1
|
Qiu F, Miao HR, Hui HL, Qiu LJ, Chen Y, Luo M, Zhang JC, Lin YG, Li D, Ong SB, Hu XF, Jiang B, Zhang YQ. MHCII hiLYVE1 loCCR2 hi Interstitial Macrophages Promote Medial Fibrosis in Pulmonary Arterioles and Contribute to Pulmonary Hypertension. Circ Res 2025. [PMID: 40357547 DOI: 10.1161/circresaha.125.326173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/13/2025] [Accepted: 04/27/2025] [Indexed: 05/15/2025]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a lethal disease characterized in part by progressive pulmonary arteriole (PA) remodeling. Excessive PA fibrosis and macrophage infiltration are often present in PH, but the potential associations are obscure. We investigated the link between interstitial macrophage (iMΦ) infiltration and PA fibrosis in PH and idiopathic pulmonary arterial hypertension. METHODS Lung tissue samples from patients with idiopathic pulmonary arterial hypertension and experimental PH animals were obtained to analyze the extent of fibrosis and iMΦ infiltration in the different layers of PAs and their correlation with disease severity. Single-cell RNA sequencing, lineage tracing, histological analyses, iMΦ and PA smooth muscle cell coculture, and transgenic animal experiments were used to investigate the cell heterogeneity and origins and molecular mechanisms by which iMΦs promote PA fibrosis. RESULTS We found that increased collagen deposition and fibrosis in the PA media were most strongly related to the severity of PH, and medial iMΦ infiltration may be involved in these pathological processes. Single-cell transcriptomics revealed that MHCIIhiLYVE1loCCR2hi iMΦs were the major type of iMΦ that expanded upon Sugen-5416 and hypoxia plus normoxia stimulation and were responsible for PA medial fibrosis. Lineage tracing experiments suggested that these medial iMΦs were largely from recruited monocytes. Mechanistically, MHCIIhiLYVE1loCCR2hi iMΦs promoted the transition of PA smooth muscle cells to a fibroblast-like phenotype through the WNT11 (wingless member 11)/planar cell polarity (PCP) pathway. Wnt11 deletion in iMΦs from PH rats normalized the fibrotic PA smooth muscle cell phenotype and decreased PA medial fibrosis, thereby improving vascular compliance and protecting against PH. Moreover, myeloid-specific Ccr2 deficiency in PH-PAs inhibited the medial infiltration of MHCIIhiLYVE1loCCR2hi iMΦs, which also relieved PH. CONCLUSIONS This study demonstrates that the recruitment of MHCIIhiLYVE1loCCR2hi iMΦs leads to medial fibrosis in PH-PAs associated with PH severity and that inhibition of their pathogenicity or recruitment reverses PA medial fibrosis and PH.
Collapse
Affiliation(s)
- Fan Qiu
- Department of Thoracic Cardiovascular Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China. (F.Q., H.-R.M., H.-L.H., L.-J.Q., Y.C., M.L., J.-C.Z., Y.-G.L., B.J., Y.-Q.Z.)
- Biological Laboratory of Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China. (F.Q., H.-R.M., H.-L.H., L.-J.Q., Y.C., J.-C.Z., B.J., Y.-Q.Z.)
| | - Hao-Ran Miao
- Department of Thoracic Cardiovascular Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China. (F.Q., H.-R.M., H.-L.H., L.-J.Q., Y.C., M.L., J.-C.Z., Y.-G.L., B.J., Y.-Q.Z.)
- Biological Laboratory of Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China. (F.Q., H.-R.M., H.-L.H., L.-J.Q., Y.C., J.-C.Z., B.J., Y.-Q.Z.)
| | - Hong-Liang Hui
- Department of Thoracic Cardiovascular Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China. (F.Q., H.-R.M., H.-L.H., L.-J.Q., Y.C., M.L., J.-C.Z., Y.-G.L., B.J., Y.-Q.Z.)
- Biological Laboratory of Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China. (F.Q., H.-R.M., H.-L.H., L.-J.Q., Y.C., J.-C.Z., B.J., Y.-Q.Z.)
| | - Lin-Jie Qiu
- Department of Thoracic Cardiovascular Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China. (F.Q., H.-R.M., H.-L.H., L.-J.Q., Y.C., M.L., J.-C.Z., Y.-G.L., B.J., Y.-Q.Z.)
- Biological Laboratory of Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China. (F.Q., H.-R.M., H.-L.H., L.-J.Q., Y.C., J.-C.Z., B.J., Y.-Q.Z.)
| | - Yi Chen
- Department of Thoracic Cardiovascular Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China. (F.Q., H.-R.M., H.-L.H., L.-J.Q., Y.C., M.L., J.-C.Z., Y.-G.L., B.J., Y.-Q.Z.)
- Biological Laboratory of Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China. (F.Q., H.-R.M., H.-L.H., L.-J.Q., Y.C., J.-C.Z., B.J., Y.-Q.Z.)
| | - Min Luo
- Department of Thoracic Cardiovascular Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China. (F.Q., H.-R.M., H.-L.H., L.-J.Q., Y.C., M.L., J.-C.Z., Y.-G.L., B.J., Y.-Q.Z.)
| | - Jian-Chao Zhang
- Department of Thoracic Cardiovascular Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China. (F.Q., H.-R.M., H.-L.H., L.-J.Q., Y.C., M.L., J.-C.Z., Y.-G.L., B.J., Y.-Q.Z.)
- Biological Laboratory of Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China. (F.Q., H.-R.M., H.-L.H., L.-J.Q., Y.C., J.-C.Z., B.J., Y.-Q.Z.)
| | - Yan-Gui Lin
- Department of Thoracic Cardiovascular Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China. (F.Q., H.-R.M., H.-L.H., L.-J.Q., Y.C., M.L., J.-C.Z., Y.-G.L., B.J., Y.-Q.Z.)
| | - Dan Li
- Community Health Center, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China. (D.L.)
| | - Sang-Bing Ong
- Department of Medicine and Therapeutics, Chinese University of Hong Kong (CUHK) (S.-B.O.)
- Centre for Cardiovascular Genomics and Medicine, Lui Che Woo Institute of Innovative Medicine, Chinese University of Hong Kong (CUHK) (S.-B.O.)
- Neural, Vascular, and Metabolic Biology Thematic Research Program, School of Biomedical Sciences, Chinese University of Hong Kong (CUHK) (S.-B.O.)
- Hong Kong Hub of Paediatric Excellence, Hong Kong Children's Hospital, Kowloon Bay, China (S.-B.O.)
- Kunming Institute of Zoology-The Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences (S.-B.O.)
- CUHK Shenzhen Research Institute, China (S.-B.O.)
| | | | - Bo Jiang
- Department of Thoracic Cardiovascular Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China. (F.Q., H.-R.M., H.-L.H., L.-J.Q., Y.C., M.L., J.-C.Z., Y.-G.L., B.J., Y.-Q.Z.)
- Biological Laboratory of Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China. (F.Q., H.-R.M., H.-L.H., L.-J.Q., Y.C., J.-C.Z., B.J., Y.-Q.Z.)
| | - Yi-Qian Zhang
- Department of Thoracic Cardiovascular Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China. (F.Q., H.-R.M., H.-L.H., L.-J.Q., Y.C., M.L., J.-C.Z., Y.-G.L., B.J., Y.-Q.Z.)
- Biological Laboratory of Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China. (F.Q., H.-R.M., H.-L.H., L.-J.Q., Y.C., J.-C.Z., B.J., Y.-Q.Z.)
| |
Collapse
|
2
|
Ewoldt JK, Wang MC, McLellan MA, Cloonan PE, Chopra A, Gorham J, Li L, DeLaughter DM, Gao X, Lee JH, Willcox JAL, Layton O, Luu RJ, Toepfer CN, Eyckmans J, Seidman CE, Seidman JG, Chen CS. Hypertrophic cardiomyopathy-associated mutations drive stromal activation via EGFR-mediated paracrine signaling. SCIENCE ADVANCES 2024; 10:eadi6927. [PMID: 39413182 PMCID: PMC11482324 DOI: 10.1126/sciadv.adi6927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/13/2024] [Indexed: 10/18/2024]
Abstract
Hypertrophic cardiomyopathy (HCM) is characterized by thickening of the left ventricular wall, diastolic dysfunction, and fibrosis, and is associated with mutations in genes encoding sarcomere proteins. While in vitro studies have used human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to study HCM, these models have not examined the multicellular interactions involved in fibrosis. Using engineered cardiac microtissues (CMTs) composed of HCM-causing MYH7-variant hiPSC-CMs and wild-type fibroblasts, we observed cell-cell cross-talk leading to increased collagen deposition, tissue stiffening, and decreased contractility dependent on fibroblast proliferation. hiPSC-CM conditioned media and single-nucleus RNA sequencing data suggested that fibroblast proliferation is mediated by paracrine signals from MYH7-variant cardiomyocytes. Furthermore, inhibiting epidermal growth factor receptor tyrosine kinase with erlotinib hydrochloride attenuated stromal activation. Last, HCM-causing MYBPC3-variant CMTs also demonstrated increased stromal activation and reduced contractility, but with distinct characteristics. Together, these findings establish a paracrine-mediated cross-talk potentially responsible for fibrotic changes observed in HCM.
Collapse
Affiliation(s)
- Jourdan K. Ewoldt
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Miranda C. Wang
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Harvard-MIT Program in Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Micheal A. McLellan
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Paige E. Cloonan
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Anant Chopra
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Joshua Gorham
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Linqing Li
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824, USA
| | | | - Xining Gao
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Harvard-MIT Program in Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Joshua H. Lee
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Jon A. L. Willcox
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Olivia Layton
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Rebeccah J. Luu
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Christopher N. Toepfer
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Jeroen Eyckmans
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Christine E. Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | | | - Christopher S. Chen
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
3
|
Zhang Y, Yuan M, Cai W, Sun W, Shi X, Liu D, Song W, Yan Y, Chen T, Bao Q, Zhang B, Liu T, Zhu Y, Zhang X, Li G. Prostaglandin I 2 signaling prevents angiotensin II-induced atrial remodeling and vulnerability to atrial fibrillation in mice. Cell Mol Life Sci 2024; 81:264. [PMID: 38878214 PMCID: PMC11335301 DOI: 10.1007/s00018-024-05259-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/07/2024] [Accepted: 05/02/2024] [Indexed: 06/29/2024]
Abstract
Atrial fibrillation (AF) is the most common arrhythmia, and atrial fibrosis is a pathological hallmark of structural remodeling in AF. Prostaglandin I2 (PGI2) can prevent the process of fibrosis in various tissues via cell surface Prostaglandin I2 receptor (IP). However, the role of PGI2 in AF and atrial fibrosis remains unclear. The present study aimed to clarify the role of PGI2 in angiotensin II (Ang II)-induced AF and the underlying molecular mechanism. PGI2 content was decreased in both plasma and atrial tissue from patients with AF and mice treated with Ang II. Treatment with the PGI2 analog, iloprost, reduced Ang II-induced AF and atrial fibrosis. Iloprost prevented Ang II-induced atrial fibroblast collagen synthesis and differentiation. RNA-sequencing analysis revealed that iloprost significantly attenuated transcriptome changes in Ang II-treated atrial fibroblasts, especially mitogen-activated protein kinase (MAPK)-regulated genes. We demonstrated that iloprost elevated cAMP levels and then activated protein kinase A, resulting in a suppression of extracellular signal-regulated kinase1/2 and P38 activation, and ultimately inhibiting MAPK-dependent interleukin-6 transcription. In contrast, cardiac fibroblast-specific IP-knockdown mice had increased Ang II-induced AF inducibility and aggravated atrial fibrosis. Together, our study suggests that PGI2/IP system protects against atrial fibrosis and that PGI2 is a therapeutic target for treating AF.The prospectively registered trial was approved by the Chinese Clinical Trial Registry. The trial registration number is ChiCTR2200056733. Data of registration was 2022/02/12.
Collapse
Affiliation(s)
- Yue Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Pingjiang Road 23rd, Tianjin, 300211, China
| | - Meng Yuan
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Pingjiang Road 23rd, Tianjin, 300211, China
| | - Wenbin Cai
- Tianjin Key Laboratory of Metabolic Diseases, Key Laboratory of Immune Microenvironment and Disease-Ministry of Education, Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Qixiang Tai Road 22nd, Tianjin, 300070, China
| | - Weiyan Sun
- Tianjin Key Laboratory of Metabolic Diseases, Key Laboratory of Immune Microenvironment and Disease-Ministry of Education, Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Qixiang Tai Road 22nd, Tianjin, 300070, China
| | - Xuelian Shi
- Tianjin Key Laboratory of Metabolic Diseases, Key Laboratory of Immune Microenvironment and Disease-Ministry of Education, Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Qixiang Tai Road 22nd, Tianjin, 300070, China
| | - Daiqi Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Pingjiang Road 23rd, Tianjin, 300211, China
| | - Wenhua Song
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Pingjiang Road 23rd, Tianjin, 300211, China
| | - Yingqun Yan
- Department of Cardiac Surgery, The Second Hospital of Tianjin Medical University, Pingjiang Road 23rd, Tianjin, 300211, China
| | - Tienan Chen
- Department of Cardiac Surgery, The Second Hospital of Tianjin Medical University, Pingjiang Road 23rd, Tianjin, 300211, China
| | - Qiankun Bao
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Pingjiang Road 23rd, Tianjin, 300211, China
| | - Bangying Zhang
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Xichang Road 295th, Kunming, 650032, China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Pingjiang Road 23rd, Tianjin, 300211, China
| | - Yi Zhu
- Tianjin Key Laboratory of Metabolic Diseases, Key Laboratory of Immune Microenvironment and Disease-Ministry of Education, Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Qixiang Tai Road 22nd, Tianjin, 300070, China.
- Department of Physiology and Pathophysiology, Tianjin Medical University, Qixiang Tai Road 22nd, Tianjin, 300070, China.
| | - Xu Zhang
- Tianjin Key Laboratory of Metabolic Diseases, Key Laboratory of Immune Microenvironment and Disease-Ministry of Education, Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Qixiang Tai Road 22nd, Tianjin, 300070, China.
- Department of Physiology and Pathophysiology, Tianjin Medical University, Qixiang Tai Road 22nd, Tianjin, 300070, China.
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Pingjiang Road 23rd, Tianjin, 300211, China.
