(s)
- Kaiji Li
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China; Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinchao Wang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China; Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yalong Gao
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Xin Chen
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China; Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Ruilong Peng
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Lei Li
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China; Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Cong Wang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China; Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Tuo Li
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Shu Zhang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China; Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; State Key Laboratory of Experimental Hematology, Tianjin, China.
| | - Guili Yang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China; Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; State Key Laboratory of Experimental Hematology, Tianjin, China.
| | - Jianning Zhang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China; Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; State Key Laboratory of Experimental Hematology, Tianjin, China.
| |
Collapse
|
3
|
Nabity TS, Ransom JT. Treatment of severe traumatic brain injury with human bone marrow mesenchymal stem cell extracellular vesicles: a case report. Brain Inj 2025; 39:330-335. [PMID: 39743543 DOI: 10.1080/02699052.2024.2432967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 01/04/2025]
Abstract
OBJECTIVE Extracellular vesicles (EVs) derived from regenerative mesenchymal stem cells might safely treat traumatic brain injury (TBI). We evaluated the safety and efficacy of a human bone marrow derived mesenchymal stem cell EVs (hBM-MSC EV) investigational product (IP) in a patient with severe TBI. DESIGN A single case study employing an IP with a strong safety profile in over 200 patients. METHOD The patient was dosed intravenously three times/week in the first week of six successive months. Functional Independence Measure (FIM) and Functional Assessment Measure (FAM) were performed to quantify effects. Safety monitoring was performed every week for nine months. RESULTS No adverse events occurred. Within eight weeks FIM and FAM scores improved by 48-55% and were sustained for the entire 36 weeks. All specific outcome items assessed by FIM and FAM that were initially low showed sustained improvements ranging from 41% to 233%, with the greatest improvements seen in locomotion, mobility and cognitive function. CONCLUSION After moderate improvement with conventional therapy, the substantial improvement observed following introduction of the IP suggests that hBM-MSC EVs may offer a novel and safe means to improve TBI patient outcomes. Appropriate randomized, controlled clinical trials to conclusively evaluate this therapeutic option are indicated.
Collapse
Affiliation(s)
- Thomas S Nabity
- Regenerative Medicine, Michigan Center for Regenerative Medicine, Rochester, Michigan, USA
| | | |
Collapse
|
4
|
Wessler S, Meisner-Kober N. On the road: extracellular vesicles in intercellular communication. Cell Commun Signal 2025; 23:95. [PMID: 39966900 PMCID: PMC11837664 DOI: 10.1186/s12964-024-01999-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/15/2024] [Indexed: 02/20/2025] Open
Abstract
Cells from organisms across all kingdoms of life continuously release a diverse repertoire of extracellular vesicles (EVs) into their extracellular environment as an elegant strategy for both, cellular homeostasis and communication with other cells. Through different biogenesis routes within the donor cell, nanosized vesicles are generated either from endomembranes or the plasma membrane, and loaded and decorated with macromolecular cargo in a controlled manner through molecular sorting machineries. Since they can affect a recipient cell in the same tissue, distant organs or even other organisms, EVs have been increasingly recognized as essential mediators orchestrating intercellular communication in health and disease. In the last 15 years, research on the fundamental biology of EVs as well as their potential for biomedical applications has been greatly intensified. Time to present new advances on EV biogenesis, their intercellular communication competencies as well as technical and biomedical applications in a special thematic series of Cell Communication and Signaling.
Collapse
Affiliation(s)
- Silja Wessler
- Department of Biosciences and Medical Biology, Center for Tumor Biology and Immunology (CTBI), Paris-Lodron University Salzburg, University of Salzburg, Salzburg, Austria.
| | - Nicole Meisner-Kober
- Department of Biosciences and Medical Biology, Center for Tumor Biology and Immunology (CTBI), Paris-Lodron University Salzburg, University of Salzburg, Salzburg, Austria
| |
Collapse
|
5
|
Zhu A, Jiang Y, Pan L, Li J, Huang Y, Shi M, Di L, Wang L, Wang R. Cell inspired delivery system equipped with natural membrane structures in applications for rescuing ischemic stroke. J Control Release 2025; 377:54-80. [PMID: 39547421 DOI: 10.1016/j.jconrel.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/10/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Ischemic stroke (IS), accounting for 87 % of stroke incidences, constitutes a paramount health challenge owing to neurological impairments and irreversible tissue damage arising from cerebral ischemia. Chief among therapeutic obstacles are the restrictive penetration of the blood-brain barrier (BBB) and insufficient targeting precision, hindering the accumulation of drugs in ischemic brain areas. Motivated by the remarkable capabilities of natural membrane-based delivery vehicles in achieving targeted delivery and traversing the BBB, thanks to their biocompatible architecture and bioactive components, numerous membrane-engineered systems such as cells, cell membranes and extracellular vesicles have emerged as promising platforms to augment IS treatment efficacy with the help of nanotechnology. This review consolidates the primary pathological manifestations following IS, elucidates the unique functionalities of natural membrane drug delivery systems (DDSs) with nanotechnology, as well as delineates the structural characteristics of various natural membranes alongside rational design strategies employed. The review illuminates both the potential and challenges encountered when employing natural membrane DDSs in IS drug therapy, offering fresh perspectives and insights for devising efficacious and practical delivery systems tailored to IS intervention.
