1
|
Liu X, Li Y, He M, Zhao Y, Li C, Wang Y, Zhou Q, Peng Y, Zhan L. Multi-bioluminescence based dynamic imaging of Pseudomonas aeruginosa-induced hepatic inflammation process. Microb Pathog 2025; 204:107521. [PMID: 40169074 DOI: 10.1016/j.micpath.2025.107521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/03/2025]
Abstract
Bacterial infections are a major cause of death worldwide. However, it is difficult to track the in vivo dynamics of pathogenic bacteria and the expression of inflammatory factors in infected animals throughout the infection process. This work used Pseudomonas aeruginosa as an infection model and utilised genetically bioluminescence-labeled P. aeruginosa and hydrodynamic transfection technology to construct a liver-visual NF-κB, IL-6, TNF-α inflammation model, thereby enabling the tracking of the dynamic spread of P. aeruginosa in infected animals and the transient activation of the liver inflammation response. The results showed that P. aeruginosa introduced via the tail vein initially accumulates in the liver and gradually activates NF-κB, IL-6, and TNF-α. Subsequently, the P. aeruginosa infection gradually spreads to the lungs and small intestine, and final proliferation leads to septic death in mice. During the infection process, we observed a strictly negative correlation between platelet activation and bacterial proliferation; the higher the degree of platelet activation, the stronger the inhibitory effect on bacterial proliferation and liver inflammation. In conclusion, this bioluminescence-based in vivo imaging technique offers new opportunities to investigate the innate immune response in controlling pathogenic infections.
Collapse
Affiliation(s)
- Xingzhao Liu
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, People's Republic of China
| | - Yipu Li
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Minwei He
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, People's Republic of China
| | - Yan Zhao
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, People's Republic of China
| | - Chenyan Li
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, People's Republic of China
| | - Yi Wang
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, People's Republic of China
| | - Qianqian Zhou
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, People's Republic of China.
| | - Ying Peng
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
| | - Linsheng Zhan
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, People's Republic of China.
| |
Collapse
|
2
|
Leroy AG, Caillon J, Broquet A, Lemabecque V, Delanou S, Caroff N, Asehnoune K, Roquilly A, Crémet L. Azithromycin regulates bacterial virulence and immune response in a murine model of ceftazidime-treated Pseudomonas aeruginosa acute pneumonia. Microbiol Immunol 2024; 68:27-35. [PMID: 38073281 DOI: 10.1111/1348-0421.13106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 02/07/2024]
Abstract
Pseudomonas aeruginosa (PA) remains one of the leading causes of nosocomial acute pneumonia. The array of virulence factors expressed by PA and the intense immune response associated with PA pneumonia play a major role in the severity of these infections. New therapeutic approaches are needed to overcome the high resistance of PA to antibiotics and to reduce the direct damage to host tissues. Through its immunomodulatory and anti-virulence effects, azithromycin (AZM) has demonstrated clinical benefits in patients with chronic PA respiratory infections. However, there is relatively little evidence in PA acute pneumonia. We investigated the effects of AZM, as an adjunctive therapy combined with ceftazidime (CAZ), in a murine model of PA acute pneumonia. We observed that the combined therapy (i) reduces the weight loss of mice 24 h post-infection (hpi), (ii) decreases neutrophil influx into the lungs at 6 and 24 hpi, while this effect is absent in a LPS-induced pneumonia or when PA is pretreated with antibiotics and mice do not receive any antibiotics, and that (iii) AZM, alone or with CAZ, modulates the expression of PA quorum sensing regulators and virulence factors (LasI, LasA, PqsE, PhzM, ExoS). Our findings support beneficial effects of AZM with CAZ on PA acute pneumonia by both bacterial virulence and immune response modulations. Further investigations are needed to clarify the exact underlying mechanisms responsible for the reduction of the neutrophils influx and to better discriminate between direct immunomodulatory properties of AZM, and indirect effects on neutrophilia resulting from bacterial virulence modulation.