- Department of Cardiology, The Second Hospital of Tianjin Medical University, Pingjiang Road 23rd, Tianjin, 300211, China.
| |
Collapse
|
4
|
Perreault LR, Daley MC, Watson MC, Rastogi S, Jaiganesh A, Porter EC, Duffy BM, Black LD. Characterization of cardiac fibroblast-extracellular matrix crosstalk across developmental ages provides insight into age-related changes in cardiac repair. Front Cell Dev Biol 2024; 12:1279932. [PMID: 38434619 PMCID: PMC10904575 DOI: 10.3389/fcell.2024.1279932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/22/2024] [Indexed: 03/05/2024] Open
Abstract
Heart failure afflicts an estimated 6.5 million people in the United States, driven largely by incidents of coronary heart disease (CHD). CHD leads to heart failure due to the inability of adult myocardial tissue to regenerate after myocardial infarction (MI). Instead, immune cells and resident cardiac fibroblasts (CFs), the cells responsible for the maintenance of the cardiac extracellular matrix (cECM), drive an inflammatory wound healing response, which leads to fibrotic scar tissue. However, fibrosis is reduced in fetal and early (<1-week-old) neonatal mammals, which exhibit a transient capability for regenerative tissue remodeling. Recent work by our laboratory and others suggests this is in part due to compositional differences in the cECM and functional differences in CFs with respect to developmental age. Specifically, fetal cECM and CFs appear to mitigate functional loss in MI models and engineered cardiac tissues, compared to adult CFs and cECM. We conducted 2D studies of CFs on solubilized fetal and adult cECM to investigate whether these age-specific functional differences are synergistic with respect to their impact on CF phenotype and, therefore, cardiac wound healing. We found that the CF migration rate and stiffness vary with respect to cell and cECM developmental age and that CF transition to a fibrotic phenotype can be partially attenuated in the fetal cECM. However, this effect was not observed when cells were treated with cytokine TGF-β1, suggesting that inflammatory signaling factors are the dominant driver of the fibroblast phenotype. This information may be valuable for targeted therapies aimed at modifying the CF wound healing response and is broadly applicable to age-related studies of cardiac remodeling.
Collapse
Affiliation(s)
- Luke R. Perreault
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Mark C. Daley
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Matthew C. Watson
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Sagar Rastogi
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Ajith Jaiganesh
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Elizabeth C. Porter
- Cellular, Molecular and Developmental Biology Program, Graduate School for Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| | - Breanna M. Duffy
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Lauren D. Black
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
- Cellular, Molecular and Developmental Biology Program, Graduate School for Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
5
|
Toprak K, Kaplangoray M, Özen K, Koyuncu İ, Taşcanov MB, Altıparmak İH, Biçer A, Demirbağ R. Disruption of the endothelial glycocalyx layer is associated with idiopathic complete atrioventricular block in the elderly population: An observational pilot study. J Investig Med 2024; 72:233-241. [PMID: 38102740 DOI: 10.1177/10815589231222239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Idiopathic atrioventricular block (iCAVB) is the most common reason for the need for a permanent pacemaker in the elderly population. The fibrotic process that occurs in the conduction system of the heart with aging is the main pathogenesis in the development of iCAVB. However, the processes that trigger the development of iCAVB in the elderly population have not been fully elucidated. In this study, we aimed to reveal the possible relationship between the endothelial glycocalyx (EG) layer and idiopathic complete atrioventricular block. A group of 68 consecutive patients who developed iCAVB and a group of 68 healthy subjects matched for age, sex, and cardiovascular risk factors were included in the study. The groups were compared for clinical, laboratory, and levels of Syndecan-1 (SDC1), an EG layer marker. In the study, SDC1 levels were found to be significantly higher in the iCAVB group compared to the control group (23.7 ± 7.5 vs 16.7 ± 5.2; p = 0.009). In multivariable regression analysis, SDC1 was determined as an independent potential predictor for iCAVB (OR: 1.200; 95% CI: 1.119-1.287; p < 0.001). In the receiver operating characteristic curve analysis, SDC1 predicted iCAVB with 74% sensitivity and 72% specificity at the best cut-off value of 18.5 ng/mL (area under the curve: 0.777; confidence interval: 0.698-0.856; p < 0.001). Disruption of the endothelial glycolic layer may be one of the main triggering factors for the process leading to iCAVB.
Collapse
Affiliation(s)
- Kenan Toprak
- Department of Cardiology, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Mustafa Kaplangoray
- Department of Cardiology, Faculty of Medicine, Şeyh Edebali University, Bilecik, Turkey
| | - Kaya Özen
- Department of Cardiology, Gazi Yaşargil Training and Research Hospital, Diyarbakır, Turkey
| | - İsmail Koyuncu
- Department of Clinical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | | | | | - Asuman Biçer
- Department of Cardiology, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Recep Demirbağ
- Department of Cardiology, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| |
Collapse
|
6
|
Manzoor S, Kane MS, Grenett M, Oh JY, Pat B, Lewis C, Davies JE, Steele C, Patel RP, Dell'Italia LJ. Elevated cardiac hemoglobin expression is associated with a pro-oxidative and inflammatory environment in primary mitral regurgitation. Free Radic Biol Med 2023; 208:126-133. [PMID: 37543167 DOI: 10.1016/j.freeradbiomed.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
BACKGROUND Primary mitral regurgitation (PMR) is associated with oxidative and inflammatory myocardial damage. We reported greater exosome hemoglobin (Hb) in pericardial fluid (PCF) versus plasma, suggesting a cardiac source of Hb. OBJECTIVE Test the hypothesis that Hb is produced in the PMR heart and is associated with increased inflammation. METHODS AND RESULTS Hb gene expression for subunits alpha (HBA) and beta (HBB) was assessed in right atria (RA), left atria (LA) and left ventricular (LV) tissue from donor hearts (n = 10) and PMR patient biopsies at surgery (n = 11). PMR patients (n = 22) had PCF and blood collected for macrophage markers, pro-inflammatory cytokines, and matrix metalloproteinases (MMPs). In-situ hybridization for HBA mRNA and immunohistochemistry for Hb-alpha (Hbα) and Hb-beta (Hbβ) protein was performed on PMR tissue. RESULTS HBA and HBB genes are significantly increased (>4-fold) in RA, LA, and LV in PMR vs. normal hearts. In PMR tissue, HBA mRNA is expressed in both LV cardiomyocytes and interstitial cells by in-situ hybridization; however, Hbα and Hbβ protein is only expressed in interstitial cells by immunohistochemistry. PCF oxyHb is significantly increased over plasma along with low ratios (<1.0) of haptoglobin:oxyHb and hemopexin:heme supporting a highly oxidative environment. Macrophage chemotactic protein-1, tumor necrosis factor-α, interleukin-6, and MMPs are significantly higher in PCF vs. plasma. CONCLUSION There is increased Hb production in the PMR heart coupled with the inflammatory state of the heart, suggests a myocardial vulnerability of further Hb delivery and/or production during cardiac surgery that could adversely affect LV functional recovery.
Collapse
Affiliation(s)
- Shajer Manzoor
- Department of Medicine, Division of Cardiology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Mariame Selma Kane
- Department of Medicine, Division of Cardiology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA; Birmingham Veterans Affairs Health Care System, Birmingham, AL, USA
| | - Maximiliano Grenett
- Department of Medicine, Division of Cardiology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA; Birmingham Veterans Affairs Health Care System, Birmingham, AL, USA
| | - Joo-Yeun Oh
- Department of Medicine, Division of Cardiology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA; Birmingham Veterans Affairs Health Care System, Birmingham, AL, USA
| | - Betty Pat
- Department of Medicine, Division of Cardiology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA; Birmingham Veterans Affairs Health Care System, Birmingham, AL, USA
| | - Clifton Lewis
- Department of Surgery, Division of Thoracic and Cardiovascular Surgery, UAB, USA
| | - James E Davies
- Department of Surgery, Division of Thoracic and Cardiovascular Surgery, UAB, USA
| | - Chad Steele
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA, USA
| | - Rakesh P Patel
- Department of Pathology and Center for Free Radical Biology, UAB, USA
| | - Louis J Dell'Italia
- Department of Medicine, Division of Cardiology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA; Birmingham Veterans Affairs Health Care System, Birmingham, AL, USA.
| |
Collapse
|
7
|
Sun C, Bai M, Jia Y, Tian X, Guo Y, Xu X, Guo Z. mRNA sequencing reveals the distinct gene expression and biological functions in cardiac fibroblasts regulated by recombinant fibroblast growth factor 2. PeerJ 2023; 11:e15736. [PMID: 37483983 PMCID: PMC10362857 DOI: 10.7717/peerj.15736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
After myocardial injury, cardiac fibroblasts (CFs) differentiate into myofibroblasts, which express and secrete extracellular matrix (ECM) components for myocardial repair, but also promote myocardial fibrosis. Recombinant fibroblast growth factor 2 (FGF2) protein drug with low molecular weight can promote cell survival and angiogenesis, and it was found that FGF2 could inhibit the activation of CFs, suggesting FGF2 has great potential in myocardial repair. However, the regulatory role of FGF2 on CFs has not been fully elucidated. Here, we found that recombinant FGF2 significantly suppressed the expression of alpha smooth muscle actin (α-SMA) in CFs. Through RNA sequencing, we analyzed mRNA expression in CFs and the differently expressed genes regulated by FGF2, including 430 up-regulated genes and 391 down-regulated genes. Gene ontology analysis revealed that the differentially expressed genes were strongly enriched in multiple biological functions, including ECM organization, cell adhesion, actin filament organization and axon guidance. The results of gene set enrichment analysis (GSEA) show that ECM organization and actin filament organization are down-regulated, while axon guidance is up-regulated. Further cellular experiments indicate that the regulatory functions of FGF2 are consistent with the findings of the gene enrichment analysis. This study provides valuable insights into the potential therapeutic role of FGF2 in treating cardiac fibrosis and establishes a foundation for further research to uncover the underlying mechanisms of CFs gene expression regulated by FGF2.
Collapse
Affiliation(s)
- Changye Sun
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
| | - Mengru Bai
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yangyang Jia
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiangqin Tian
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yonglong Guo
- Department of Cardiology, The First Affiliated Hospital, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xinhui Xu
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhikun Guo
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
8
|
Flinn MA, Alvarez-Argote S, Knas MC, Almeida VA, Paddock SJ, Zhou X, Buddell T, Jamal A, Taylor R, Liu P, Drnevich J, Patterson M, Link BA, O’Meara CC. Myofibroblast Ccn3 is regulated by Yap and Wwtr1 and contributes to adverse cardiac outcomes. Front Cardiovasc Med 2023; 10:1142612. [PMID: 36998974 PMCID: PMC10043314 DOI: 10.3389/fcvm.2023.1142612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/20/2023] [Indexed: 03/16/2023] Open
Abstract
Introduction While Yap and Wwtr1 regulate resident cardiac fibroblast to myofibroblast differentiation following cardiac injury, their role specifically in activated myofibroblasts remains unexplored. Methods We assessed the pathophysiological and cellular consequence of genetic depletion of Yap alone (Yap fl/fl ;Postn MCM ) or Yap and Wwtr1 (Yap fl/fl ;Wwtr1 fl/+ ;Postn MCM ) in adult mouse myofibroblasts following myocardial infarction and identify and validate novel downstream factors specifically in cardiac myofibroblasts that mediate pathological remodeling. Results Following myocardial infarction, depletion of Yap in myofibroblasts had minimal effect on heart function while depletion of Yap/Wwtr1 resulted in smaller scars, reduced interstitial fibrosis, and improved ejection fraction and fractional shortening. Single cell RNA sequencing of interstitial cardiac cells 7 days post infarction showed suppression of pro-fibrotic genes in fibroblasts derived from Yap fl/fl ,Wwtr1 fl/+ ;Postn MCM hearts. In vivo myofibroblast depletion of Yap/Wwtr1 as well in vitro knockdown of Yap/Wwtr1 dramatically decreased RNA and protein expression of the matricellular factor Ccn3. Administration of recombinant CCN3 to adult mice following myocardial infarction remarkably aggravated cardiac function and scarring. CCN3 administration drove myocardial gene expression of pro-fibrotic genes in infarcted left ventricles implicating CCN3 as a novel driver of cardiac fibrotic processes following myocardial infarction. Discussion Yap/Wwtr1 depletion in myofibroblasts attenuates fibrosis and significantly improves cardiac outcomes after myocardial infarction and we identify Ccn3 as a factor downstream of Yap/Wwtr1 that contributes to adverse cardiac remodeling post MI. Myofibroblast expression of Yap, Wwtr1, and Ccn3 could be further explored as potential therapeutic targets for modulating adverse cardiac remodeling post injury.
Collapse
Affiliation(s)
- Michael A. Flinn
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Santiago Alvarez-Argote
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Makenna C. Knas
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Victor Alencar Almeida
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Samantha J. Paddock
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Xiaoxu Zhou
- Institute of Translational Medicine, Zhejiang University School of Medicine,Hangzhou, China
| | - Tyler Buddell
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ayana Jamal
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Reiauna Taylor
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Pengyuan Liu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Institute of Translational Medicine, Zhejiang University School of Medicine,Hangzhou, China
| | - Jenny Drnevich
- High Performance Computing in Biology (HPCBio) and the Roy J. Carver Biotechnology Center, University of Illinois, Urbana-Champaign, Champaign, IL, United States
| | - Michaela Patterson
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Brian A. Link
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Caitlin C. O’Meara
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
- Genomics Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
9
|
Vasanthan V, Shim HB, Teng G, Belke D, Svystonyuk D, Deniset JF, Fedak PWM. Acellular biomaterial modulates myocardial inflammation and promotes endogenous mechanisms of postinfarct cardiac repair. J Thorac Cardiovasc Surg 2023; 165:e122-e140. [PMID: 35058062 DOI: 10.1016/j.jtcvs.2021.12.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/17/2021] [Accepted: 12/15/2021] [Indexed: 01/01/2023]
Abstract
OBJECTIVE After myocardial infarction, we previously showed that epicardial implantation of porcine small intestinal submucosal extracellular matrix (SIS-ECM) improves postinfarct cardiac function through fibroblast-mediated angiogenic and antifibrotic pathways. Herein, we characterize how SIS-ECM also coordinates a reparative cardiac inflammatory response. METHODS RNA sequencing and multiplex characterized modulation of fibroblast transcriptional and paracrine activity by SIS-ECM. Inhibitors of fibroblast growth factor 2 and toll-like receptor 9 elucidated mechanism. Mice received coronary ligation (infarction) and either SIS-ECM implantation (treatment) or sham surgery (control). Flow cytometry of SIS-ECM and the murine myocardium quantified monocytes, neutrophils, and proangiogenic subtypes. Microscopy tracked fibroblasts and immune cells, and characterized myocardial angiogenesis. RESULTS SIS-ECM increased fibroblast transcription of inflammatory pathways and production of angiogenic vascular endothelial growth factor and inflammatory cytokines via fibroblast growth factor 2 and toll-like receptor 9-dependent pathways. Two-photon microscopy showed that SIS-ECM became engrafted by native fibroblasts and leukocytes, subsequently increasing release of inflammatory cytokines and angiogenic vascular endothelial growth factor. On flow cytometry, SIS-ECM implantation increased day-7 myocardial counts of neutrophils, inflammatory monocytes, and proangiogenic vascular endothelial growth factor recptor 1 subtypes. SIS-ECM has a higher proportion of proangiogenic leukocytes compared with the myocardium. Resonant confocal microscopy showed neovascularization near SIS-ECM. CONCLUSIONS SIS-ECM promotes engraftment by native fibroblasts and leukocytes, and modulates fibroblast activity via fibroblast growth factor 2 and toll-like receptor 9 to potentiate a proangiogenic inflammatory response. Subsequently, the material increases myocardial counts of reparative proangiogenic leukocytes that can induce neovascularization. This reparative inflammatory response may explain previously reported functional improvements. Fibroblast growth factor 2 and toll-like receptor 9 mechanisms can be leveraged to design next-generation materials for postinfarct cardiac repair.