Collapse
Affiliation(s)
- Anran Zhu
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yingyu Jiang
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Longxiang Pan
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiale Li
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yao Huang
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Minghui Shi
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Liuqing Di
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Ruoning Wang
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
6
|
Becker N, Franz N, Eguchi A, Wagner A, Sturm R, Rinderknecht H, Kobayashi Y, Iwasa M, Weber B, Marzi I, Relja B. Elevated extracellular particle concentration in plasma predicts in-hospital mortality after severe trauma. Front Immunol 2024; 15:1390380. [PMID: 38933277 PMCID: PMC11199388 DOI: 10.3389/fimmu.2024.1390380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Background Extracellular particles (EPs), particularly extracellular vesicles, play a crucial role in regulating various pathological mechanisms, including immune dysregulations post-trauma. Their distinctive expression of cell-specific markers and regulatory cargo such as cytokines or micro-ribonucleic acid suggests their potential as early biomarkers for organ-specific damage and for identifying patients at risk for complications and mortality. Given the critical need for reliable and easily assessable makers to identify at-risk patients and guide therapeutic decisions, we evaluated the early diagnostic value of circulating EPs regarding outcomes in severely injured multiple-trauma patients. Methods Plasma samples were collected from 133 severely injured trauma patients (Injury Severity Score (ISS) ≥16) immediately upon arrival at the emergency department (ED). Patients were categorized into survivors and non-survivors. Injury characteristics and outcomes related to sepsis, pneumonia, or early (<1 day after admission) and late mortality were assessed. Circulating EPs, cytokine profiles, and blood counts of platelets and leukocytes were determined. Receiver operating characteristic analyses were conducted. Results Despite no significant differences in injury pattern or severity, non-survivors exhibited significantly elevated counts of circulating EPs compared to survivors. The optimal cut-off for EPs <200 nm indicating non-survivors was 17380/µl plasma, with a sensitivity of 77% and a specificity of 61% in predicting in-hospital mortality. Later non-survivors received significantly higher numbers of units of packed red blood cells [8.54 ± 5.45 vs. 1.29 ± 0.36 units], had higher serum lactate [38.00 ± 7.51 vs. 26.98 ± 1.58 mg/dL], significantly lower platelet counts [181.30 ± 18.06 vs. 213.60 ± 5.85 *10³/µL] and lower heart rates [74.50 ± 4.93 vs. 90.18 ± 2.06 beats/minute] upon arrival at the ED compared to survivors. Conclusion Our results demonstrate the high diagnostic potential of elevated concentrations of circulating EPs <200 nm for identifying patients at risk of mortality after severe trauma. This parameter shows comparable sensitivity to established clinical predictors. Early evaluation of EPs concentration could complement assessment markers in guiding early therapeutic decisions.
Collapse
Affiliation(s)
- Nils Becker
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, Translational and Experimental Trauma Research, Ulm University Medical Center, Ulm, Germany
| | - Niklas Franz
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt, Frankfurt, Germany
| | - Akiko Eguchi
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Alessa Wagner
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, Translational and Experimental Trauma Research, Ulm University Medical Center, Ulm, Germany
| | - Ramona Sturm
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt, Frankfurt, Germany
| | - Helen Rinderknecht
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, Translational and Experimental Trauma Research, Ulm University Medical Center, Ulm, Germany
| | - Yoshinao Kobayashi
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Motoh Iwasa
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Birte Weber
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt, Frankfurt, Germany
| | - Ingo Marzi
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt, Frankfurt, Germany
| | - Borna Relja
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, Translational and Experimental Trauma Research, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
7
|
Filannino FM, Panaro MA, Benameur T, Pizzolorusso I, Porro C. Extracellular Vesicles in the Central Nervous System: A Novel Mechanism of Neuronal Cell Communication. Int J Mol Sci 2024; 25:1629. [PMID: 38338906 PMCID: PMC10855168 DOI: 10.3390/ijms25031629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Cell-to-cell communication is essential for the appropriate development and maintenance of homeostatic conditions in the central nervous system. Extracellular vesicles have recently come to the forefront of neuroscience as novel vehicles for the transfer of complex signals between neuronal cells. Extracellular vesicles are membrane-bound carriers packed with proteins, metabolites, and nucleic acids (including DNA, mRNA, and microRNAs) that contain the elements present in the cell they originate from. Since their discovery, extracellular vesicles have been studied extensively and have opened up new understanding of cell-cell communication; they may cross the blood-brain barrier in a bidirectional way from the bloodstream to the brain parenchyma and vice versa, and play a key role in brain-periphery communication in physiology as well as pathology. Neurons and glial cells in the central nervous system release extracellular vesicles to the interstitial fluid of the brain and spinal cord parenchyma. Extracellular vesicles contain proteins, nucleic acids, lipids, carbohydrates, and primary and secondary metabolites. that can be taken up by and modulate the behaviour of neighbouring recipient cells. The functions of extracellular vesicles have been extensively studied in the context of neurodegenerative diseases. The purpose of this review is to analyse the role extracellular vesicles extracellular vesicles in central nervous system cell communication, with particular emphasis on the contribution of extracellular vesicles from different central nervous system cell types in maintaining or altering central nervous system homeostasis.
Collapse
Affiliation(s)
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy;
| | - Tarek Benameur
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Ilaria Pizzolorusso
- Child and Adolescent Neuropsychiatry Unit, Department of Mental Health, ASL Foggia, 71121 Foggia, Italy;
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy;
| |
Collapse
|