Collapse
Affiliation(s)
- A-G Leroy
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, Nantes, France
- CHU de Nantes, Service de Bactériologie-Hygiène Hospitalière, Nantes Université, Nantes, France
| | - J Caillon
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, Nantes, France
- CHU de Nantes, Service de Bactériologie-Hygiène Hospitalière, Nantes Université, Nantes, France
| | - A Broquet
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, Nantes, France
| | - V Lemabecque
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, Nantes, France
| | - S Delanou
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, Nantes, France
| | - N Caroff
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, Nantes, France
| | - K Asehnoune
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, Nantes, France
- Service Anesthésie Réanimation Chirurgicale, CHU de Nantes, Nantes Université, Nantes, France
| | - A Roquilly
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, Nantes, France
- Service Anesthésie Réanimation Chirurgicale, CHU de Nantes, Nantes Université, Nantes, France
| | - L Crémet
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, Nantes, France
- CHU de Nantes, Service de Bactériologie-Hygiène Hospitalière, Nantes Université, Nantes, France
| |
Collapse
|
3
|
Jeong GJ, Khan F, Khan S, Tabassum N, Mehta S, Kim YM. Pseudomonas aeruginosa virulence attenuation by inhibiting siderophore functions. Appl Microbiol Biotechnol 2023; 107:1019-1038. [PMID: 36633626 DOI: 10.1007/s00253-022-12347-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023]
Abstract
Pseudmonas aeruginosa is a Gram-negative bacterium known to be ubiquitous and recognized as one of the leading causes of infections such as respiratory, urinary tract, burns, cystic fibrosis, and in immunocompromised individuals. Failure of antimicrobial therapy has been documented to be attributable due to the development of various resistance mechanisms, with a proclivity to develop additional resistance mechanisms rapidly. P. aeruginosa virulence attenuation is an alternate technique for disrupting pathogenesis without impacting growth. The iron-scavenging siderophores (pyoverdine and pyochelin) generated by P. aeruginosa have various properties like scavenging iron, biofilm formation, quorum sensing, increasing virulence, and toxicity to the host. As a result, developing an antivirulence strategy, specifically inhibiting the P. aeruginosa siderophore, has been a promising therapeutic option to limit their infection. Several natural, synthetic compounds and nanoparticles have been identified as potent inhibitors of siderophore production/biosynthesis, function, and transport system. The current review discussed pyoverdine and pyochelin's synthesis and transport system in P. aeruginosa. Furthermore, it is also focused on the role of several natural and synthetic compounds in reducing P. aeruginosa virulence by inhibiting siderophore synthesis, function, and transport. The underlying mechanism involved in inhibiting the siderophore by natural and synthetic compounds has also been explained. KEY POINTS: • Pseudomonas aeruginosa is an opportunistic pathogen linked to chronic respiratory, urinary tract, and burns infections, as well as cystic fibrosis and immunocompromised patients. • P. aeruginosa produces two virulent siderophores forms: pyoverdine and pyochelin, which help it to survive in iron-deficient environments. • The inhibition of siderophore production, transport, and activity using natural and synthesized drugs has been described as a potential strategy for controlling P. aeruginosa infection.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea. .,Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea.
| | - Sohail Khan
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, Uttar Pradesh, 201309, India
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea.,Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Sonu Mehta
- Anthem Biosciences Private Limited, Bommasandra, Bangalore, Karnataka, 56009, India
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea. .,Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea. .,Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
4
|
Cangui-Panchi SP, Ñacato-Toapanta AL, Enríquez-Martínez LJ, Salinas-Delgado GA, Reyes J, Garzon-Chavez D, Machado A. Battle royale: Immune response on biofilms – host-pathogen interactions. CURRENT RESEARCH IN IMMUNOLOGY 2023; 4:100057. [PMID: 37025390 PMCID: PMC10070391 DOI: 10.1016/j.crimmu.2023.100057] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/08/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
The research interest of the scientific community in biofilm-forming microorganisms is growing due to the problems caused by their infections affecting humans and animals, mainly because of the difficulty of the host immune system in eradicating these microbial complex communities and the increasing antimicrobial resistance rates worldwide. This review describes the virulence factors and their interaction with the microbial communities of four well-known and highly biofilm-forming pathogens, more exactly, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus spp., and Candida spp. The innate and adaptive immune responses caused by the infection with these microorganisms and their evasion to the host immune system by biofilm formation are discussed in the present work. The relevance of the differences in the expression of certain virulence factors and the immune response in biofilm-associated infections when compared to planktonic infections is usually described as the biofilm architecture protects the pathogen and alters the host immune responses, here we extensively discussed these mechanisms.
Collapse
Affiliation(s)
- Sandra Pamela Cangui-Panchi
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Quito, Ecuador
| | - Anahí Lizbeth Ñacato-Toapanta
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Quito, Ecuador
| | - Leonardo Joshué Enríquez-Martínez
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Quito, Ecuador
| | - Gabriela Alexandra Salinas-Delgado
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Quito, Ecuador
| | - Jorge Reyes
- Hospital del Instituto Ecuatoriano de Seguridad Social (IESS) Quito-Sur, Quito, Ecuador
- Facultad de Ciencias Químicas, Universidad Central del Ecuador, Quito, Ecuador
| | - Daniel Garzon-Chavez
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Quito, Ecuador
| | - António Machado
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Quito, Ecuador
- Corresponding author.
| |
Collapse
|
5
|
Nolan C, Behrends V. Sub-Inhibitory Antibiotic Exposure and Virulence in Pseudomonas aeruginosa. Antibiotics (Basel) 2021; 10:antibiotics10111393. [PMID: 34827331 PMCID: PMC8615142 DOI: 10.3390/antibiotics10111393] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas aeruginosa is a prime opportunistic pathogen, one of the most important causes of hospital-acquired infections and the major cause of morbidity and mortality in cystic fibrosis lung infections. One reason for the bacterium's pathogenic success is the large array of virulence factors that it can employ. Another is its high degree of intrinsic and acquired resistance to antibiotics. In this review, we first summarise the current knowledge about the regulation of virulence factor expression and production. We then look at the impact of sub-MIC antibiotic exposure and find that the virulence-antibiotic interaction for P. aeruginosa is antibiotic-specific, multifaceted, and complex. Most studies undertaken to date have been in vitro assays in batch culture systems, involving short-term (<24 h) antibiotic exposure. Therefore, we discuss the importance of long-term, in vivo-mimicking models for future work, particularly highlighting the need to account for bacterial physiology, which by extension governs both virulence factor expression and antibiotic tolerance/resistance.