Collapse
Affiliation(s)
- Vishnu Vasanthan
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Hanjoo B Shim
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Guoqi Teng
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Darrell Belke
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Daniyil Svystonyuk
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Justin F Deniset
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Paul W M Fedak
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
10
|
Serra MEG, Baeza-Noci J, Mendes Abdala CV, Luvisotto MM, Bertol CD, Anzolin AP. The role of ozone treatment as integrative medicine. An evidence and gap map. Front Public Health 2023; 10:1112296. [PMID: 36726625 PMCID: PMC9885089 DOI: 10.3389/fpubh.2022.1112296] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Introduction The Brazil has one of the largest public health systems in the world and in the 1980's, Traditional, Complementary and Integrative Medicine were introduced. In 2018, the treatment with ozone became a complementary integrative practice showing several benefits. However, its effectiveness needs to be researched. The objective of this evidence gap map is to describe contributions of Integrative Medicines-Ozone treatment in different clinical conditions, to promote evidence-based practice. Methods We applied the methodology developed by Latin American and Caribbean Center on Health Sciences Information based on the 3iE evidence gap map. The EMBASE, PubMed and Virtual Health Library databases, using the MeSH and DeCS terms for the treatment with Ozone were used. Results 26 systematic reviews were characterized, distributed in a matrix containing 6 interventions (parenteral oxygen/ozone gas mixture; parenteral ozonated water; systemic routes; topical application ozonated water; topical oxygen/ozone gas mixture; and topical ozonated oil) and 55 outcomes (cancer, infection, inflammation, pain, quality of life, wound healing and adverse effects). 334 associations between intervention and outcome were observed, emphasizing the parenteral oxygen/ozone gas mixture intervention (192 associations, 57%). Conclusions The evidence gap map presents an overview of contributions of Ozone treatment in controlling pain, infections, inflammation and wound healing, as well as increasing the quality of life, and it is directed to researchers and health professionals specialized in Ozone treatment. No serious adverse effects were related. Therefore, this treatment may be even more widely known as an integrative treatment, considering its low cost, efficiency and safety. Future studies should adopt economic impact assessments and the organization of health services.
Collapse
Affiliation(s)
| | | | | | | | | | - Ana Paula Anzolin
- Brazilian Society of Medical Ozone Therapy (SOBOM), São Paulo, Brazil,*Correspondence: Ana Paula Anzolin ✉
| |
Collapse
|
11
|
Wang EY, Zhao Y, Okhovatian S, Smith JB, Radisic M. Intersection of stem cell biology and engineering towards next generation in vitro models of human fibrosis. Front Bioeng Biotechnol 2022; 10:1005051. [PMID: 36338120 PMCID: PMC9630603 DOI: 10.3389/fbioe.2022.1005051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/26/2022] [Indexed: 08/31/2023] Open
Abstract
Human fibrotic diseases constitute a major health problem worldwide. Fibrosis involves significant etiological heterogeneity and encompasses a wide spectrum of diseases affecting various organs. To date, many fibrosis targeted therapeutic agents failed due to inadequate efficacy and poor prognosis. In order to dissect disease mechanisms and develop therapeutic solutions for fibrosis patients, in vitro disease models have gone a long way in terms of platform development. The introduction of engineered organ-on-a-chip platforms has brought a revolutionary dimension to the current fibrosis studies and discovery of anti-fibrotic therapeutics. Advances in human induced pluripotent stem cells and tissue engineering technologies are enabling significant progress in this field. Some of the most recent breakthroughs and emerging challenges are discussed, with an emphasis on engineering strategies for platform design, development, and application of machine learning on these models for anti-fibrotic drug discovery. In this review, we discuss engineered designs to model fibrosis and how biosensor and machine learning technologies combine to facilitate mechanistic studies of fibrosis and pre-clinical drug testing.
Collapse
Affiliation(s)
- Erika Yan Wang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Yimu Zhao
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Sargol Okhovatian
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Jacob B. Smith
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Milica Radisic
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Adem S, Abbas DB, Lavin CV, Fahy EJ, Griffin M, Diaz Deleon NM, Borrelli MR, Mascharak S, Shen AH, Patel RA, Longaker MT, Nazerali RS, Wan DC. Decellularized Adipose Matrices Can Alleviate Radiation-Induced Skin Fibrosis. Adv Wound Care (New Rochelle) 2022; 11:524-536. [PMID: 34346243 PMCID: PMC9354001 DOI: 10.1089/wound.2021.0008] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 07/29/2021] [Indexed: 01/29/2023] Open
Abstract
Objective: Radiation therapy is commonplace for cancer treatment but often results in fibrosis and atrophy of surrounding soft tissue. Decellularized adipose matrices (DAMs) have been reported to improve these soft tissue defects through the promotion of adipogenesis. These matrices are decellularized by a combination of physical, chemical, and enzymatic methods to minimize their immunologic effects while promoting their regenerative effects. In this study, we aimed at exploring the regenerative ability of a DAM (renuva®; MTF biologics, Edison, NJ) in radiation-induced soft tissue injury. Approach: Fresh human lipoaspirate or DAM was injected into the irradiated scalp of CD-1 nude mice, and volume retention was monitored radiographically over 8 weeks. Explanted grafts were histologically assessed, and overlying skin was examined histologically and biomechanically. Irradiated human skin was also evaluated from patients after fat grafting or DAM injection. However, integrating data between murine and human skin in all cohorts is limited given the genetic variability between the two species. Results: Volume retention was found to be greater with fat grafts, though DAM retention was, nonetheless, appreciated at irradiated sites. Improvement in both mouse and human irradiated skin overlying fat and DAM grafts was observed in terms of biomechanical stiffness, dermal thickness, collagen density, collagen fiber networks, and skin vascularity. Innovation: This is the first demonstration of the use of DAMs for augmenting the regenerative potential of irradiated mouse and human skin. Conclusions: These findings support the use of DAMs to address soft tissue atrophy after radiation therapy. Morphological characteristics of the irradiated skin can also be improved with DAM grafting.
Collapse
Affiliation(s)
- Sandeep Adem
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Darren B. Abbas
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Christopher V. Lavin
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Evan J. Fahy
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Michelle Griffin
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Nestor M. Diaz Deleon
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Mimi R. Borrelli
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Shamik Mascharak
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Abra H. Shen
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Ronak A. Patel
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Michael T. Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Rahim S. Nazerali
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Derrick C. Wan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
13
|
Sun C, Tian X, Jia Y, Yang M, Li Y, Fernig DG. Functions of exogenous FGF signals in regulation of fibroblast to myofibroblast differentiation and extracellular matrix protein expression. Open Biol 2022; 12:210356. [PMID: 36102060 PMCID: PMC9471990 DOI: 10.1098/rsob.210356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Fibroblasts are widely distributed cells found in most tissues and upon tissue injury, they are able to differentiate into myofibroblasts, which express abundant extracellular matrix (ECM) proteins. Overexpression and unordered organization of ECM proteins cause tissue fibrosis in damaged tissue. Fibroblast growth factor (FGF) family proteins are well known to promote angiogenesis and tissue repair, but their activities in fibroblast differentiation and fibrosis have not been systematically reviewed. Here we summarize the effects of FGFs in fibroblast to myofibroblast differentiation and ECM protein expression and discuss the underlying potential regulatory mechanisms, to provide a basis for the clinical application of recombinant FGF protein drugs in treatment of tissue damage.
Collapse
Affiliation(s)
- Changye Sun
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China
| | - Xiangqin Tian
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China
| | - Yangyang Jia
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China
| | - Mingming Yang
- Department of Cardiology, Affiliated Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, People's Republic of China
| | - Yong Li
- Department of Biochemistry, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - David G Fernig
- Department of Biochemistry, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
14
|
Liu A, Zhang Y, Xun S, Zhou G, Lin L, Mei Y. Fibroblast growth factor 12 attenuated cardiac remodeling via suppressing oxidative stress. Peptides 2022; 153:170786. [PMID: 35304156 DOI: 10.1016/j.peptides.2022.170786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/05/2022] [Accepted: 03/14/2022] [Indexed: 10/18/2022]
Abstract
Fibroblast growth factors (FGFs) mediate key cardiac functions from development to homeostasis and disease. The current research was to explore the effects of FGF12 in the fibrosis of cardiac function and heart failure, and whether FGF12 alleviated cardiac fibrosis via inhibition of oxidative stress. Ligation of left coronary artery in mice induced heart failure and myocardial infarction (MI). Angiotensin II (Ang II) was administered to cardiac fibroblasts (CFs). FGF12 upregulation or FGF12 transgenic (Tg) mice could improve cardiac dysfunction of MI mice, and attenuated cardiac fibrosis of heart failure induced by MI in mice. FGF12 overexpression suppressed the increases of collagen I, collagen III and fibronectin which was induced by Ang II in CFs. The oxidative stress was enhanced in the heart of MI mice and CFs treated with Ang II, and these enhances were attenuated via FGF12 overexpression. Superoxide dismutase (SOD) overexpression inhibited the enhancements of collagen I, collagen III and fibronectin in the heart of MI mice, and in the CFs treated with Ang II. Overexpression of nicotinamide adenine dinucleotide phosphate oxidases (Nox1) reversed the attenuating influences of FGF12 on the enhancements of collagen I, collagen III and fibronectin in the CFs induced by Ang II. These outcomes showed that FGF12 upregulation can improve cardiac dysfunction and heart fibrosis of heart failure. FGF12 attenuates oxidative stress to suppress the cardiac fibrosis.
Collapse
Affiliation(s)
- Aijun Liu
- Department of Cardiology, Binhai People's Hospital, Yancheng, China
| | - Yonglin Zhang
- Department of Cardiology, Binhai People's Hospital, Yancheng, China
| | - Shucan Xun
- Department of Cardiology, Binhai People's Hospital, Yancheng, China
| | - Guangzhi Zhou
- Department of Cardiology, Binhai People's Hospital, Yancheng, China
| | - Li Lin
- Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Yong Mei
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
15
|
Hillsley A, Santos JE, Rosales AM. A deep learning approach to identify and segment alpha-smooth muscle actin stress fiber positive cells. Sci Rep 2021; 11:21855. [PMID: 34750438 PMCID: PMC8575943 DOI: 10.1038/s41598-021-01304-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/26/2021] [Indexed: 01/04/2023] Open
Abstract
Cardiac fibrosis is a pathological process characterized by excessive tissue deposition, matrix remodeling, and tissue stiffening, which eventually leads to organ failure. On a cellular level, the development of fibrosis is associated with the activation of cardiac fibroblasts into myofibroblasts, a highly contractile and secretory phenotype. Myofibroblasts are commonly identified in vitro by the de novo assembly of alpha-smooth muscle actin stress fibers; however, there are few methods to automate stress fiber identification, which can lead to subjectivity and tedium in the process. To address this limitation, we present a computer vision model to classify and segment cells containing alpha-smooth muscle actin stress fibers into 2 classes (α-SMA SF+ and α-SMA SF-), with a high degree of accuracy (cell accuracy: 77%, F1 score 0.79). The model combines standard image processing methods with deep learning techniques to achieve semantic segmentation of the different cell phenotypes. We apply this model to cardiac fibroblasts cultured on hyaluronic acid-based hydrogels of various moduli to induce alpha-smooth muscle actin stress fiber formation. The model successfully predicts the same trends in stress fiber identification as obtained with a manual analysis. Taken together, this work demonstrates a process to automate stress fiber identification in in vitro fibrotic models, thereby increasing reproducibility in fibroblast phenotypic characterization.
Collapse
Affiliation(s)
- Alexander Hillsley
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Javier E Santos
- Hildebrand Department of Petroleum and Geosystems Engineering, University of Texas at Austin, Austin, TX, USA
| | - Adrianne M Rosales
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
16
|
Flores-Vergara R, Olmedo I, Aránguiz P, Riquelme JA, Vivar R, Pedrozo Z. Communication Between Cardiomyocytes and Fibroblasts During Cardiac Ischemia/Reperfusion and Remodeling: Roles of TGF-β, CTGF, the Renin Angiotensin Axis, and Non-coding RNA Molecules. Front Physiol 2021; 12:716721. [PMID: 34539441 PMCID: PMC8446518 DOI: 10.3389/fphys.2021.716721] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/26/2021] [Indexed: 11/20/2022] Open
Abstract
Communication between cells is a foundational concept for understanding the physiology and pathology of biological systems. Paracrine/autocrine signaling, direct cell-to-cell interplay, and extracellular matrix interactions are three types of cell communication that regulate responses to different stimuli. In the heart, cardiomyocytes, fibroblasts, and endothelial cells interact to form the cardiac tissue. Under pathological conditions, such as myocardial infarction, humoral factors released by these cells may induce tissue damage or protection, depending on the type and concentration of molecules secreted. Cardiac remodeling is also mediated by the factors secreted by cardiomyocytes and fibroblasts that are involved in the extensive reciprocal interactions between these cells. Identifying the molecules and cellular signal pathways implicated in these processes will be crucial for creating effective tissue-preserving treatments during or after reperfusion. Numerous therapies to protect cardiac tissue from reperfusion-induced injury have been explored, and ample pre-clinical research has attempted to identify drugs or techniques to mitigate cardiac damage. However, despite great success in animal models, it has not been possible to completely translate these cardioprotective effects to human applications. This review provides a current summary of the principal molecules, pathways, and mechanisms underlying cardiomyocyte and cardiac fibroblast crosstalk during ischemia/reperfusion injury. We also discuss pre-clinical molecules proposed as treatments for myocardial infarction and provide a clinical perspective on these potential therapeutic agents.
Collapse
Affiliation(s)
- Raúl Flores-Vergara
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile.,Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile
| | - Ivonne Olmedo
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile.,Red para el Estudio de Enfermedades Cardiopulmonares de alta letalidad (REECPAL), Universidad de Chile, Santiago de Chile, Chile
| | - Pablo Aránguiz
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andrés Bello, Viña del Mar, Chile
| | - Jaime Andrés Riquelme
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile.,Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago de Chile, Chile
| | - Raúl Vivar
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile
| | - Zully Pedrozo
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile.,Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile.,Red para el Estudio de Enfermedades Cardiopulmonares de alta letalidad (REECPAL), Universidad de Chile, Santiago de Chile, Chile
| |
Collapse
|
17
|
An overview of human pericardial space and pericardial fluid. Cardiovasc Pathol 2021; 53:107346. [PMID: 34023529 DOI: 10.1016/j.carpath.2021.107346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/24/2022] Open
Abstract
The pericardium is a double-layered fibro-serous sac that envelops the majority of the surface of the heart as well as the great vessels. Pericardial fluid is also contained within the pericardial space. Together, the pericardium and pericardial fluid contribute to a homeostatic environment that facilitates normal cardiac function. Different diseases and procedural interventions may disrupt this homeostatic space causing an imbalance in the composition of immune mediators or by mechanical stress. Inflammatory cells, cytokines, and chemokines are present in the pericardial space. How these specific mediators contribute to different diseases is the subject of debate and research. With the advent of highly specialized assays that can identify and quantify various mediators we can potentially establish specific and sensitive biomarkers that can be used to differentiate pathologies, and aid clinicians in improving clinical outcomes for patients.
