1
|
Ribeiro AJS, Guth BD, Engwall M, Eldridge S, Foley CM, Guo L, Gintant G, Koerner J, Parish ST, Pierson JB, Brock M, Chaudhary KW, Kanda Y, Berridge B. Considerations for an In Vitro, Cell-Based Testing Platform for Detection of Drug-Induced Inotropic Effects in Early Drug Development. Part 2: Designing and Fabricating Microsystems for Assaying Cardiac Contractility With Physiological Relevance Using Human iPSC-Cardiomyocytes. Front Pharmacol 2019; 10:934. [PMID: 31555128 PMCID: PMC6727630 DOI: 10.3389/fphar.2019.00934] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/22/2019] [Indexed: 12/14/2022] Open
Abstract
Contractility of the myocardium engines the pumping function of the heart and is enabled by the collective contractile activity of its muscle cells: cardiomyocytes. The effects of drugs on the contractility of human cardiomyocytes in vitro can provide mechanistic insight that can support the prediction of clinical cardiac drug effects early in drug development. Cardiomyocytes differentiated from human-induced pluripotent stem cells have high potential for overcoming the current limitations of contractility assays because they attach easily to extracellular materials and last long in culture, while having human- and patient-specific properties. Under these conditions, contractility measurements can be non-destructive and minimally invasive, which allow assaying sub-chronic effects of drugs. For this purpose, the function of cardiomyocytes in vitro must reflect physiological settings, which is not observed in cultured cardiomyocytes derived from induced pluripotent stem cells because of the fetal-like properties of their contractile machinery. Primary cardiomyocytes or tissues of human origin fully represent physiological cellular properties, but are not easily available, do not last long in culture, and do not attach easily to force sensors or mechanical actuators. Microengineered cellular systems with a more mature contractile function have been developed in the last 5 years to overcome this limitation of stem cell-derived cardiomyocytes, while simultaneously measuring contractile endpoints with integrated force sensors/actuators and image-based techniques. Known effects of engineered microenvironments on the maturity of cardiomyocyte contractility have also been discovered in the development of these systems. Based on these discoveries, we review here design criteria of microengineered platforms of cardiomyocytes derived from pluripotent stem cells for measuring contractility with higher physiological relevance. These criteria involve the use of electromechanical, chemical and morphological cues, co-culture of different cell types, and three-dimensional cellular microenvironments. We further discuss the use and the current challenges for developing and improving these novel technologies for predicting clinical effects of drugs based on contractility measurements with cardiomyocytes differentiated from induced pluripotent stem cells. Future research should establish contexts of use in drug development for novel contractility assays with stem cell-derived cardiomyocytes.
Collapse
Affiliation(s)
- Alexandre J S Ribeiro
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translation Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Brian D Guth
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach an der Riss, Germany.,PreClinical Drug Development Platform (PCDDP), North-West University, Potchefstroom, South Africa
| | - Michael Engwall
- Safety Pharmacology and Animal Research Center, Amgen Research, Thousand Oaks, CA, United States
| | - Sandy Eldridge
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - C Michael Foley
- Department of Integrative Pharmacology, Integrated Sciences and Technology, AbbVie, North Chicago, IL, United States
| | - Liang Guo
- Laboratory of Investigative Toxicology, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Gary Gintant
- Department of Integrative Pharmacology, Integrated Sciences and Technology, AbbVie, North Chicago, IL, United States
| | - John Koerner
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translation Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Stanley T Parish
- Health and Environmental Sciences Institute, Washington, DC, United States
| | - Jennifer B Pierson
- Health and Environmental Sciences Institute, Washington, DC, United States
| | - Mathew Brock
- Department of Safety Assessment, Genentech, South San Francisco, CA, United States
| | - Khuram W Chaudhary
- Global Safety Pharmacology, GlaxoSmithKline plc, Collegeville, PA, United States