Collapse
|
6
|
Konikkat S, Scribner MR, Eutsey R, Hiller NL, Cooper VS, McManus J. Quantitative mapping of mRNA 3' ends in Pseudomonas aeruginosa reveals a pervasive role for premature 3' end formation in response to azithromycin. PLoS Genet 2021; 17:e1009634. [PMID: 34252072 PMCID: PMC8297930 DOI: 10.1371/journal.pgen.1009634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/22/2021] [Accepted: 06/01/2021] [Indexed: 01/06/2023] Open
Abstract
Pseudomonas aeruginosa produces serious chronic infections in hospitalized patients and immunocompromised individuals, including patients with cystic fibrosis. The molecular mechanisms by which P. aeruginosa responds to antibiotics and other stresses to promote persistent infections may provide new avenues for therapeutic intervention. Azithromycin (AZM), an antibiotic frequently used in cystic fibrosis treatment, is thought to improve clinical outcomes through a number of mechanisms including impaired biofilm growth and quorum sensing (QS). The mechanisms underlying the transcriptional response to AZM remain unclear. Here, we interrogated the P. aeruginosa transcriptional response to AZM using a fast, cost-effective genome-wide approach to quantitate RNA 3’ ends (3pMap). We also identified hundreds of P. aeruginosa genes with high incidence of premature 3’ end formation indicative of riboregulation in their transcript leaders using 3pMap. AZM treatment of planktonic and biofilm cultures alters the expression of hundreds of genes, including those involved in QS, biofilm formation, and virulence. Strikingly, most genes downregulated by AZM in biofilms had increased levels of intragenic 3’ ends indicating premature transcription termination, transcriptional pausing, or accumulation of stable intermediates resulting from the action of nucleases. Reciprocally, AZM reduced premature intragenic 3’ end termini in many upregulated genes. Most notably, reduced termination accompanied robust induction of obgE, a GTPase involved in persister formation in P. aeruginosa. Our results support a model in which AZM-induced changes in 3’ end formation alter the expression of central regulators which in turn impairs the expression of QS, biofilm formation and stress response genes, while upregulating genes associated with persistence. Pseudomonas aeruginosa is a common source of hospital-acquired infections and causes prolonged illness in patients with cystic fibrosis. P. aeruginosa infections are often treated with the macrolide antibiotic azithromycin, which changes the expression of many genes involved in infection. By examining such expression changes at nucleotide resolution, we found azithromycin treatment alters the locations of mRNA 3’ ends suggesting most downregulated genes are subject to premature 3’ end formation. We further identified candidate RNA regulatory elements that P. aeruginosa may use to control gene expression. Our work provides new insights in P. aeruginosa gene regulation and its response to antibiotics.
Collapse
Affiliation(s)
- Salini Konikkat
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Michelle R. Scribner
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Rory Eutsey
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - N. Luisa Hiller
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Vaughn S. Cooper
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Joel McManus
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
7
|
Leroy AG, Caillon J, Caroff N, Broquet A, Corvec S, Asehnoune K, Roquilly A, Crémet L. Could Azithromycin Be Part of Pseudomonas aeruginosa Acute Pneumonia Treatment? Front Microbiol 2021; 12:642541. [PMID: 33796090 PMCID: PMC8008145 DOI: 10.3389/fmicb.2021.642541] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/26/2021] [Indexed: 12/29/2022] Open
Abstract
Azithromycin (AZM) is a 15-membered-ring macrolide that presents a broad-spectrum antimicrobial activity against Gram-positive bacteria and atypical microorganisms but suffers from a poor diffusion across the outer-membrane of Gram-negative bacilli, including Pseudomonas aeruginosa (PA). However, AZM has demonstrated clinical benefits in patients suffering from chronic PA respiratory infections, especially cystic fibrosis patients. Since the rise of multidrug-resistant PA has led to a growing need for new therapeutic options, this macrolide has been proposed as an adjunctive therapy. Clinical trials assessing AZM in PA acute pneumonia are scarce. However, a careful examination of the available literature provides good rationales for its use in that context. In fact, 14- and 15-membered-ring macrolides have demonstrated immunomodulatory and immunosuppressive effects that could be of major interest in the management of acute illness. Furthermore, growing evidence supports a downregulation of PA virulence dependent on direct interaction with the ribosomes, and based on the modulation of several key regulators from the Quorum Sensing network. First highlighted in vitro, these interesting properties of AZM have subsequently been confirmed in the animal models. In this review, we systematically analyzed the literature regarding AZM immunomodulatory and anti-PA effects. In vitro and in vivo studies, as well as clinical trials were reviewed, looking for rationales for AZM use in PA acute pneumonia.