Collapse
|
18
|
Vasanthan V, Biglioli M, Hassanabad AF, Dundas J, Matheny RG, Fedak PW. CorMatrix Cor™ PATCH for epicardial infarct repair. Future Cardiol 2021; 17:1297-1305. [PMID: 34008420 DOI: 10.2217/fca-2021-0017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Contemporary management of ischemic heart disease lacks strategies to directly access the heart and promote reparative cellular mechanisms to improve postinfarct cardiac remodeling. Epicardial infarct repair (EIR) is an emerging technique whereby bioactive materials are sewn over ischemic areas of the heart at the time of surgical revascularization to promote adaptive cardiac repair. The CorMatrix Cor™ PATCH (CorMatrix Cardiovascular Inc., GA, USA) is an acellular bioactive material compatible with EIR. Herein, we review current preclinical and clinical data for the CorMatrix Cor PATCH and its use in EIR.
Collapse
Affiliation(s)
- Vishnu Vasanthan
- Department of Cardiac Sciences, Section of Cardiac Surgery, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, AB, T2N 4N1, Canada
| | - Matteo Biglioli
- Department of Cardiac Sciences, Section of Cardiac Surgery, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, AB, T2N 4N1, Canada
| | - Ali Fatehi Hassanabad
- Department of Cardiac Sciences, Section of Cardiac Surgery, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, AB, T2N 4N1, Canada
| | - Jameson Dundas
- Department of Cardiac Sciences, Section of Cardiac Surgery, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, AB, T2N 4N1, Canada
| | | | - Paul Wm Fedak
- Department of Cardiac Sciences, Section of Cardiac Surgery, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, AB, T2N 4N1, Canada
| |
Collapse
|
19
|
Khosravi F, Ahmadvand N, Bellusci S, Sauer H. The Multifunctional Contribution of FGF Signaling to Cardiac Development, Homeostasis, Disease and Repair. Front Cell Dev Biol 2021; 9:672935. [PMID: 34095143 PMCID: PMC8169986 DOI: 10.3389/fcell.2021.672935] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022] Open
Abstract
The current focus on cardiovascular research reflects society’s concerns regarding the alarming incidence of cardiac-related diseases and mortality in the industrialized world and, notably, an urgent need to combat them by more efficient therapies. To pursue these therapeutic approaches, a comprehensive understanding of the mechanism of action for multifunctional fibroblast growth factor (FGF) signaling in the biology of the heart is a matter of high importance. The roles of FGFs in heart development range from outflow tract formation to the proliferation of cardiomyocytes and the formation of heart chambers. In the context of cardiac regeneration, FGFs 1, 2, 9, 16, 19, and 21 mediate adaptive responses including restoration of cardiac contracting rate after myocardial infarction and reduction of myocardial infarct size. However, cardiac complications in human diseases are correlated with pathogenic effects of FGF ligands and/or FGF signaling impairment. FGFs 2 and 23 are involved in maladaptive responses such as cardiac hypertrophic, fibrotic responses and heart failure. Among FGFs with known causative (FGFs 2, 21, and 23) or protective (FGFs 2, 15/19, 16, and 21) roles in cardiac diseases, FGFs 15/19, 21, and 23 display diagnostic potential. The effective role of FGFs on the induction of progenitor stem cells to cardiac cells during development has been employed to boost the limited capacity of postnatal cardiac repair. To renew or replenish damaged cardiomyocytes, FGFs 1, 2, 10, and 16 were tested in (induced-) pluripotent stem cell-based approaches and for stimulation of cell cycle re-entry in adult cardiomyocytes. This review will shed light on the wide range of beneficiary and detrimental actions mediated by FGF ligands and their receptors in the heart, which may open new therapeutic avenues for ameliorating cardiac complications.
Collapse
Affiliation(s)
- Farhad Khosravi
- Department of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Negah Ahmadvand
- Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany
| | - Saverio Bellusci
- Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany
| | - Heinrich Sauer
- Department of Physiology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
20
|
Systems biology predicts that fibrosis in tuberculous granulomas may arise through macrophage-to-myofibroblast transformation. PLoS Comput Biol 2020; 16:e1008520. [PMID: 33370784 PMCID: PMC7793262 DOI: 10.1371/journal.pcbi.1008520] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/08/2021] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) infection causes tuberculosis (TB), a disease characterized by development of granulomas. Granulomas consist of activated immune cells that cluster together to limit bacterial growth and restrict dissemination. Control of the TB epidemic has been limited by lengthy drug regimens, antibiotic resistance, and lack of a robustly efficacious vaccine. Fibrosis commonly occurs during treatment and is associated with both positive and negative disease outcomes in TB but little is known about the processes that initiate fibrosis in granulomas. Human and nonhuman primate granulomas undergoing fibrosis can have spindle-shaped macrophages with fibroblast-like morphologies suggesting a relationship between macrophages, fibroblasts, and granuloma fibrosis. This relationship has been difficult to investigate because of the limited availability of human pathology samples, the time scale involved in human TB, and overlap between fibroblast and myeloid cell markers in tissues. To better understand the origins of fibrosis in TB, we used a computational model of TB granuloma biology to identify factors that drive fibrosis over the course of local disease progression. We validated the model with granulomas from nonhuman primates to delineate myeloid cells and lung-resident fibroblasts. Our results suggest that peripheral granuloma fibrosis, which is commonly observed, can arise through macrophage-to-myofibroblast transformation (MMT). Further, we hypothesize that MMT is induced in M1 macrophages through a sequential combination of inflammatory and anti-inflammatory signaling in granuloma macrophages. We predict that MMT may be a mechanism underlying granuloma-associated fibrosis and warrants further investigation into myeloid cells as drivers of fibrotic disease. Tuberculosis is a disease caused by Mycobacterium tuberculosis (Mtb), a bacterium that infects over a third of the world’s population. The only available vaccine for TB has limited efficacy and drug treatment involves several antibiotics that are taken for several months. These drugs can have significant side-effects and a lack of compliance can lead to drug resistance in Mtb. A hallmark of Mtb infection is the development of clusters of cells that form around infected macrophages to contain the infection called granulomas. Older granulomas, or granulomas in patients treated with antibiotic, often become fibrotic and this can cause chronic lung problems long after the Mtb infection has cleared. The process that drives a fibrotic outcome has been difficult to assess in vivo. Herein we combined wet-lab and computational experimentation to identify a novel mechanism leading to peripheral fibrosis in granulomas. We find that macrophages transforming into myofibroblast-like cells, may be a key pathway to granuloma-associated fibrosis, a phenomena that has not been well characterized in vivo. Further we identified factors that can inhibit fibrosis development during TB that could be therapeutic targets during TB treatment to limit the risk of long-term tissue damage in TB.
Collapse
|
21
|
Belviso I, Angelini F, Di Meglio F, Picchio V, Sacco AM, Nocella C, Romano V, Nurzynska D, Frati G, Maiello C, Messina E, Montagnani S, Pagano F, Castaldo C, Chimenti I. The Microenvironment of Decellularized Extracellular Matrix from Heart Failure Myocardium Alters the Balance between Angiogenic and Fibrotic Signals from Stromal Primitive Cells. Int J Mol Sci 2020; 21:7903. [PMID: 33114386 PMCID: PMC7662394 DOI: 10.3390/ijms21217903] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 01/20/2023] Open
Abstract
Cardiac adverse remodeling is characterized by biological changes that affect the composition and architecture of the extracellular matrix (ECM). The consequently disrupted signaling can interfere with the balance between cardiogenic and pro-fibrotic phenotype of resident cardiac stromal primitive cells (CPCs). The latter are important players in cardiac homeostasis and can be exploited as therapeutic cells in regenerative medicine. Our aim was to compare the effects of human decellularized native ECM from normal (dECM-NH) or failing hearts (dECM-PH) on human CPCs. CPCs were cultured on dECM sections and characterized for gene expression, immunofluorescence, and paracrine profiles. When cultured on dECM-NH, CPCs significantly upregulated cardiac commitment markers (CX43, NKX2.5), cardioprotective cytokines (bFGF, HGF), and the angiogenesis mediator, NO. When seeded on dECM-PH, instead, CPCs upregulated pro-remodeling cytokines (IGF-2, PDGF-AA, TGF-β) and the oxidative stress molecule H2O2. Interestingly, culture on dECM-PH was associated with impaired paracrine support to angiogenesis, and increased expression of the vascular endothelial growth factor (VEGF)-sequestering decoy isoform of the KDR/VEGFR2 receptor. Our results suggest that resident CPCs exposed to the pathological microenvironment of remodeling ECM partially lose their paracrine angiogenic properties and release more pro-fibrotic cytokines. These observations shed novel insights on the crosstalk between ECM and stromal CPCs, suggesting also a cautious use of non-healthy decellularized myocardium for cardiac tissue engineering approaches.
Collapse
Affiliation(s)
- Immacolata Belviso
- Department of Public Health, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (I.B.); (F.D.M.); (A.M.S.); (V.R.); (D.N.); (S.M.); (C.C.)
| | - Francesco Angelini
- Experimental and Clinical Pharmacology Unit, CRO-National Cancer Institute, 33081 Aviano (PN), Italy;
| | - Franca Di Meglio
- Department of Public Health, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (I.B.); (F.D.M.); (A.M.S.); (V.R.); (D.N.); (S.M.); (C.C.)
| | - Vittorio Picchio
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Corso della Repubblica 79, 04100 Latina, Italy; (V.P.); (G.F.)
| | - Anna Maria Sacco
- Department of Public Health, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (I.B.); (F.D.M.); (A.M.S.); (V.R.); (D.N.); (S.M.); (C.C.)
| | - Cristina Nocella
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, Sapienza University, 00161 Rome, Italy;
| | - Veronica Romano
- Department of Public Health, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (I.B.); (F.D.M.); (A.M.S.); (V.R.); (D.N.); (S.M.); (C.C.)
| | - Daria Nurzynska
- Department of Public Health, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (I.B.); (F.D.M.); (A.M.S.); (V.R.); (D.N.); (S.M.); (C.C.)
| | - Giacomo Frati
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Corso della Repubblica 79, 04100 Latina, Italy; (V.P.); (G.F.)
- Department of AngioCardioNeurology, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Ciro Maiello
- Department of Cardiovascular Surgery and Transplant, Monaldi Hospital, 80131 Naples, Italy;
| | - Elisa Messina
- Department of Maternal Infantile and Urological Sciences, “Umberto I” Hospital, 00161 Rome, Italy;
| | - Stefania Montagnani
- Department of Public Health, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (I.B.); (F.D.M.); (A.M.S.); (V.R.); (D.N.); (S.M.); (C.C.)
| | - Francesca Pagano
- Institute of Biochemistry and Cell Biology, National Council of Research (IBBC-CNR), 00015 Monterotondo (RM), Italy;
| | - Clotilde Castaldo
- Department of Public Health, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (I.B.); (F.D.M.); (A.M.S.); (V.R.); (D.N.); (S.M.); (C.C.)
| | - Isotta Chimenti
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Corso della Repubblica 79, 04100 Latina, Italy; (V.P.); (G.F.)
- Mediterranea Cardiocentro, 80122 Napoli, Italy
| |
Collapse
|
22
|
Petrey AC, Qeadan F, Middleton EA, Pinchuk IV, Campbell RA, Beswick EJ. Cytokine release syndrome in COVID-19: Innate immune, vascular, and platelet pathogenic factors differ in severity of disease and sex. J Leukoc Biol 2020; 109:55-66. [PMID: 32930456 DOI: 10.1002/jlb.3cova0820-410rrr] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 01/08/2023] Open
Abstract
COVID-19 rapidly emerged as a crippling public health crisis in the last few months, which has presented a series health risk. Understanding of the immune response and biomarker analysis is needed to progress toward understanding disease pathology and developing improved treatment options. The goal of this study is to identify pathogenic factors that are linked to disease severity and patient characteristics. Patients with COVID-19 who were hospitalized from March 17 to June 5, 2020 were analyzed for clinical features of disease and soluble plasma cytokines in association with disease severity and sex. Data from COVID-19 patients with acute illness were examined along with an age- and gender-matched control cohort. We identified a group of 16 soluble factors that were found to be increased in COVID-19 patients compared to controls, whereas 2 factors were decreased. In addition to inflammatory cytokines, we found significant increases in factors known to mediate vasculitis and vascular remodeling (PDGF-AA, PDGF-AB-BB, soluble CD40L (sCD40L), FGF, and IP10). Four factors such as platelet-derived growth factors, fibroblast growth factor-2, and IFN-γ-inducible protein 10 were strongly associated with severe disease and ICU admission. Th2-related factors (IL-4 and IL-13) were increased with IL-4 and sCD40L present at increased levels in males compared with females. Our analysis revealed networking clusters of cytokines and growth factors, including previously unknown roles of vascular and stromal remodeling, activation of the innate immunity, as well activation of type 2 immune responses in the immunopathogenesis of COVID-19. These data highlight biomarker associations with disease severity and sex in COVID-19 patients.
Collapse
Affiliation(s)
- Aaron C Petrey
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA.,Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Fares Qeadan
- Department of Family and Preventative Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Elizabeth A Middleton
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA.,Division of Gastroenterology, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Irina V Pinchuk
- Division of Gastroenterology, Department of Medicine, Pennsylvania State Health, Hershey, Pennsylvania, USA
| | - Robert A Campbell
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA.,Division of Gastroenterology, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Ellen J Beswick
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, USA.,Division of Gastroenterology, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
23
|
Song I, Ise H. Development of a Gene Delivery System of Oligonucleotides for Fibroses by Targeting Cell-Surface Vimentin-Expressing Cells with N-Acetylglucosamine-Bearing Polymer-Conjugated Polyethyleneimine. Polymers (Basel) 2020; 12:polym12071508. [PMID: 32645972 PMCID: PMC7407634 DOI: 10.3390/polym12071508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/25/2020] [Accepted: 07/04/2020] [Indexed: 02/06/2023] Open
Abstract
Targeting myofibroblasts and activated stellate cells in lesion sites of fibrotic tissues is an important approach to treat fibroses. Herein, we focused on targeting the cytoskeletal proteins vimentin, which are reportedly highly expressed on the surface of these cells and have N-acetylglucosamine (GlcNAc)-binding activity. A GlcNAc-bearing polymer synthesized via radical polymerization with a reversible addition-fragmentation chain transfer reagent has been previously found to interact with cell-surface vimentin-expressing cells. We designed a GlcNAc-bearing polymer-conjugated polyethyleneimine (PEI), as the gene carrier to target cell-surface vimentin-expressing cells and specifically deliver nuclear factor-κB decoy oligonucleotides (ODNs) and heat shock protein 47 (HSP47)-small interfering RNA (siRNA) to normal human dermal fibroblasts (NHDFs) that express cell-surface vimentin. The results showed that the expression of tumor necrosis factor-α in lipopolysaccharide-stimulated NHDFs and HSP47 in transforming growth factor-β1-stimulated NHDFs was suppressed by cellular uptake of the GlcNAc-bearing polymer-conjugated PEI/nuclear factor (NF)-κB decoy ODNs and HSP47-siRNA complexes through cell-surface vimentin, respectively. These findings suggest that the effective and specific delivery of ODNs and siRNA for cell-surface vimentin-expressing cells such as myofibroblasts and activated stellate cells can be achieved using GlcNAc-bearing polymer-conjugated PEI. This therapeutic approach could prove advantageous to prevent the promotion of various fibroses.