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa, Japan
| | - Brian Berridge
- National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| |
Collapse
|
2
|
Constantinides C, Basnett P, Lukasiewicz B, Carnicer R, Swider E, Majid QA, Srinivas M, Carr CA, Roy I. In Vivo Tracking and 1H/ 19F Magnetic Resonance Imaging of Biodegradable Polyhydroxyalkanoate/Polycaprolactone Blend Scaffolds Seeded with Labeled Cardiac Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25056-25068. [PMID: 29965724 PMCID: PMC6338235 DOI: 10.1021/acsami.8b06096] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/02/2018] [Indexed: 05/24/2023]
Abstract
Medium-chain length polyhydroxyalkanoates (MCL-PHAs) have demonstrated exceptional properties for cardiac tissue engineering (CTE) applications. Despite prior work on MCL-PHA/polycaprolactone (PCL) blends, optimal scaffold production and use as an alternative delivery route for controlled release of seeded cardiac progenitor cells (CPCs) in CTE applications in vivo has been lacking. We present herein applicability of MCL-PHA/PCL (95/5 wt %) blends fabricated as thin films with an improved performance compared to the neat MCL-PHA. Polymer characterization confirmed the chemical structure and composition of the synthesized scaffolds, while thermal, wettability, and mechanical properties were also investigated and compared in neat and porous counterparts. In vitro cytocompatibility studies were performed using perfluorocrown-ether-nanoparticle-labeled murine CPCs and studied using confocal microscopy and 19F magnetic resonance spectroscopy and magnetic resonance imaging (MRI). Seeded scaffolds were implanted and studied in the postmortem murine heart in situ and in two additional C57BL/6 mice in vivo (using single-layered and double-layered scaffolds) and imaged immediately after and at 7 days postimplantation. Superior MCL-PHA/PCL scaffold performance has been demonstrated compared to MCL-PHA through experimental comparisons of (a) morphological data using scanning electron microscopy and (b) contact angle measurements attesting to improved CPC adhesion, (c) in vitro confocal microscopy showing increased SC proliferative capacity, and (d) mechanical testing that elicited good overall responses. In vitro MRI results justify the increased seeding density, increased in vitro MRI signal, and improved MRI visibility in vivo, in the double-layered compared to the single-layered scaffolds. Histological evaluations [bright-field, cytoplasmic (Atto647) and nuclear (4',6-diamidino-2-phenylindole) stains] performed in conjunction with confocal microscopy imaging attest to CPC binding within the scaffold, subsequent release and migration to the neighboring myocardium, and increased retention in the murine myocardium in the case of the double-layered scaffold. Thus, MCL-PHA/PCL blends possess tremendous potential for controlled delivery of CPCs and for maximizing possible regeneration in myocardial infarction.
Collapse
Affiliation(s)
- Christakis Constantinides
- Radcliffe Department
of Medicine, Wellcome Trust Centre for Human Genetics, Department
of Cardiovascular Medicine, University of
Oxford, Roosevelt Drive,
Old Road Campus, Headington, Oxford OX3 7BN, U.K.
| | - Pooja Basnett
- Applied Biotechnology
Research Group, Faculty of Science and Technology, University of Westminster, 115 New Cavendish Street, London W1W 6UW, U.K.
| | - Barbara Lukasiewicz
- Applied Biotechnology
Research Group, Faculty of Science and Technology, University of Westminster, 115 New Cavendish Street, London W1W 6UW, U.K.
| | - Ricardo Carnicer
- Radcliffe Department
of Medicine, Wellcome Trust Centre for Human Genetics, Department
of Cardiovascular Medicine, University of
Oxford, Roosevelt Drive,
Old Road Campus, Headington, Oxford OX3 7BN, U.K.
| | - Edyta Swider
- Radboud University
Medical Center (Radboud UMC), Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences (RIMLS), 278, P.O. Box 9101, 6500HB Nijmegen, The Netherlands
| | - Qasim A. Majid
- Department
of Myocardial Function, National Heart and
Lung Institute, Imperial College London, London W12 0NN, U.K.
| | - Mangala Srinivas
- Radboud University
Medical Center (Radboud UMC), Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences (RIMLS), 278, P.O. Box 9101, 6500HB Nijmegen, The Netherlands
| | - Carolyn A. Carr
- Department of Physiology, Anatomy, and Genetics, University of Oxford, South Parks Road, Oxford OX1 3PT, U.K.
| | - Ipsita Roy
- Applied Biotechnology
Research Group, Faculty of Science and Technology, University of Westminster, 115 New Cavendish Street, London W1W 6UW, U.K.