Collapse
Affiliation(s)
- Anne-Gaëlle Leroy
- Laboratoire EA 3826 "Thérapeutiques cliniques et expérimentales des infections", IRS2-Nantes Biotech, Université de Nantes, Nantes, France.,CHU de Nantes, Service de Bactériologie-Hygiène hospitalière, Nantes Université, Nantes, France
| | - Jocelyne Caillon
- Laboratoire EA 3826 "Thérapeutiques cliniques et expérimentales des infections", IRS2-Nantes Biotech, Université de Nantes, Nantes, France.,CHU de Nantes, Service de Bactériologie-Hygiène hospitalière, Nantes Université, Nantes, France
| | - Nathalie Caroff
- Laboratoire EA 3826 "Thérapeutiques cliniques et expérimentales des infections", IRS2-Nantes Biotech, Université de Nantes, Nantes, France
| | - Alexis Broquet
- Laboratoire EA 3826 "Thérapeutiques cliniques et expérimentales des infections", IRS2-Nantes Biotech, Université de Nantes, Nantes, France
| | - Stéphane Corvec
- CHU de Nantes, Service de Bactériologie-Hygiène hospitalière, Nantes Université, Nantes, France.,CRCINA, U1232, CHU Nantes, Nantes, France
| | - Karim Asehnoune
- Laboratoire EA 3826 "Thérapeutiques cliniques et expérimentales des infections", IRS2-Nantes Biotech, Université de Nantes, Nantes, France.,CHU de Nantes, Service Anesthésie Réanimation Chirurgicale, Nantes Université, Nantes, France
| | - Antoine Roquilly
- Laboratoire EA 3826 "Thérapeutiques cliniques et expérimentales des infections", IRS2-Nantes Biotech, Université de Nantes, Nantes, France.,CHU de Nantes, Service Anesthésie Réanimation Chirurgicale, Nantes Université, Nantes, France
| | - Lise Crémet
- Laboratoire EA 3826 "Thérapeutiques cliniques et expérimentales des infections", IRS2-Nantes Biotech, Université de Nantes, Nantes, France.,CHU de Nantes, Service de Bactériologie-Hygiène hospitalière, Nantes Université, Nantes, France
| |
Collapse
|
8
|
Ruscitti F, Ravanetti F, Bertani V, Ragionieri L, Mecozzi L, Sverzellati N, Silva M, Ruffini L, Menozzi V, Civelli M, Villetti G, Stellari FF. Quantification of Lung Fibrosis in IPF-Like Mouse Model and Pharmacological Response to Treatment by Micro-Computed Tomography. Front Pharmacol 2020; 11:1117. [PMID: 32792953 PMCID: PMC7385278 DOI: 10.3389/fphar.2020.01117] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 07/09/2020] [Indexed: 12/19/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive degenerative lung disease leading to respiratory failure and death. Although anti-fibrotic drugs are now available for treating IPF, their clinical efficacy is limited and lung transplantation remains the only modality to prolong survival of IPF patients. Despite its limitations, the bleomycin (BLM) animal model remains the best characterized experimental tool for studying disease pathogenesis and assessing efficacy of novel potential drugs. In the present study, the effects of oropharyngeal (OA) and intratracheal (IT) administration of BLM were compared in C57BL/6 mice. The development of lung fibrosis was followed in vivo for 28 days after BLM administration by micro-computed tomography and ex vivo by histological analyses (bronchoalveolar lavage, histology in the left lung to stage fibrosis severity and hydroxyproline determination in the right lung). In a separate study, the antifibrotic effect of Nintedanib was investigated after oral administration (60 mg/kg for two weeks) in the OA BLM model. Lung fibrosis severity and duration after BLM OA and IT administration was comparable. However, a more homogeneous distribution of fibrotic lesions among lung lobes was apparent after OA administration. Quantification of fibrosis by micro-CT based on % of poorly aerated tissue revealed that this readout correlated significantly with the standard histological methods in the OA model. These findings were further confirmed in a second study in the OA model, evaluating Nintedanib anti-fibrotic effects. Indeed, compared to the BLM group, Nintedanib inhibited significantly the increase in % of poorly aerated areas (26%) and reduced ex vivo histological lesions and hydroxyproline levels by 49 and 41%, respectively. This study indicated that micro-computed tomography is a valuable in vivo technology for lung fibrosis quantification, which will be very helpful in the future to better evaluate new anti-fibrotic drug candidates.
Collapse
Affiliation(s)
| | | | - Valeria Bertani
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Luisa Ragionieri
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Laura Mecozzi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Mario Silva
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Livia Ruffini
- Department Nuclear Medicine, Academic Hospital of Parma, Parma, Italy
| | | | - Maurizio Civelli
- Corporate Pre-Clinical R&D, Chiesi Farmaceutici S.p.A., Parma, Italy
| | - Gino Villetti
- Corporate Pre-Clinical R&D, Chiesi Farmaceutici S.p.A., Parma, Italy
| | | |
Collapse
|
9
|
Ravanetti F, Ragionieri L, Ciccimarra R, Ruscitti F, Pompilio D, Gazza F, Villetti G, Cacchioli A, Stellari FF. Modeling pulmonary fibrosis through bleomycin delivered by osmotic minipump: a new histomorphometric method of evaluation. Am J Physiol Lung Cell Mol Physiol 2019; 318:L376-L385. [PMID: 31851533 PMCID: PMC7052681 DOI: 10.1152/ajplung.00311.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The systemic delivery of bleomycin (BLM) to mice through subcutaneously implanted osmotic minipumps may be used to experimentally mimic the typical features of systemic sclerosis and related interstitial lung diseases. The published studies on this model principally have focused on induced dermal modifications, probably because lung lesions are typically mild, subpleurally localized, and difficult to analyze. The use of high BLM doses to increase their severity has been proposed but is ethically questionable because of the compromising of animal welfare. We propose a tailored histomorphometric method suitable to detect and quantify this type of mild lung lesions. Using a two-step automated image analysis, a peripheral region of interest with a depth of 250 µm from the pleural edge was defined on whole slide images, and the fibrotic foci were histomorphometrically characterized. The effects of different BLM doses on lung alterations were evaluated in C57BL/6 mice and 60 U/kg resulted in a fair compromise between fibrotic lesions and animal welfare. This dose was also tested in time course experiments. The analysis revealed a peak of histological fibrotic-like alterations, cytokine expression, metalloprotease, and macrophagic activation between the 21st and 28th day after pump implant. The induced dermal fibrosis was characterized by the progressive loss of the white dermal adipose layer, an increase in dermal thickness, dermal hyperplasia, and more compacted collagen fibers. Despite the trend toward spontaneous resolution, our model allowed a double organ readout of the BLM effect and the identification of a therapeutic window for testing pharmacological compounds without using life-threatening doses.