Collapse
Affiliation(s)
- Inu Song
- Graduate School of Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan;
| | - Hirohiko Ise
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
- Correspondence: ; Tel.: +81-092-802-2503
| |
Collapse
|
24
|
Svystonyuk DA, Mewhort HEM, Hassanabad AF, Heydari B, Mikami Y, Turnbull JD, Teng G, Belke DD, Wagner KT, Tarraf SA, DiMartino ES, White JA, Flewitt JA, Cheung M, Guzzardi DG, Kang S, Fedak PWM. Acellular bioscaffolds redirect cardiac fibroblasts and promote functional tissue repair in rodents and humans with myocardial injury. Sci Rep 2020; 10:9459. [PMID: 32528051 PMCID: PMC7289874 DOI: 10.1038/s41598-020-66327-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 05/19/2020] [Indexed: 01/31/2023] Open
Abstract
Coronary heart disease is a leading cause of death. Tissue remodeling and fibrosis results in cardiac pump dysfunction and ischemic heart failure. Cardiac fibroblasts may rebuild damaged tissues when prompted by suitable environmental cues. Here, we use acellular biologic extracellular matrix scaffolds (bioscaffolds) to stimulate pathways of muscle repair and restore tissue function. We show that acellular bioscaffolds with bioinductive properties can redirect cardiac fibroblasts to rebuild microvascular networks and avoid tissue fibrosis. Specifically, when human cardiac fibroblasts are combined with bioactive scaffolds, gene expression is upregulated and paracrine mediators are released that promote vasculogenesis and prevent scarring. We assess these properties in rodents with myocardial infarction and observe bioscaffolds to redirect fibroblasts, reduce tissue fibrosis and prevent maladaptive structural remodeling. Our preclinical data confirms that acellular bioscaffold therapy provides an appropriate microenvironment to stimulate pathways of functional repair. We translate our observations to patients with coronary heart disease by conducting a first-in-human observational cohort study. We show that bioscaffold therapy is associated with improved perfusion of infarcted myocardium, reduced myocardial scar burden, and reverse structural remodeling. We establish that clinical use of acellular bioscaffolds is feasible and offers a new frontier to enhance surgical revascularization of ischemic heart muscle.
Collapse
Affiliation(s)
- Daniyil A Svystonyuk
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Holly E M Mewhort
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Ali Fatehi Hassanabad
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Bobak Heydari
- Department of Radiology, Cumming School of Medicine, Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Yoko Mikami
- Department of Radiology, Cumming School of Medicine, Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jeannine D Turnbull
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Guoqi Teng
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Darrell D Belke
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Karl T Wagner
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Samar A Tarraf
- Department of Civil Engineering, Libin Cardiovascular Institute and Centre for Bioengineering Research and Education, University of Calgary, Calgary, Alberta, Canada
| | - Elena S DiMartino
- Department of Civil Engineering, Libin Cardiovascular Institute and Centre for Bioengineering Research and Education, University of Calgary, Calgary, Alberta, Canada
| | - James A White
- Department of Radiology, Cumming School of Medicine, Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jacqueline A Flewitt
- Department of Radiology, Cumming School of Medicine, Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Matthew Cheung
- Department of Radiology, Cumming School of Medicine, Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - David G Guzzardi
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Sean Kang
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Paul W M Fedak
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
25
|
Vasanthan V, Fatehi Hassanabad A, Pattar S, Niklewski P, Wagner K, Fedak PWM. Promoting Cardiac Regeneration and Repair Using Acellular Biomaterials. Front Bioeng Biotechnol 2020; 8:291. [PMID: 32363184 PMCID: PMC7180212 DOI: 10.3389/fbioe.2020.00291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/19/2020] [Indexed: 12/11/2022] Open
Abstract
Ischemic heart disease is a common cause of end-stage heart failure and has persisted as one of the main causes of end stage heart failure requiring transplantation. Maladaptive myocardial remodeling due to ischemic injury involves multiple cell types and physiologic mechanisms. Pathogenic post-infarct remodeling involves collagen deposition, chamber dilatation and ventricular dysfunction. There have been significant improvements in medication and revascularization strategies. However, despite medical optimization and opportunities to restore blood flow, physicians lack therapies that directly access and manipulate the heart to promote healthy post-infarct myocardial remodeling. Strategies are now arising that use bioactive materials to promote cardiac regeneration by promoting angiogenesis and inhibiting cardiac fibrosis; and many of these strategies leverage the unique advantage of cardiac surgery to directly visualize and manipulate the heart. Although cellular-based strategies are emerging, multiple barriers exist for clinical translation. Acellular materials have also demonstrated preclinical therapeutic potential to promote angiogenesis and attenuate fibrosis and may be able to surmount these translational barriers. Within this review we outline various acellular biomaterials and we define epicardial infarct repair and intramyocardial injection, which focus on administering bioactive materials to the cardiac epicardium and myocardium respectively to promote cardiac regeneration. In conjunction with optimized medical therapy and revascularization, these techniques show promise to upregulate pathways of cardiac regeneration to preserve heart function.
Collapse
Affiliation(s)
- Vishnu Vasanthan
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Ali Fatehi Hassanabad
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Simranjit Pattar
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Paul Niklewski
- MDP Solutions, Cincinnati, OH, United States
- Department of Pharmacology & Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
- Health Economics and Clinical Outcomes Research, Xavier University, Cincinnati, OH, United States
| | - Karl Wagner
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Paul W. M. Fedak
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
26
|
Ushakov A, Ivanchenko V, Gagarina A. Regulation of Myocardial Extracellular Matrix Dynamic Changes in Myocardial Infarction and Postinfarct Remodeling. Curr Cardiol Rev 2020; 16:11-24. [PMID: 31072294 PMCID: PMC7393593 DOI: 10.2174/1573403x15666190509090832] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/22/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023] Open
Abstract
The article represents literature review dedicated to molecular and cellular mechanisms underlying clinical manifestations and outcomes of acute myocardial infarction. Extracellular matrix adaptive changes are described in detail as one of the most important factors contributing to healing of damaged myocardium and post-infarction cardiac remodeling. Extracellular matrix is reviewed as dynamic constantly remodeling structure that plays a pivotal role in myocardial repair. The role of matrix metalloproteinases and their tissue inhibitors in fragmentation and degradation of extracellular matrix as well as in myocardium healing is discussed. This review provides current information about fibroblasts activity, the role of growth factors, particularly transforming growth factor β and cardiotrophin-1, colony-stimulating factors, adipokines and gastrointestinal hormones, various matricellular proteins. In conclusion considering the fact that dynamic transformation of extracellular matrix after myocardial ischemic damage plays a pivotal role in myocardial infarction outcomes and prognosis, we suggest a high importance of further investigation of mechanisms underlying extracellular matrix remodeling and cell-matrix interactions in cardiovascular diseases.
Collapse
Affiliation(s)
- Alexey Ushakov
- Department of Internal Medicine #1 with Clinical Pharmacology Course, Medical Academy named after S.I. Georgievsky of V.I. Vernadsky Crimean Federal University, Simferopol, Russian Federation
| | - Vera Ivanchenko
- Department of Internal Medicine #1 with Clinical Pharmacology Course, Medical Academy named after S.I. Georgievsky of V.I. Vernadsky Crimean Federal University, Simferopol, Russian Federation
| | - Alina Gagarina
- Department of Internal Medicine #1 with Clinical Pharmacology Course, Medical Academy named after S.I. Georgievsky of V.I. Vernadsky Crimean Federal University, Simferopol, Russian Federation
| |
Collapse
|
27
|
Xia T, Shen Z, Cai J, Pan M, Sun C. ColXV Aggravates Adipocyte Apoptosis by Facilitating Abnormal Extracellular Matrix Remodeling in Mice. Int J Mol Sci 2020; 21:ijms21030959. [PMID: 32024006 PMCID: PMC7037489 DOI: 10.3390/ijms21030959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/25/2020] [Accepted: 01/30/2020] [Indexed: 02/06/2023] Open
Abstract
The extracellular matrix (ECM) is a highly dynamic structural network and plays an essential role in cell behavior and regulation during metabolic homeostasis and obesity progression. Abnormal ECM remodeling impairs adipocyte plasticity required for diverse cellular functions. Collagen XV (ColXV) is a proteoglycan localized to the outermost layer of basement membranes (BMs) and forms a bridge between the BMs and the fibrillar collagen matrix. Nevertheless, how ColXV affects ECM composition and the reason for subsequent adipocyte apoptosis is still unclear. This report found, through RNA-seq data, that ColXV is linked to cell growth and ECM remodeling. Findings show that, in response to excessive expression of extracellular ColXV, the AMPK/mTORC1 pathway is strongly activated and triggers a cascade of mitochondrial apoptosis. This is the first study to make use of ECM three-dimensional reconstruction, based on decellularization in the adipose tissues and the study reveals that ColXV is an activation factor that alters ECM remodeling in adipose tissues. It was also demonstrated that the fibroblast growth factor 2 (FGF2)/fibroblast growth factor receptor 1 (FGFR1) axis involved in ECM remodeling is suppressed by ColXV due to reduction of FGF2 translocation to FGFR1. Furthermore, ColXV induced remodeling of ECM preceding apoptosis and continued to induce apoptosis in adipocytes. Collectively, our findings establish ColXV as a basement membrane collagen with homology to ColXVIII, indicating that it is one of the positive regulators for inducing ECM remodeling and further promoting adipocyte apoptosis.
Collapse
|
28
|
Mardhian DF, Vrynas A, Storm G, Bansal R, Prakash J. FGF2 engineered SPIONs attenuate tumor stroma and potentiate the effect of chemotherapy in 3D heterospheroidal model of pancreatic tumor. Nanotheranostics 2020; 4:26-39. [PMID: 31911892 PMCID: PMC6940204 DOI: 10.7150/ntno.38092] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/22/2019] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), characterized with abundant tumor stroma, is a highly malignant tumor with poor prognosis. The tumor stroma largely consists of cancer-associated fibroblasts (CAFs) and extracellular matrix (ECM), and is known to promote tumor growth and progression as well as acts as a barrier to chemotherapy. Inhibition of tumor stroma is highly crucial to induce the effect of chemotherapy. In this study, we delivered fibroblast growth factor 2 (FGF2) to human pancreatic stellate cells (hPSCs), the precursors of CAFs, using superparamagnetic iron oxide nanoparticles (SPIONs). FGF2 was covalently conjugated to functionalized PEGylated dextran-coated SPIONs. FGF2-SPIONs significantly reduced TGF-β induced hPSCs differentiation (α-SMA and collagen-1 expression) by inhibiting pSmad2/3 signaling and inducing ERK1/2 activity, as shown with western blot analysis. Then, we established a stroma-rich self-assembling 3D heterospheroid model by co-culturing PANC-1 and hPSCs in 3D environment. We found that FGF2-SPIONs treatment alone inhibited the tumor stroma-induced spheroid growth. In addition, they also potentiated the effect of gemcitabine, as shown by measuring the spheroid size and ATP content. These effects were attributed to the reduced expression of the hPSC activation and differentiation marker, α-SMA. Furthermore, to demonstrate an application of SPIONs, we applied an external magnetic field to spheroids while incubated with FGF2-SPIONs. This resulted in an enhanced effect of gemcitabine in our 3D model. In conclusion, this study presents a novel approach to target FGF2 to tumor stroma using SPIONs and thereby enhancing the effect of gemcitabine as demonstrated in the complex 3D tumor spheroid model.
Collapse
Affiliation(s)
- Deby Fajar Mardhian
- Targeted Therapeutics, Department of Biomaterials Science and Technology, Technical Medical Centre, Faculty of Science and technology, University of Twente, Enschede, The Netherlands
| | - Aggelos Vrynas
- Targeted Therapeutics, Department of Biomaterials Science and Technology, Technical Medical Centre, Faculty of Science and technology, University of Twente, Enschede, The Netherlands
| | - Gert Storm
- Targeted Therapeutics, Department of Biomaterials Science and Technology, Technical Medical Centre, Faculty of Science and technology, University of Twente, Enschede, The Netherlands
| | - Ruchi Bansal
- Targeted Therapeutics, Department of Biomaterials Science and Technology, Technical Medical Centre, Faculty of Science and technology, University of Twente, Enschede, The Netherlands
| | - Jai Prakash
- Targeted Therapeutics, Department of Biomaterials Science and Technology, Technical Medical Centre, Faculty of Science and technology, University of Twente, Enschede, The Netherlands
| |
Collapse
|
29
|
Belvedere R, Pessolano E, Porta A, Tosco A, Parente L, Petrella F, Perretti M, Petrella A. Mesoglycan induces the secretion of microvesicles by keratinocytes able to activate human fibroblasts and endothelial cells: A novel mechanism in skin wound healing. Eur J Pharmacol 2019; 869:172894. [PMID: 31883916 DOI: 10.1016/j.ejphar.2019.172894] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 12/19/2022]
Abstract
Mesoglycan is a fibrinolytic compound but recently promising pro-healing effects in skin wound repair have been reported. Previously, we have showed that mesoglycan activates human keratinocytes, fibroblasts and endothelial cells and induces the secretion of microvesicles (EVs), particularly exosomes, from keratinocytes. These EVs may contribute to wound healing since they further activate cells generating an autocrine loop with a positive feedback. In this work, EVs isolated from keratinocytes, treated with mesoglycan, have been tested on human fibroblasts and endothelial cells. The in vitro investigation has been carried out through Wound-Healing/invasion assays to analyze cell motility and assess the differentiation process. Then, the formation of capillary-like structures by human endothelial cells has been performed to evaluate in vitro angiogenesis. We found that EVs secreted from keratinocytes treated with mesoglycan promote fibroblasts and endothelial cells migration and invasion. Furthermore, these receiving cells acquire a mesenchymal phenotype. Additionally, the angiogenesis appears strongly enhanced in presence of this kind of EVs. In conclusion, we show that EVs deriving from keratinocytes trigger a paracrine positive feedback able to further amplify the effects of mesoglycan. This mechanism adds up to the autocrine loop previously reported and culminates with the activation of fibroblasts and endothelial cells. Particularly, this activation is amplified by the action of growth factors as FGF-2 (Fibroblast Growth Factor-2) for the fibroblasts and by VEGF (Vascular Endothelial Growth Factor) for the endothelial cells.