| |
Collapse
|
3
|
KC P, Shah M, Liao J, Zhang G. Prevascularization of Decellularized Porcine Myocardial Slice for Cardiac Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2017; 9:2196-2204. [PMID: 28029762 PMCID: PMC6445257 DOI: 10.1021/acsami.6b15291] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Prevacularization strategies have been implemented in tissue engineering to generate microvasculature networks within a scaffold prior to implantation. Prevascularizing scaffolds will shorten the time of functional vascular perfusion with host upon implantation. In this study, we explored key variables affecting the interaction between decellularized porcine myocardium slices (dPMSs) and reseeded stem cells toward the fabrication of prevascularized cardiac tissue. Our results demonstrated that dPMS supports attachment of human mesenchymal stem cells (hMSCs) and rat adipose derived stem cells (rASCs) with high viability. We found that cell seeding efficiency and proliferation are dPMS thickness dependent. Compared to lateral cell seeding, bilateral cell seeding strategy significantly enhanced seeding efficiency, infiltration, and growth in 600 μm dPMS. dPMS induced endothelial differentiation and maturation of hMSCs and rASCs after 1 and 5 days culture, respectively. These results indicate the potential of dPMS as a powerful platform to develop prevascularized scaffolds and fabricate functional cardiac patches.
Collapse
Affiliation(s)
- Pawan KC
- † Department of Biomedical Engineering, The University of Akron,Akron, Ohio 44325, United States
| | - Mickey Shah
- † Department of Biomedical Engineering, The University of Akron,Akron, Ohio 44325, United States
- ‡ Integrated Bioscience Program, The University of Akron, Akron, Ohio 44325, United States
| | - Jun Liao
- § Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Ge Zhang
- † Department of Biomedical Engineering, The University of Akron,Akron, Ohio 44325, United States
| |
Collapse
|
4
|
Ghosh LD, Ravi V, Sanpui P, Sundaresan NR, Chatterjee K. Keratin mediated attachment of stem cells to augment cardiomyogenic lineage commitment. Colloids Surf B Biointerfaces 2016; 151:178-188. [PMID: 28012406 DOI: 10.1016/j.colsurfb.2016.12.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/10/2016] [Accepted: 12/14/2016] [Indexed: 01/04/2023]
Abstract
The objective of this work was to develop a simple surface modification technique using keratin derived from human hair for efficient cardiomyogenic lineage commitment of human mesenchymal stem cells (hMSCs). Keratin was extracted from discarded human hair containing both the acidic and basic components along with the heterodimers. The extracted keratin was adsorbed to conventional tissue culture polystyrene surfaces at different concentration. Keratin solution of 500μg/ml yielded a well coated layer of 12±1nm thickness with minimal agglomeration. The keratin coated surfaces promoted cell attachment and proliferation. Large increases in the mRNA expression of known cardiomyocyte genes such as cardiac actinin, cardiac troponin and β-myosin heavy chain were observed. Immunostaining revealed increased expression of sarcomeric α-actinin and tropomyosin whereas Western blots confirmed higher expression of tropomyosin and myocyte enhancer factor 2C in cells on the keratin coated surface than on the non-coated surface. Keratin promoted DNA demethylation of the Atp2a2 and Nkx2.5 genes thereby elucidating the importance of epigenetic changes as a possible molecular mechanism underlying the increased differentiation. A global gene expression analysis revealed a significant alteration in the expression of genes involved in pathways associated in cardiomyogenic commitment including cytokine and chemokine signaling, cell-cell and cell-matrix interactions, Wnt signaling, MAPK signaling, TGF-β signaling and FGF signaling pathways among others. Thus, adsorption of keratin offers a facile and affordable yet potent route for inducing cardiomyogenic lineage commitment of stem cells with important implications in developing xeno-free strategies in cardiovascular regenerative medicine.
Collapse
Affiliation(s)
- Lopamudra Das Ghosh
- Department of Materials Engineering and Indian Institute of Science, Bangalore 560012 India
| | - Venkatraman Ravi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012 India
| | - Pallab Sanpui
- Department of Materials Engineering and Indian Institute of Science, Bangalore 560012 India
| | - Nagalingam R Sundaresan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012 India
| | - Kaushik Chatterjee
- Department of Materials Engineering and Indian Institute of Science, Bangalore 560012 India.
| |
Collapse
|
5
|
Winters AA, Bou-Ghannam S, Thorp H, Hawayek JA, Atkinson DL, Bartlett CE, Silva FJ, Hsu EW, Moreno AP, Grainger DA, Patel AN. Evaluation of Multiple Biological Therapies for Ischemic Cardiac Disease. Cell Transplant 2016; 25:1591-1607. [DOI: 10.3727/096368916x691501] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
| | - Sophia Bou-Ghannam
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| | - Hallie Thorp
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| | - Jose A. Hawayek
- University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | | | | | - Edward W. Hsu
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| | - Alonso P. Moreno
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
- Nora Eccles Cardiovascular and Training Research Institute, Salt Lake City, UT, USA
| | - David A. Grainger
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| | - Amit N. Patel
- University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|