Collapse
Affiliation(s)
| | - Luisa Ragionieri
- Department of Veterinary Science, University of Parma, Parma, Italy
| | | | | | - Daniela Pompilio
- Corporate Preclinical R&D, Chiesi Farmaceutici S.p.A., Parma, Italy
| | - Ferdinando Gazza
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Gino Villetti
- Corporate Preclinical R&D, Chiesi Farmaceutici S.p.A., Parma, Italy
| | | | - Fabio F Stellari
- Corporate Preclinical R&D, Chiesi Farmaceutici S.p.A., Parma, Italy
| |
Collapse
|
10
|
Stellari FF, Sala A, Ruscitti F, Buccellati C, Allen A, Risé P, Civelli M, Villetti G. CHF6001 Inhibits NF-κB Activation and Neutrophilic Recruitment in LPS-Induced Lung Inflammation in Mice. Front Pharmacol 2019; 10:1337. [PMID: 31798449 PMCID: PMC6863066 DOI: 10.3389/fphar.2019.01337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/18/2019] [Indexed: 12/15/2022] Open
Abstract
Inhibitors of phosphodiesterase 4 (PDE4) are potent anti-inflammatory agents, inhibiting the production of inflammatory mediators through the elevation of intracellular cAMP concentrations. We studied the activity of a novel PDE4 inhibitor, CHF6001, both in vitro in human cells and in vivo, using bioluminescence imaging (BLI) in mice lung inflammation. Mice transiently transfected with the luciferase gene under the control of an NF-κB responsive element (NF-κB-luc) have been used to assess the in vivo anti-inflammatory activity of CHF6001 in lipopolysaccharide (LPS)-induced lung inflammation. BLI as well as inflammatory cells and the concentrations of pro-inflammatory cytokines were monitored in bronchoalveolar lavage fluids (BALF) while testing in vitro its ability to affect the production of leukotriene B4 (LTB4), measured by LC/MS/MS, by LPS/LPS/N-formyl--methionyl--leucyl-phenylalanine (fMLP)-activated human blood. CHF6001 inhibited the production of LTB4 in LPS/fMLP-activated human blood at sub-nanomolar concentrations. LPS-induced an increase of BLI signal in NF-κB-luc mice, and CHF6001 administered by dry powder inhalation decreased in parallel luciferase signal, cell airway infiltration, and pro-inflammatory cytokine concentrations in BALF. The results obtained provide in vitro and in vivo evidence of the anti-inflammatory activity of the potent PDE4 inhibitor CHF6001, showing that with a topical administration that closely mimics inhalation in humans, it efficiently disrupts the NF-κB activation associated with LPS challenge, an effect that may be relevant for the prevention of exacerbation episodes in chronic obstructive pulmonary disease subjects.
Collapse
Affiliation(s)
- Fabio F Stellari
- Pharmacology and Toxicology Department Corporate Pre-Clinical R&D, Chiesi Farmaceutici S.p.A, Parma, Italy
| | - Angelo Sala
- Department of Pharmaceutical Sciences, School of Drug Sciences, University of Milan, Milan, Italy.,IBIM, Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - Francesca Ruscitti
- Pharmacology and Toxicology Department Corporate Pre-Clinical R&D, Chiesi Farmaceutici S.p.A, Parma, Italy
| | - Carola Buccellati
- Department of Pharmaceutical Sciences, School of Drug Sciences, University of Milan, Milan, Italy
| | - Andrew Allen
- Pharmacology and Toxicology Department Corporate Pre-Clinical R&D, Chiesi Farmaceutici S.p.A, Parma, Italy
| | - Patrizia Risé
- Department of Pharmaceutical Sciences, School of Drug Sciences, University of Milan, Milan, Italy
| | - Maurizio Civelli
- Pharmacology and Toxicology Department Corporate Pre-Clinical R&D, Chiesi Farmaceutici S.p.A, Parma, Italy
| | - Gino Villetti
- Pharmacology and Toxicology Department Corporate Pre-Clinical R&D, Chiesi Farmaceutici S.p.A, Parma, Italy
| |
Collapse
|
11
|
Sandri A, Ortombina A, Boschi F, Cremonini E, Boaretti M, Sorio C, Melotti P, Bergamini G, Lleo M. Inhibition of Pseudomonas aeruginosa secreted virulence factors reduces lung inflammation in CF mice. Virulence 2018; 9:1008-1018. [PMID: 29938577 PMCID: PMC6086295 DOI: 10.1080/21505594.2018.1489198] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background: Cystic fibrosis (CF) lung infection is a complex condition where opportunistic pathogens and defective immune system cooperate in developing a constant cycle of infection and inflammation. The major pathogen, Pseudomonas aeruginosa, secretes a multitude of virulence factors involved in host immune response and lung tissue damage. In this study, we examined the possible anti-inflammatory effects of molecules inhibiting P. aeruginosa virulence factors. Methods: Pyocyanin, pyoverdine and proteases were measured in bacterial culture supernatant from different P. aeruginosa strains. Inhibition of virulence factors by sub-inhibitory concentrations of clarithromycin and by protease inhibitors was evaluated. Lung inflammatory response was monitored by in vivo bioluminescence imaging in wild-type and CFTR-knockout mice expressing a luciferase gene under the