Collapse
Affiliation(s)
- Raffaella Belvedere
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy.
| | - Emanuela Pessolano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy.
| | - Amalia Porta
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy.
| | - Alessandra Tosco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy.
| | - Luca Parente
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy.
| | - Francesco Petrella
- Primary Care, Wound Care Service, Health Local Agency Naples 3 South, Via Libertà 42, 80055, Portici, Napoli, Italy.
| | - Mauro Perretti
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK.
| | - Antonello Petrella
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy.
| |
Collapse
|
30
|
Gao L, Jiang D, Geng J, Dong R, Dai H. Hydrogen inhalation attenuated bleomycin-induced pulmonary fibrosis by inhibiting transforming growth factor-β1 and relevant oxidative stress and epithelial-to-mesenchymal transition. Exp Physiol 2019; 104:1942-1951. [PMID: 31535412 DOI: 10.1113/ep088028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/17/2019] [Indexed: 01/15/2023]
Abstract
NEW FINDINGS • What is the central question of this study? The aim was to explore the effects and underlying mechanisms of H2 on bleomycin-induced pulmonary fibrosis. • What are the main findings and its importance? Our results indicate that, in bleomycin-induced pulmonary fibrosis, H2 inhalation attenuated oxidative stress and reversed the pulmonary epithelial-to-mesenchymal transition process by reducing reactive oxygen species production and inhibiting the expression of transforming growth factor-β1, α-smooth muscle actin and collagen I to improve fibrotic injury and exert anti-fibrogenic effects. Thus, H2 inhalation has promising therapeutic potential as a useful adjuvant treatment for patients with idiopathic pulmonary fibrosis, which deserves further study and evaluation. ABSTRACT Hydrogen (H2 ) can protect against tissue damage. The effect of H2 inhalation therapy on the pathogenesis of pulmonary fibrosis remains unknown. This study was designed to explore the effects and underlying mechanisms of H2 inhalation on bleomycin (BLM)-induced pulmonary fibrosis. A rat model of pulmonary fibrosis was established with BLM. Rats were randomly divided into control and H2 inhalation groups. Haematoxylin and Eosin staining and Mason's Trichrome staining were performed to evaluate pulmonary fibrosis injury, inflammatory cell infiltration, structural disorder and collagen deposition. qRT-PCR and western blot assays were used to determine the expression of TNF-α, TGF-β1, α-SMA, E-cadherin, N-cadherin, vimentin, VEGF and collagen type I at both mRNA and protein levels. The contents of reactive oxygen species, TGF-β1, TNF-α, malondialdehyde and hydroxyproline were determined with biochemical test kits or ELISA kits. Bleomycin-stimulated rats exhibited typical symptoms of pulmonary fibrosis, which featured an increase in collagen deposition, alveolitis, fibrosis and parenchymal structural disorder in the lung. However, BLM-induced oxidative stress was attenuated by H2 inhalation therapy, which reduced the contents of reactive oxygen species, malondialdehyde and hydroxyproline, enhanced the activity of glutathione peroxidase and decreased the expression of TGF-β1 and TNF-α. In addition, H2 inhalation also inhibited BLM-induced epithelial-to-mesenchymal transition by inhibiting TGF-β1, increasing the expression level of the epithelial cell marker E-cadherin, and decreasing the expression level of the mesenchymal cell marker vimentin in a time-dependent manner. In addition, H2 inhalation downregulated α-SMA expression and suppressed collagen I generation, exerting anti-fibrogenic effects. Hydrogen inhalation therapy attenuates BLM-induced pulmonary fibrosis by inhibiting TGF-β1, relevant oxidative stress and epithelial-to-mesenchymal transition.
Collapse
Affiliation(s)
- Li Gao
- Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,Department of Pulmonary and Critical Care Medicine, Inner Mongolia Autonomous Region People's Hospital, Hohhot, China
| | - Dingyuan Jiang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Jing Geng
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Run Dong
- Department of Respiratory Medicine, Zhengzhou Central Hospital, Zhengzhou, China
| | - Huaping Dai
- Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Beijing, China
| |
Collapse
|
31
|
Fan Z, Xu Z, Niu H, Sui Y, Li H, Ma J, Guan J. Spatiotemporal delivery of basic fibroblast growth factor to directly and simultaneously attenuate cardiac fibrosis and promote cardiac tissue vascularization following myocardial infarction. J Control Release 2019; 311-312:233-244. [PMID: 31521744 DOI: 10.1016/j.jconrel.2019.09.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/16/2019] [Accepted: 09/05/2019] [Indexed: 12/15/2022]
Abstract
Following myocardial infarction (MI), the destruction of vasculature in the infarcted heart muscle and progression of cardiac fibrosis lead to cardiac function deterioration. Vascularization of the damaged tissue and prevention of cardiac fibrosis represent promising strategies to improve cardiac function. Herein we have developed a bFGF release system with suitable release kinetics to simultaneously achieve the two goals. The release system was based on an injectable, thermosensitive, and fast gelation hydrogel and bFGF. The hydrogel had gelation time <7 s. It can quickly solidify upon injection into tissue so as to increase drug retention in the tissue. Hydrogel complex modulus can be tuned by hydrogel solution concentration. The complex modulus of 176.6 Pa and lower allowed cardiac fibroblast to maintain its phenotype. Bioactive bFGF was able to gradually release from the hydrogel for 4 weeks. The released bFGF promoted cardiac fibroblast survival under ischemic conditions mimicking those of the infarcted hearts. It also attenuated cardiac fibroblasts from differentiating into myofibroblasts in the presence of TGFβ when tested in 3D collagen model mimicking the scenario when the bFGF release system was injected into hearts. Furthermore, the released bFGF stimulated human umbilical endothelial cells to form endothelial lumen. After 4 weeks of implantation into infarcted hearts, the bFGF release system significantly increased blood vessel density, decreased myofibroblast density and collagen content, augmented cardiac cell survival/proliferation, and reduced macrophage density. In addition, the bFGF release system significantly increased cardiac function. These results demonstrate that delivery of bFGF with appropriate release kinetics alone may represent an efficient approach to control cardiac remodeling after MI.
Collapse
Affiliation(s)
- Zhaobo Fan
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States of America
| | - Zhaobin Xu
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States of America
| | - Hong Niu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Yang Sui
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Haichang Li
- Department of Surgery, The Ohio State University, Columbus, OH 43210, United States of America
| | - Jianjie Ma
- Department of Surgery, The Ohio State University, Columbus, OH 43210, United States of America
| | - Jianjun Guan
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States of America; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
32
|
Pattar SS, Fatehi Hassanabad A, Fedak PWM. Acellular Extracellular Matrix Bioscaffolds for Cardiac Repair and Regeneration. Front Cell Dev Biol 2019; 7:63. [PMID: 31080800 PMCID: PMC6497812 DOI: 10.3389/fcell.2019.00063] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/08/2019] [Indexed: 12/19/2022] Open
Abstract
Heart failure is a progressive deterioration of cardiac pump function over time and is often a manifestation of ischemic injury caused by myocardial infarction (MI). Post-MI, structural remodeling of the infarcted myocardium ensues. Dysregulation of extracellular matrix (ECM) homeostasis is a hallmark of structural cardiac remodeling and is largely driven by cardiac fibroblast activation. While initially adaptive, structural cardiac remodeling leads to irreversible heart failure due to the progressive loss of cardiac function. Loss of pump function is associated with myocardial fibrosis, wall thinning, and left ventricular (LV) dilatation. Surgical revascularization of the damaged myocardium via coronary artery bypass graft (CABG) surgery and/or percutaneous coronary intervention (PCI) can enhance myocardial perfusion and is beneficial. However, these interventions alone are unable to prevent progressive fibrotic remodeling and loss of heart function that leads to clinical end-stage heart failure. Acellular biologic ECM scaffolds can be surgically implanted onto injured myocardial regions during open-heart surgery as an adjunct therapy to surgical revascularization. This presents a novel therapeutic approach to alter maladaptive remodeling and promote functional recovery. Acellular ECM bioscaffolds have been shown to provide passive structural support to the damaged myocardium and also to act as a dynamic bioactive reservoir capable of promoting endogenous mechanisms of tissue repair, such as vasculogenesis. The composition and structure of xenogenic acellular ECM bioscaffolds are determined by the physiological requirements of the tissue from which they are derived. The capacity of different tissue-derived acellular bioscaffolds to attenuate cardiac remodeling and restore ECM homeostasis after injury may depend on such properties. Accordingly, the search and discovery of an optimal ECM bioscaffold for use in cardiac repair is warranted and may be facilitated by comparing bioscaffolds. This review will provide a summary of the acellular ECM bioscaffolds currently available for use in cardiac surgery with a focus on how they attenuate cardiac remodeling by providing the necessary environmental cues to promote endogenous mechanisms of tissue repair.
Collapse
Affiliation(s)
- Simranjit S Pattar
- Section of Cardiac Surgery, Department of Cardiac Science, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
| | - Ali Fatehi Hassanabad
- Section of Cardiac Surgery, Department of Cardiac Science, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
| | - Paul W M Fedak
- Section of Cardiac Surgery, Department of Cardiac Science, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
33
|
Soares CD, Morais TML, Araújo RMFG, Meyer PF, Oliveira EAF, Silva RMV, Carreiro EM, Carreiro EP, Belloco VG, Mariz BALA, Jorge-Junior J. Effects of subcutaneous injection of ozone during wound healing in rats. Growth Factors 2019; 37:95-103. [PMID: 31339390 DOI: 10.1080/08977194.2019.1643339] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fibroblast growth factor 2 (FGF2) regulates the wound repair process and it is secreted by inflammatory and endothelial cells, and by myofibroblasts. This study aimed to establish the expression patterns of FGF2 and myofibroblastic differentiation during wound healing in rats treated with subcutaneous ozone injection. We created full-thickness excisional wounds in rats, and the healing process was analyzed through morphometric analyses and digital quantification of immunoreactivity of smooth muscle actin and FGF2. Ozone therapy-treated wounds presented granulation tissue with a reduced number of inflammatory cells and greater dermal cellularity, and intense collagen deposition. FGF2 immunoreactivity, microvessel density, and amount of myofibroblasts were significantly higher in treated wounds compared to controls. In conclusion, it was demonstrated that subcutaneous injections of ozone accelerate and ameliorate wound repairing process. Moreover, injectable ozone therapy's action mechanism may be associated with FGF2 overexpression.
Collapse
Affiliation(s)
- Ciro D Soares
- a Oral Pathology Section, Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (UNICAMP) , Piracicaba , Brazil
| | - Thayná M L Morais
- a Oral Pathology Section, Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (UNICAMP) , Piracicaba , Brazil
| | | | - Patrícia F Meyer
- c Physiotherapy Department, Potiguar University , Natal , Brazil
| | | | - Rodrigo M V Silva
- d Physiotherapy Department, Federal University of Rio Grande do Norte , Natal , Brazil
| | - Eneida M Carreiro
- e Physiotherapy Department, University Center of Rio Grande do Norte , Natal , Brazil
| | - Edvaldo P Carreiro
- e Physiotherapy Department, University Center of Rio Grande do Norte , Natal , Brazil
| | | | - Bruno A L A Mariz
- a Oral Pathology Section, Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (UNICAMP) , Piracicaba , Brazil
| | - Jacks Jorge-Junior
- a Oral Pathology Section, Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (UNICAMP) , Piracicaba , Brazil
| |
Collapse
|
34
|
Yin H, Caceres MD, Yan Z, Schieker M, Nerlich M, Docheva D. Tenomodulin regulates matrix remodeling of mouse tendon stem/progenitor cells in an ex vivo collagen I gel model. Biochem Biophys Res Commun 2019; 512:691-697. [PMID: 30922565 DOI: 10.1016/j.bbrc.2019.03.063] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/11/2019] [Indexed: 12/31/2022]
Abstract
Tenomodulin (Tnmd) is predominantly expressed in tendon and ligament tissues. Loss of Tnmd in mice leads to a profound phenotype in vitro, characterized by reduced self-renewal but increased senescence of mouse tendon stem/progenitor cells (mTSPCs), as well as in vivo, by significantly impaired early tendon healing. Interestingly, injuried Achilles tendons from Tnmd-deficient mice showed inferior tendon repair, which was characterized by less contracted fibrovascular scars with disorganized matrix composition in comparison to wild type (WT) mice at day 8 after injury. To better understand Tnmd role in tendon repair, here we implemented an ex vivo three-dimensional (3D) collagen gel model and investigated whether Tnmd knockout affects the collagen contraction of mTSPCs. TSPCs were isolated from WT and Tnmd knockout (KO) tendons at 6, 9, 12, and 18 months of age. Adhesion assay demonstrated that loss of Tnmd in mTSPCs resulted in reduced adhesion to collagen type I. Quantitative time-dependent analysis revealed that Tnmd-deficient mTSPCs of all ages have significantly reduced capacity to contract collagen matrix in comparison to WT cells. Furthermore, 18 months old mTSPCs of both genotypes showed lower collagen contractility than cells obtained from 6, 9, and 12 months old animals, demonstrating an overall effect of organismal aging on matrix remodeling. Nevertheless, both cell types had a similar survival rate for the 5 days of cultivation within the gels. Lastly, quantitative PCR for 48 different genes revealed that the knockout of Tnmd majorly affected the gene expression profile of mTSPCs, as several transcription factors, tendon matrix, collagen cross-linking, and lineage maker genes were down-regulated. Taken together, our results clearly demonstrated that loss of Tnmd in mTSPCs led to profoundly altered gene expression profile, insufficient adhesion to collagen type I, and impaired ability to contract the extracellular matrix.
Collapse
Affiliation(s)
- Heyong Yin
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany; Department of Surgery, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Manuel Delgado Caceres
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Zexing Yan
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Matthias Schieker
- Department of Surgery, Ludwig-Maximilians-University (LMU), Munich, Germany; Novartis Institutes for Biomedical Research (NIBR), Translational Medicine Musculoskeletal Disease, Basel, Switzerland
| | - Michael Nerlich
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Denitsa Docheva
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany.
| |
Collapse
|
35
|
Ma L, Li X, Bai Z, Lin X, Lin K. AdipoRs- a potential therapeutic target for fibrotic disorders. Expert Opin Ther Targets 2018; 23:93-106. [PMID: 30569772 DOI: 10.1080/14728222.2019.1559823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Fibrotic disorders are a leading cause of morbidity and mortality; hence effective treatments are still vigorously sought. AdipoRs (AdipoR1 and Adipo2) are responsible for the antifibrotic effects of adiponectin (APN). APN exerts antifibrotic effects by binding to its receptors. APN concentration and AdipoR expression are closely associated with fibrotic disorders. Decreased AdipoR expression may reduce APN-AdipoR signaling, while the upregulation of AdipoR expression may restore the anti-fibrotic effects of APN. Loss of APN signaling exacerbates fibrosis in vivo and in vitro. Areas covered: We assess the relationship between APN and fibrotic disorders, the structure of receptors for APN and the pathways accounting for APN or its analogs blocking fibrotic disorders. This article also discusses designed APN products and their therapeutic prospects for fibrotic disorders. Expert opinion: AdipoRs have a critical role in blocking fibrosis. The development of small-molecule agonists toward this target represents a valid drug development pathway.