control of a bovine IL-8 promoter. Results: The amount of proteases, pyocyanin and pyoverdine secreted by P. aeruginosa strains was reduced after growth in the presence of a sub-inhibitory dose of clarithromycin. Intratracheal challenge with culture supernatant containing bacteria-released products induced a strong IL-8-mediated response in mouse lungs while lack of virulence factors corresponded to a reduction in bioluminescence emission. Particularly, sole inactivation of proteases by inhibitors Ilomastat and Marimastat also resulted in decreased lung inflammation. Conclusions: Our data support the assumption that virulence factors are involved in P. aeruginosa pro-inflammatory action in CF lungs; particularly, proteases seem to play an important role. Inhibition of virulence factors production and activity resulted in decreased lung inflammation; thus, clarithromycin and protease inhibitors potentially represent additional therapeutic therapies for P. aeruginosa-infected patients.
Collapse
Affiliation(s)
- Angela Sandri
- a Department of Diagnostics and Public Health , University of Verona , Verona , Italy
| | - Alessia Ortombina
- a Department of Diagnostics and Public Health , University of Verona , Verona , Italy
| | - Federico Boschi
- b Department of Computer Science , University of Verona , Verona , Italy
| | - Eleonora Cremonini
- a Department of Diagnostics and Public Health , University of Verona , Verona , Italy
| | - Marzia Boaretti
- a Department of Diagnostics and Public Health , University of Verona , Verona , Italy
| | - Claudio Sorio
- c Department of Medicine , University of Verona , Verona , Italy
| | - Paola Melotti
- d Cystic Fibrosis Center , Azienda Ospedaliera Universitaria Integrata di Verona , Verona , Italy
| | | | - Maria Lleo
- a Department of Diagnostics and Public Health , University of Verona , Verona , Italy
| |
Collapse
|
12
|
Montuschi P, Lucidi V, Paris D, Montemitro E, Shohreh R, Mores N, Melck D, Santini G, Majo F, Motta A. Metabolomic Analysis by Nuclear Magnetic Resonance Spectroscopy as a New Approach to Understanding Inflammation and Monitoring of Pharmacological Therapy in Children and Young Adults With Cystic Fibrosis. Front Pharmacol 2018; 9:595. [PMID: 29967580 PMCID: PMC6015879 DOI: 10.3389/fphar.2018.00595] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/17/2018] [Indexed: 01/05/2023] Open
Abstract
15-F2t-Isoprostane, a reliable biomarker of oxidative stress, has been found elevated in exhaled breath condensate (EBC), a non-invasive technique for sampling of airway secretions, in patients with cystic fibrosis (CF). Azithromycin has antioxidant properties in experimental models of CF, but its effects on oxidative stress in CF patients are largely unknown. Primary objective of this pilot, proof-of-concept, prospective, parallel group, pharmacological study, was investigating the potential antioxidant effects of azithromycin in CF patients as reflected by EBC 15-F2t-isoprostane. Secondary objectives included studying the effect of azithromycin on EBC and serum metabolic profiles, and on serum 15-F2t-isoprostane. In CF patients who were on maintenance treatment with oral vitamin E (200 UI once daily), treatment with oral azithromycin (250 or 500 mg depending on body weight) plus vitamin E (400 UI once daily) (group A) (n = 24) or oral vitamin E alone (400 UI once daily) (group B) (n = 21) was not associated with changes in EBC 15-F2t-isoprostane concentrations compared with baseline values after 8-weeks treatment or 2 weeks after treatment suspension. There was no between-group difference in post-treatment EBC 15-F2t-isoprostane. Likewise, no within- or between-group differences in serum 15-F2t-isoprostane concentrations were observed in either study group. NMR spectroscopy-based metabolomics of EBC shows that suspension of both azithromycin plus vitamin E and vitamin E alone has a striking effect on metabolic profiles in EBC. Between-group comparisons show that EBC metabolite distribution after treatment and 2 weeks after treatment suspension is different. Quantitative differences in ethanol, saturated fatty acids, acetate, acetoin/acetone, and methanol are responsible for these differences. Our study was unable to show antioxidant effect of azithromycin as add-on treatment with doubling the dose of oral vitamin E as reflected by 15-F2t-isoprostane concentrations in EBC. Add-on therapy with azithromycin itself does not induce EBC metabolite changes, but its suspension is associated with EBC metabolic profiles that are different from those observed after vitamin E suspension. The pathophysiological and therapeutic implications of these findings in patients with stable CF are unknown and require further research. Preliminary data suggest that EBC NMR-based metabolomics might be used for assessing the effects of pharmacological treatment suspension in stable CF patients.
Collapse
Affiliation(s)
- Paolo Montuschi
- Department of Pharmacology, Faculty of Medicine, Catholic University of the Sacred Heart, Rome, Italy
- Pharmacology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | | | - Debora Paris
- Institute of Biomolecular Chemistry, Italian National Research Council, Pozzuoli, Italy
| | - Enza Montemitro
- Cystic Fibrosis Unit, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Rugia Shohreh
- Department of Drug Sciences, Faculty of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Nadia Mores
- Department of Pharmacology, Faculty of Medicine, Catholic University of the Sacred Heart, Rome, Italy
- Pharmacology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Dominique Melck
- Institute of Biomolecular Chemistry, Italian National Research Council, Pozzuoli, Italy
| | - Giuseppe Santini
- Department of Pharmacology, Faculty of Medicine, Catholic University of the Sacred Heart, Rome, Italy
- Pharmacology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Fabio Majo
- Cystic Fibrosis Unit, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Andrea Motta
- Institute of Biomolecular Chemistry, Italian National Research Council, Pozzuoli, Italy
| |
Collapse
|
13
|
Ruscitti F, Ravanetti F, Donofrio G, Ridwan Y, van Heijningen P, Essers J, Villetti G, Cacchioli A, Vos W, Stellari FF. A Multimodal Imaging Approach Based on Micro-CT and Fluorescence Molecular Tomography for Longitudinal Assessment of Bleomycin-Induced Lung Fibrosis in Mice. J Vis Exp 2018. [PMID: 29708527 DOI: 10.3791/56443] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease characterized by the progressive and irreversible destruction of lung architecture, which causes significant deterioration in lung function and subsequent death from respiratory failure. The pathogenesis of IPF in experimental animal models has been induced by bleomycin administration. In this study, we investigate an IPF-like mouse model induced by a double intratracheal bleomycin instillation. Standard histological assessments used for studying lung fibrosis are invasive terminal procedures. The goal of this work is to monitor lung fibrosis through noninvasive imaging techniques such as Fluorescent Molecular Tomography (FMT) and Micro-CT. These two technologies validated with histology findings could represent a revolutionary functional approach for real time non-invasive monitoring of IPF disease severity and progression. The fusion of different approaches represents a step further for understanding the IPF disease, where the molecular events occurring in a pathological condition can be observed with FMT and the subsequent anatomical changes can be monitored by Micro-CT.
Collapse
Affiliation(s)
| | | | | | | | | | - Jeroen Essers
- Department of Molecular Genetics, Vascular Surgery, Radiation Oncology, Erasmus MC
| | - Gino Villetti
- Corporate Preclinical R&D, Chiesi Farmaceutici S.p.A
| | | | | | | |
Collapse
|
14
|
Suff N, Waddington SN. The power of bioluminescence imaging in understanding host-pathogen interactions. Methods 2017; 127:69-78. [PMID: 28694065 DOI: 10.1016/j.ymeth.2017.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/12/2017] [Accepted: 07/03/2017] [Indexed: 01/06/2023] Open
Abstract
Infectious diseases are one of the leading causes of death worldwide. Modelling and understanding human infection is imperative to developing treatments to reduce the global burden of infectious disease. Bioluminescence imaging is a highly sensitive, non-invasive technique based on the detection of light, produced by luciferase-catalysed reactions. In the study of infectious disease, bioluminescence imaging is a well-established technique; it can be used to detect, localize and quantify specific immune cells, pathogens or immunological processes. This enables longitudinal studies in which the spectrum of the disease process and its response to therapies can be monitored. Light producing transgenic rodents are emerging as key tools in the study of host response to infection. Here, we review the strategies for identifying biological processes in vivo, including the technology of bioluminescence imaging and illustrate how this technique is shedding light on the host-pathogen relationship.
Collapse
Affiliation(s)
- Natalie Suff
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London WC1E 6HX, United Kingdom.
| | - Simon N Waddington
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London WC1E 6HX, United Kingdom
| |
Collapse
|
15
|
Bergamini G, Stellari F, Sandri A, M Lleo M, Donofrio G, Ruscitti F, Boschi F, Sbarbati A, Villetti G, Melotti P, Sorio C. An IL-8 Transiently Transgenized Mouse Model for the In Vivo Long-term Monitoring of Inflammatory Responses. J Vis Exp 2017. [PMID: 28715404 DOI: 10.3791/55499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Airway inflammation is often associated with bacterial infections and represents a major determinant of lung disease. The in vivo determination of the pro-inflammatory capabilities of various factors is challenging and requires terminal procedures, such as bronchoalveolar lavage and the removal of lungs for in situ analysis, precluding longitudinal visualization in the same mouse. Here, lung inflammation is induced through the intratracheal instillation of Pseudomonas aeruginosa culture supernatant (SN) in transiently transgenized mice expressing the luciferase reporter gene under the control of a heterologous IL-8 bovine promoter. Luciferase expression in the lung is monitored by in vivo bioluminescent image (BLI) analysis over a 2.5- to 48-h timeframe following the instillation. The procedure can be repeated multiple times within 2 - 3 months, thus permitting the evaluation of the inflammatory response in the same mice without the need to terminate the animals. This approach permits the monitoring of pro- and anti-inflammatory factors acting in the lung in real time and appears suitable for functional and pharmacological studies.