Collapse
Affiliation(s)
- Lingman Ma
- a School of Life Science and Technology , China Pharmaceutical University , Nanjing , China
| | - Xuanyi Li
- b Department of Medicinal Chemistry, School of Pharmacy , China Pharmaceutical University , Nanjing , China
| | - Zhaoshi Bai
- c Department of pharmacy , Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University , Nanjing , China
| | - Xinhao Lin
- d Department of pharmacy , Class 154010, China Pharmaceutical University , Nanjing , China
| | - Kejiang Lin
- b Department of Medicinal Chemistry, School of Pharmacy , China Pharmaceutical University , Nanjing , China
| |
Collapse
|
36
|
Liguori TTA, Liguori GR, Moreira LFP, Harmsen MC. Fibroblast growth factor-2, but not the adipose tissue-derived stromal cells secretome, inhibits TGF-β1-induced differentiation of human cardiac fibroblasts into myofibroblasts. Sci Rep 2018; 8:16633. [PMID: 30413733 PMCID: PMC6226511 DOI: 10.1038/s41598-018-34747-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/04/2018] [Indexed: 02/08/2023] Open
Abstract
Transforming growth factor-β1 (TGF-β1) is a potent inducer of fibroblast to myofibroblast differentiation and contributes to the pro-fibrotic microenvironment during cardiac remodeling. Fibroblast growth factor-2 (FGF-2) is a growth factor secreted by adipose tissue-derived stromal cells (ASC) which can antagonize TGF-β1 signaling. We hypothesized that TGF-β1-induced cardiac fibroblast to myofibroblast differentiation is abrogated by FGF-2 and ASC conditioned medium (ASC-CMed). Our experiments demonstrated that TGF-β1 treatment-induced cardiac fibroblast differentiation into myofibroblasts, as evidenced by the formation of contractile stress fibers rich in αSMA. FGF-2 blocked the differentiation, as evidenced by the reduction in gene (TAGLN, p < 0.0001; ACTA2, p = 0.0056) and protein (αSMA, p = 0.0338) expression of mesenchymal markers and extracellular matrix components gene expression (COL1A1, p < 0.0001; COL3A1, p = 0.0029). ASC-CMed did not block myofibroblast differentiation. The treatment with FGF-2 increased matrix metalloproteinases gene expression (MMP1, p < 0.0001; MMP14, p = 0.0027) and decreased the expression of tissue inhibitor of metalloproteinase gene TIMP2 (p = 0.0023). ASC-CMed did not influence these genes. The proliferation of TGF-β1-induced human cardiac fibroblasts was restored by both FGF-2 (p = 0.0002) and ASC-CMed (p = 0.0121). The present study supports the anti-fibrotic effects of FGF-2 through the blockage of cardiac fibroblast differentiation into myofibroblasts. ASC-CMed, however, did not replicate the anti-fibrotic effects of FGF-2 in vitro.
Collapse
Affiliation(s)
- Tácia Tavares Aquinas Liguori
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - Gabriel Romero Liguori
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - Luiz Felipe Pinho Moreira
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Martin Conrad Harmsen
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands.
| |
Collapse
|
37
|
Koç E, Çelik-Uzuner S, Uzuner U, Çakmak R. The Detailed Comparison of Cell Death Detected by Annexin V-PI Counterstain Using Fluorescence Microscope, Flow Cytometry and Automated Cell Counter in Mammalian and Microalgae Cells. J Fluoresc 2018; 28:1393-1404. [PMID: 30343360 DOI: 10.1007/s10895-018-2306-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/14/2018] [Indexed: 10/28/2022]
Abstract
The evaluation of cell wellness is an important task for molecular biology research. This mainly comprises the assessment for morphology and viability of culturing cells. Annexin V-Propidium iodide counterstaining has been currently one of the common and easy methods to discriminate apoptotic and necrotic cell profiles. The method is operated by fluorescence-based detection of counterstain via laser beam-employed instruments including flow cytometer, fluorescence microscope and automated cell counter. The detection is primarily conducted based on the same principle; however the efficiency of instruments may vary. Here we evaluated the efficiency of those instruments for the clear-cut detection of cell death through various mammalian and microalgae cell lines. To the best of our knowledge, this is the first study revealing comparative analyses of apoptotic and necrotic cells in mammalian and microalgae cells using Annexin V-PI counterstain detected by flow cytometer, fluorescence microscope and automated cell counter. Fluorescence microscope and cell counter instruments were also tested and compared for the traditional trypan blue-based cell viability detection performance. For these, cell death was induced by UV-irradiation and/or bee venom for mammalian (pancreatic cancer, metastatic breast cancer and mouse fibroblasts) and microalgae cells (Chlorella vulgaris), respectfully. Findings postulated that automated cell counter and fluorescence microscopy revealed similar patterns for the detection by both counterstain and trypan blue in mammalian cells. Interestingly, flow cytometry did provide an accurate and significant detection for only one mammalian cell line when UV-treatment was followed by routine Annexin V-Propidium iodide counterstaining. Unlike, only flow cytometry revealed a significant change in the detection of death of microalgae cells by Annexin V-Propidium iodide method, but both Annexin and conventional trypan blue methods were not applicable for the automated cell counter and microscopic detections for microalgae cells. The related outputs propose that the obtaining reliable quantitation strongly depends on cell type and instruments used. These suggest the necessity of optimization and validation endeavors before any cell death detection initiative. The analytical outcomes present insights into detailed assessment of cell death detection of eukaryotic cells and provide a direction to researchers to consider.
Collapse
Affiliation(s)
- Emine Koç
- Department of Molecular Biotechnology, Faculty of Science, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Selcen Çelik-Uzuner
- Department of Molecular Biology and Genetics, Faculty of Science, Karadeniz Technical University, 61080, Trabzon, Turkey.
| | - Uğur Uzuner
- Department of Molecular Biology and Genetics, Faculty of Science, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Ramazan Çakmak
- Department of Molecular Biotechnology, Faculty of Science, Karadeniz Technical University, 61080, Trabzon, Turkey
| |
Collapse
|
38
|
Acampa M, Lazzerini PE, Martini G. Atrial Cardiopathy and Sympatho-Vagal Imbalance in Cryptogenic Stroke: Pathogenic Mechanisms and Effects on Electrocardiographic Markers. Front Neurol 2018; 9:469. [PMID: 29971041 PMCID: PMC6018106 DOI: 10.3389/fneur.2018.00469] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 05/31/2018] [Indexed: 01/18/2023] Open
Abstract
Recently, atrial cardiopathy has emerged as possible pathogenic mechanism in cryptogenic stroke and many electrocardiographic (ECG) markers have been proposed in order to detect an altered atrial substrate at an early stage. The autonomic nervous system (ANS) plays a well-known role in determining significant and heterogeneous electrophysiological changes of atrial cardiomyocytes, that promote atrial fibrillation episodes in cardioembolic stroke. Conversely, the role of ANS in atrial cardiopathy and cryptogenic stroke is less known, as well as ANS effects on ECG markers of atrial dysfunction. In this paper, we review the evidence linking ANS dysfunction and atrial cardiopathy as a possible pathogenic factor in cryptogenic stroke.
Collapse
Affiliation(s)
- Maurizio Acampa
- Stroke Unit, Department of Neurological and Neurosensorial Sciences, Azienda Ospedaliera Universitaria Senese, "Santa Maria alle Scotte" General Hospital, Siena, Italy
| | - Pietro E Lazzerini
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Giuseppe Martini
- Stroke Unit, Department of Neurological and Neurosensorial Sciences, Azienda Ospedaliera Universitaria Senese, "Santa Maria alle Scotte" General Hospital, Siena, Italy
| |
Collapse
|
39
|
Lu JY, Zhang XX, Zhu QY, Zhang FR, Huang WT, Ding XZ, Xia LQ, Luo HQ, Li NB. Highly Tunable and Scalable Fabrication of 3D Flexible Graphene Micropatterns for Directing Cell Alignment. ACS APPLIED MATERIALS & INTERFACES 2018; 10:17704-17713. [PMID: 29701460 DOI: 10.1021/acsami.8b04416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Patterning graphene allows to precisely tune its properties to manufacture flexible functional materials or miniaturized devices for electronic and biomedical applications. However, conventional lithographic techniques are cumbersome for scalable production of time- and cost-effective graphene patterns, thus greatly impeding their practical applications. Here, we present a simple scalable fabrication of wafer-scale three-dimensional (3D) graphene micropatterns by direct laser tuning graphene oxide reduction and expansion using a LightScribe DVD writer. This one-step laser-scribing process can produce custom-made 3D graphene patterns on the surface of a disk with dimensions ranging from microscale up to decimeter scale in about 20 min. Through control over laser-scribing parameters, the resulting various 3D graphene patterns are exploited as scaffolds for controlling cell alignment. The 3D graphene patterns demonstrate their potential to biomedical applications, beyond the fields of electronics and photonics, which will allow to incorporate flexible graphene patterns for 3D cell or tissue culture to promote tissue engineering and drug testing applications.
Collapse
Affiliation(s)
- Jiao Yang Lu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science , Hunan Normal University , Changsha 410081 , P. R. China
| | - Xin Xing Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science , Hunan Normal University , Changsha 410081 , P. R. China
| | - Qiu Yan Zhu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science , Hunan Normal University , Changsha 410081 , P. R. China
| | - Fu Rui Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science , Hunan Normal University , Changsha 410081 , P. R. China
| | - Wei Tao Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science , Hunan Normal University , Changsha 410081 , P. R. China
| | - Xue Zhi Ding
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science , Hunan Normal University , Changsha 410081 , P. R. China
| | - Li Qiu Xia
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science , Hunan Normal University , Changsha 410081 , P. R. China
| | - Hong Qun Luo
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , P. R. China
| | - Nian Bing Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , P. R. China
| |
Collapse
|
40
|
Liu X, Long X, Liu W, Zhao Y, Hayashi T, Yamato M, Mizuno K, Fujisaki H, Hattori S, Tashiro SI, Ogura T, Atsuzawa Y, Ikejima T. Type I collagen induces mesenchymal cell differentiation into myofibroblasts through YAP-induced TGF-β1 activation. Biochimie 2018; 150:110-130. [PMID: 29777737 DOI: 10.1016/j.biochi.2018.05.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 05/14/2018] [Indexed: 12/11/2022]
Abstract
In organ fibrosis, mechanical stress and transforming growth factor beta-1 (TGF-β1) promote differentiation into myofibroblast from mesenchymal cells, leading to extracellular matrix (ECM) remodeling or active synthesis, deposition or degradation of ECM components. A major component of ECM, type I collagen (col I) triple helical molecules assemble into fibrils or are denatured to gelatin without triple-helicity in remodeling. However, whether changes of ECM components in remodeling have influence on mesenchymal cell differentiation remains elusive. This study adopted three states of collagen I existing in ECM remodeling: molecular collagen, fibrillar collagen and gelatin to see what are characteristics in the effects on two cell lines of mesenchymal origin, murine 3T3-L1 embryonic fibroblast and murine C2C12 myoblasts. The results showed that all three forms of collagen I were capable of inducing these two cells to differentiate into myofibroblasts characterized by increased expression of alpha-smooth muscle actin (α-SMA) mRNA. The expression of α-SMA is positively regulated by TGF-β1. Nuclear translocation of Yes-associated protein (YAP) is involved in this process. Focal adhesion kinase (FAK) is activated in the cells cultured on molecular collagen-coated plates, contributing to YAP activation. On the other hand, in the cells cultured on fibrillar collagen gel or gelatin-coated plates, oxidative stress but not FAK induce YAP activation. In conclusion, the three physicochemically distinct forms of col I induce the differentiation of mesenchymal cells into myofibroblasts through different pathways.
Collapse
Affiliation(s)
- Xiaoling Liu
- China-Japan Research Institute of Medical Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xinyu Long
- China-Japan Research Institute of Medical Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Weiwei Liu
- China-Japan Research Institute of Medical Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yeli Zhao
- China-Japan Research Institute of Medical Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Toshihiko Hayashi
- China-Japan Research Institute of Medical Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, 110016, China; Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2665-1, Nakanomachi, Hachioji, Tokyo, 192-0015, Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, 162-8666, Japan
| | - Kazunori Mizuno
- Nippi Research Institute of Biomatrix, Ibaraki, 302-0017, Japan
| | - Hitomi Fujisaki
- Nippi Research Institute of Biomatrix, Ibaraki, 302-0017, Japan
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, Ibaraki, 302-0017, Japan
| | - Shin-Ichi Tashiro
- Department of Medical Education and Primary Care, Kyoto Prefectural University of Medicine, Kyoto, 603-8072, Japan
| | - Takaaki Ogura
- Nippi Research Institute of Biomatrix, Ibaraki, 302-0017, Japan
| | - Yuji Atsuzawa
- Nippi Research Institute of Biomatrix, Ibaraki, 302-0017, Japan
| | - Takashi Ikejima
- China-Japan Research Institute of Medical Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
41
|
Jung JE, Song MJ, Shin S, Choi YJ, Kim KH, Chung CJ. Local myogenic pulp-derived cell injection enhances craniofacial muscle regeneration in vivo. Orthod Craniofac Res 2018; 20:35-43. [PMID: 28102011 DOI: 10.1111/ocr.12138] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2016] [Indexed: 12/22/2022]
Abstract
OBJECTIVES To enhance myogenic differentiation in pulp cells isolated from extracted premolars by epigenetic modification using a DNA demethylation agent, 5-aza-2'-deoxycytidine (5-Aza), and to evaluate the potent stimulatory effect of 5-Aza-treated pulp cell injection for craniofacial muscle regeneration in vivo. SETTING AND SAMPLE POPULATION Pulp cells were isolated from premolars extracted for orthodontic purposes from four adults (age range, 18-22.1 years). MATERIAL AND METHODS Levels of myogenic differentiation and functional contraction response in vitro were compared between pulp cells with or without pre-treatment of 5-Aza. Changes in muscle regeneration in response to green fluorescent protein (GFP)-labelled myogenic pulp cell injection in vivo were evaluated using a cardiotoxin (CTX)-induced muscle injury model of the gastrocnemius as well as the masseter muscle in mice. RESULTS Pre-treatment of 5-Aza in pulp cells stimulated myotube formation, myogenic differentiation in terms of desmin and myogenin expression, and the level of collagen gel contraction. The local injection of 5-Aza pre-treated myogenic pulp cells was engrafted into the host tissue and indicated signs of enhanced muscle regeneration in both the gastrocnemius and the masseter muscles. CONCLUSION The epigenetic modification of pulp cells from extracted premolars and the local injection of myogenic pulp cells may stimulate craniofacial muscles regeneration in vivo.
Collapse
Affiliation(s)
- J E Jung
- Department of Orthodontics, Gangnam Severance Hospital, The Craniofacial Deformity Institute, College of Dentistry, Yonsei University, Seoul, Korea
| | - M J Song
- Department of Food Biotechnology, Division of Bioindustry, College of Medical and Life Sciences, Silla University, Busan, Korea
| | - S Shin
- Department of Conservative Dentistry, Gangnam Severance Hospital, College of Dentistry, Yonsei University, Seoul, Korea
| | - Y J Choi
- Department of Orthodontics, Gangnam Severance Hospital, The Craniofacial Deformity Institute, College of Dentistry, Yonsei University, Seoul, Korea
| | - K H Kim
- Department of Orthodontics, Gangnam Severance Hospital, The Craniofacial Deformity Institute, College of Dentistry, Yonsei University, Seoul, Korea
| | - C J Chung
- Department of Orthodontics, Gangnam Severance Hospital, The Craniofacial Deformity Institute, College of Dentistry, Yonsei University, Seoul, Korea
| |
Collapse
|
42
|
Egemnazarov B, Crnkovic S, Nagy BM, Olschewski H, Kwapiszewska G. Right ventricular fibrosis and dysfunction: Actual concepts and common misconceptions. Matrix Biol 2018; 68-69:507-521. [PMID: 29343458 DOI: 10.1016/j.matbio.2018.01.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 12/25/2022]
Abstract
Fibrosis and remodeling of the right ventricle (RV) are associated with RV dysfunction and mortality of patients with pulmonary hypertension (PH) but it is unknown how much RV fibrosis contributes to RV dysfunction and mortality. RV fibrosis manifests as fibroblast accumulation and collagen deposition which may be excessive. Although extracellular matrix deposition leads to elevated ventricular stiffness, it is not known to which extent it affects RV function. Various animal models of pulmonary hypertension have been established to investigate the role of fibrosis in RV dysfunction and failure. However, they do not perfectly resemble the human disease. In the current review we describe the major characteristics of RV fibrosis, molecular mechanisms regulating the fibrotic process, and discuss how therapeutic targeting of fibrosis might affect RV function.
Collapse
Affiliation(s)
| | - Slaven Crnkovic
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Bence M Nagy
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Horst Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Institute of Physiology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
43
|
Park DS, Mewhort HE, Teng G, Belke D, Turnbull J, Svystonyuk D, Guzzardi D, Kang S, Fedak PW. Heparin Augmentation Enhances Bioactive Properties of Acellular Extracellular Matrix Scaffold. Tissue Eng Part A 2018; 24:128-134. [DOI: 10.1089/ten.tea.2017.0004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Daniel S.J. Park
- Section of Cardiac Surgery, Department of Cardiac Sciences, Health Research Innovation Centre, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Holly E.M. Mewhort
- Section of Cardiac Surgery, Department of Cardiac Sciences, Health Research Innovation Centre, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Guoqi Teng
- Section of Cardiac Surgery, Department of Cardiac Sciences, Health Research Innovation Centre, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Darrell Belke
- Section of Cardiac Surgery, Department of Cardiac Sciences, Health Research Innovation Centre, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Jeannine Turnbull
- Section of Cardiac Surgery, Department of Cardiac Sciences, Health Research Innovation Centre, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Daniyil Svystonyuk
- Section of Cardiac Surgery, Department of Cardiac Sciences, Health Research Innovation Centre, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - David Guzzardi
- Section of Cardiac Surgery, Department of Cardiac Sciences, Health Research Innovation Centre, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Sean Kang
- Section of Cardiac Surgery, Department of Cardiac Sciences, Health Research Innovation Centre, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Paul W.M. Fedak
- Section of Cardiac Surgery, Department of Cardiac Sciences, Health Research Innovation Centre, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
44
|
Dolivo DM, Larson SA, Dominko T. Fibroblast Growth Factor 2 as an Antifibrotic: Antagonism of Myofibroblast Differentiation and Suppression of Pro-Fibrotic Gene Expression. Cytokine Growth Factor Rev 2017; 38:49-58. [PMID: 28967471 DOI: 10.1016/j.cytogfr.2017.09.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 09/22/2017] [Indexed: 02/08/2023]
Abstract
Fibrosis is a pathological condition that is characterized by the replacement of dead or damaged tissue with a nonfunctional, mechanically aberrant scar, and fibrotic pathologies account for nearly half of all deaths worldwide. The causes of fibrosis differ somewhat from tissue to tissue and pathology to pathology, but in general some of the cellular and molecular mechanisms remain constant regardless of the specific pathology in question. One of the common mechanisms underlying fibroses is the paradigm of the activated fibroblast, termed the "myofibroblast," a differentiated mesenchymal cell with demonstrated contractile activity and a high rate of collagen deposition. Fibroblast growth factor 2 (FGF2), one of the members of the mammalian fibroblast growth factor family, is a cytokine with demonstrated antifibrotic activity in non-human animal, human, and in vitro models. FGF2 is highly pleiotropic and its receptors are present on many different cell types throughout the body, lending a great deal of variety to the potential mechanisms of FGF2 effects on fibrosis. However, recent reports demonstrate that a substantial contribution to the antifibrotic effects of FGF2 comes from the inhibitory effects of FGF2 on connective tissue fibroblasts, activated myofibroblasts, and myofibroblast progenitors. FGF2 demonstrates effects antagonistic towards fibroblast activation and towards mesenchymal transition of potential myofibroblast-forming cells, as well as promotes a gene expression paradigm more reminiscent of regenerative healing, such as that which occurs in the fetal wound healing response, than fibrotic resolution. With a better understanding of the mechanisms by which FGF2 alters the wound healing cascade and results in a shift away from scar formation and towards functional tissue regeneration, we may be able to further address the critical need of therapy for varied fibrotic pathologies across myriad tissue types.
Collapse
Affiliation(s)
- David M Dolivo
- Worcester Polytechnic Institute, Department of Biology and Biotechnology,100 Institute Road, Worcester, MA, 01609, United States
| | - Sara A Larson
- Worcester Polytechnic Institute, Department of Biology and Biotechnology,100 Institute Road, Worcester, MA, 01609, United States
| | - Tanja Dominko
- Worcester Polytechnic Institute, Department of Biology and Biotechnology,100 Institute Road, Worcester, MA, 01609, United States.
| |
Collapse
|
45
|
Sun LY, Qu X, Chen LZ, Chen XX, Zheng GS, Wang ZT, Huang WJ, Zhou H. High molecular weight fibroblast growth factor-2 as a promising prognostic biomarker to predict the occurrence of heart failure in atrial fibrillation patients. Heart Vessels 2017; 32:1506-1512. [DOI: 10.1007/s00380-017-1019-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 06/30/2017] [Indexed: 02/03/2023]
|
46
|
Pagano F, Angelini F, Castaldo C, Picchio V, Messina E, Sciarretta S, Maiello C, Biondi-Zoccai G, Frati G, Meglio FD, Nurzynska D, Chimenti I. Normal versus Pathological Cardiac Fibroblast-Derived Extracellular Matrix Differentially Modulates Cardiosphere-Derived Cell Paracrine Properties and Commitment. Stem Cells Int 2017; 2017:7396462. [PMID: 28740514 PMCID: PMC5504962 DOI: 10.1155/2017/7396462] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/16/2017] [Indexed: 02/06/2023] Open
Abstract
Human resident cardiac progenitor cells (CPCs) isolated as cardiosphere-derived cells (CDCs) are under clinical evaluation as a therapeutic product for cardiac regenerative medicine. Unfortunately, limited engraftment and differentiation potential of transplanted cells significantly hamper therapeutic success. Moreover, maladaptive remodelling of the extracellular matrix (ECM) during heart failure progression provides impaired biological and mechanical signals to cardiac cells, including CPCs. In this study, we aimed at investigating the differential effect on the phenotype of human CDCs of cardiac fibroblast-derived ECM substrates from healthy or diseased hearts, named, respectively, normal or pathological cardiogel (CG-N/P). After 7 days of culture, results show increased levels of cardiogenic gene expression (NKX2.5, CX43) on both decellularized cardiogels compared to control, while the proportion and staining patterns of GATA4, OCT4, NKX2.5, ACTA1, VIM, and CD90-positive CPCs were not affected, as assessed by immunofluorescence microscopy and flow cytometry analyses. Nonetheless, CDCs cultured on CG-N secreted significantly higher levels of osteopontin, FGF6, FGF7, NT-3, IGFBP4, and TIMP-2 compared to those cultured on CG-P, suggesting overall a reduced trophic and antiremodelling paracrine profile of CDCs when in contact with ECM from pathological cardiac fibroblasts. These results provide novel insights into the bidirectional interplay between cardiac ECM and CPCs, potentially affecting CPC biology and regenerative potential.
Collapse
Affiliation(s)
- Francesca Pagano
- Department of Medical Surgical Sciences and Biotechnologies, “La Sapienza” University of Rome, Rome, Italy
| | - Francesco Angelini
- Department of Medical Surgical Sciences and Biotechnologies, “La Sapienza” University of Rome, Rome, Italy
| | - Clotilde Castaldo
- Department of Public Health, University of Naples “Federico II”, Naples, Italy
| | - Vittorio Picchio
- Department of Medical Surgical Sciences and Biotechnologies, “La Sapienza” University of Rome, Rome, Italy
| | - Elisa Messina
- Department of Pediatrics and Childhood Neuropsychiatry, “Umberto I” Hospital, “La Sapienza” University of Rome, Rome, Italy
| | - Sebastiano Sciarretta
- Department of Medical Surgical Sciences and Biotechnologies, “La Sapienza” University of Rome, Rome, Italy
- Department of Angiocardioneurology, IRCCS Neuromed, Pozzilli, Italy
| | - Ciro Maiello
- Department of Cardiothoracic Sciences, Monaldi Hospital, Second University of Naples, Caserta, Italy
| | - Giuseppe Biondi-Zoccai
- Department of Medical Surgical Sciences and Biotechnologies, “La Sapienza” University of Rome, Rome, Italy
- Department of Angiocardioneurology, IRCCS Neuromed, Pozzilli, Italy
| | - Giacomo Frati
- Department of Medical Surgical Sciences and Biotechnologies, “La Sapienza” University of Rome, Rome, Italy
- Department of Angiocardioneurology, IRCCS Neuromed, Pozzilli, Italy
| | - Franca di Meglio
- Department of Public Health, University of Naples “Federico II”, Naples, Italy
| | - Daria Nurzynska
- Department of Public Health, University of Naples “Federico II”, Naples, Italy
| | - Isotta Chimenti
- Department of Medical Surgical Sciences and Biotechnologies, “La Sapienza” University of Rome, Rome, Italy
| |
Collapse
|
47
|
Griner JD, Rogers CJ, Zhu MJ, Du M. Lysyl oxidase propeptide promotes adipogenesis through inhibition of FGF-2 signaling. Adipocyte 2017; 6:12-19. [PMID: 28452589 DOI: 10.1080/21623945.2016.1271511] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Lysyl oxidase (LOX) catalyzes the oxidative deamination of lysine residues in collagen and elastin, key components of connective tissue. LOX is synthesized as an inactive 50 kD pre-proenzyme, and secreted to the extracellular matrix where it is cleaved into an active 32 kD LOX, and an 18kD free propeptide (LOX-PP), purportedly an inhibitor of fibroblast growth factor-2 (FGF-2) signaling. Given that adipocytes are distributed inside the connective tissue, it is likely that LOX-PP has an important regulatory role in adipogenesis, which has not been studied. Using NIH 3T3-L1 cells, we observed that FGF-2 inhibited adipogenesis, and LOX-PP promoted adipogenesis of 3T3-L1 cells in the presence of FGF-2; the expression of peroxisome proliferator-activated receptor (PPAR) γ and CCAAT-enhancer binding protein (C/EBP) α, two markers of adipogenesis, were enhanced in the presence of LOX-PP. We further observed that LOX-PP down-regulated AKT and ERK1/2, two proliferative signaling proteins down-stream of FGF-2 signaling. Similarly, inhibition of FGF-2 receptor signaling by canofin, a competitive inhibitor of FGF-2 receptor, promoted adipogenesis albeit less effective compared to LOX-PP. To further explore whether LOX-PP promoted adipogenesis through inhibition of FGF-2 signaling, site directed mutagenesis of LOX-PP, resulting in an Arg158 to Gln158 mutation which abolishes the inhibitory activity of LOX-PP to FGF-2 receptor, attenuated the adipogenic promoting properties of LOX-PP. In summary, for the first time, our data show that LOX-PP enhances adipogenesis at least partially through inhibition of FGF-2 receptor signaling. Our data suggest that LOX-PP may serve as a bona fide therapeutic target for regulating adipogenesis and adipose tissue development.
Collapse
Affiliation(s)
- John D. Griner
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Carl J. Rogers
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA, USA
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
48
|
Goldsmith JG, L’Ecuyer H, Dean D, Goldsmith EC. Application of Gold Nanorods in Cardiovascular Science. NANOSTRUCTURE SCIENCE AND TECHNOLOGY 2017. [DOI: 10.1007/978-3-319-59662-4_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
49
|
Al-Mohanna F. The Cardiokines. ENDOCRINOLOGY OF THE HEART IN HEALTH AND DISEASE 2017:87-114. [DOI: 10.1016/b978-0-12-803111-7.00004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
50
|
Itoh N, Ohta H, Nakayama Y, Konishi M. Roles of FGF Signals in Heart Development, Health, and Disease. Front Cell Dev Biol 2016; 4:110. [PMID: 27803896 PMCID: PMC5067508 DOI: 10.3389/fcell.2016.00110] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/20/2016] [Indexed: 01/13/2023] Open
Abstract
The heart provides the body with oxygen and nutrients and assists in the removal of metabolic waste through the blood vessels of the circulatory system. It is the first organ to form during embryonic morphogenesis. FGFs with diverse functions in development, health, and disease are signaling proteins, mostly as paracrine growth factors or endocrine hormones. The human/mouse FGF family comprises 22 members. Findings obtained from mouse models and human diseases with FGF signaling disorders have indicated that several FGFs are involved in heart development, health, and disease. Paracrine FGFs including FGF8, FGF9, FGF10, and FGF16 act as paracrine signals in embryonic heart development. In addition, paracrine FGFs including FGF2, FGF9, FGF10, and FGF16 play roles as paracrine signals in postnatal heart pathophysiology. Although FGF15/19, FGF21, and FGF23 are typical endocrine FGFs, they mainly function as paracrine signals in heart development or pathophysiology. In heart diseases, serum FGF15/19 levels or FGF21 and FGF23 levels decrease or increase, respectively, indicating their possible roles in heart pathophysiology. FGF2 and FGF10 also stimulate the cardiac differentiation of cultured stem cells and cardiac reprogramming of cultured fibroblasts. These findings provide new insights into the roles of FGF signaling in the heart and potential therapeutic strategies for cardiac disorders.
Collapse
Affiliation(s)
- Nobuyuki Itoh
- Medical Innovation Center, Kyoto University Graduate School of Medicine Kyoto, Japan
| | - Hiroya Ohta
- Department of Microbial Chemistry, Kobe Pharmaceutical University Kobe, Japan
| | - Yoshiaki Nakayama
- Department of Microbial Chemistry, Kobe Pharmaceutical University Kobe, Japan
| | - Morichika Konishi
- Department of Microbial Chemistry, Kobe Pharmaceutical University Kobe, Japan
| |
Collapse
|