Collapse
Affiliation(s)
- Gabriella Bergamini
- Department of Medicine, General Pathology Division, Cystic Fibrosis Translational Research Laboratory "D. Lissandrini", University of Verona
| | | | - Angela Sandri
- Department of Diagnostic and Public Health, Microbiology Division, University of Verona
| | - Maria M Lleo
- Department of Diagnostic and Public Health, Microbiology Division, University of Verona
| | | | - Francesca Ruscitti
- Department of Biomedical Biotechnological and Translational Sciences, University of Parma; Corporate Preclinical R&D, Chiesi Farmaceutici S.p.A
| | | | - Andrea Sbarbati
- Department of Neurological, Biomedical and Movement Sciences, University of Verona
| | - Gino Villetti
- Corporate Preclinical R&D, Chiesi Farmaceutici S.p.A
| | | | - Claudio Sorio
- Department of Medicine, General Pathology Division, Cystic Fibrosis Translational Research Laboratory "D. Lissandrini", University of Verona;
| |
Collapse
|
16
|
Ruscitti F, Ravanetti F, Essers J, Ridwan Y, Belenkov S, Vos W, Ferreira F, KleinJan A, van Heijningen P, Van Holsbeke C, Cacchioli A, Villetti G, Stellari FF. Longitudinal assessment of bleomycin-induced lung fibrosis by Micro-CT correlates with histological evaluation in mice. Multidiscip Respir Med 2017; 12:8. [PMID: 28400960 PMCID: PMC5387277 DOI: 10.1186/s40248-017-0089-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 03/10/2017] [Indexed: 01/15/2023] Open
Abstract
Background The intratracheal instillation of bleomycin in mice induces early damage to alveolar epithelial cells and development of inflammation followed by fibrotic tissue changes and represents the most widely used model of pulmonary fibrosis to investigate human IPF. Histopathology is the gold standard for assessing lung fibrosis in rodents, however it precludes repeated and longitudinal measurements of disease progression and does not provide information on spatial and temporal distribution of tissue damage. Here we investigated the use of the Micro-CT technique to allow the evaluation of disease onset and progression at different time-points in the mouse bleomycin model of lung fibrosis. Micro-CT was throughout coupled with histological analysis for the validation of the imaging results. Methods In bleomycin-instilled and control mice, airways and lung morphology changes were assessed and reconstructed at baseline, 7, 14 and 21 days post-treatment based on Micro-CT images. Ashcroft score, percentage of collagen content and percentage of alveolar air area were detected on lung slides processed by histology and subsequently compared with Micro-CT parameters. Results Extent (%) of fibrosis measured by Micro-CT correlated with Ashcroft score, the percentage of collagen content and the percentage of alveolar air area (r2 = 0.91; 0.77; 0.94, respectively). Distal airway radius also correlated with the Ashcroft score, the collagen content and alveolar air area percentage (r2 = 0.89; 0.78; 0.98, respectively). Conclusions Micro-CT data were in good agreement with histological read-outs as micro-CT was able to quantify effectively and non-invasively disease progression longitudinally and to reduce the variability and number of animals used to assess the damage. This suggests that this technique is a powerful tool for understanding experimental pulmonary fibrosis and that its use could translate into a more efficient drug discovery process, also helping to fill the gap between preclinical setting and clinical practice.
Collapse
Affiliation(s)
| | - Francesca Ravanetti
- Dipartimento di Scienze Medico Veterinarie, Università di Parma, Parma, Italy
| | - Jeroen Essers
- Department of Molecular Genetics, Vascular Surgery, and Radiation Oncology, Erasmus MC, Rotterdam, The Netherlands
| | - Yanto Ridwan
- Department of Molecular Genetics, Vascular Surgery, and Radiation Oncology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Wim Vos
- Fluidda NV, Kontich, Belgium
| | | | - Alex KleinJan
- Department of Pulmonary Medicine Erasmus MC, Rotterdam, The Netherlands
| | - Paula van Heijningen
- Department of Molecular Genetics, Vascular Surgery, and Radiation Oncology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Antonio Cacchioli
- Dipartimento di Scienze Medico Veterinarie, Università di Parma, Parma, Italy
| | | | - Franco Fabio Stellari
- Chiesi S.p.A., Pre-Clinical R & D, Parma, Italy.,Chiesi Farmaceutici, Pharmacology & Toxicology Department Corporate Pre-Clinical R & D, Largo Belloli, 11/A, Parma, 43122 Italy
| |
Collapse
|
17
|
Stellari FF, Ruscitti F, Pompilio D, Ravanetti F, Tebaldi G, Macchi F, Verna AE, Villetti G, Donofrio G. Heterologous Matrix Metalloproteinase Gene Promoter Activity Allows In Vivo Real-time Imaging of Bleomycin-Induced Lung Fibrosis in Transiently Transgenized Mice. Front Immunol 2017; 8:199. [PMID: 28298912 PMCID: PMC5331072 DOI: 10.3389/fimmu.2017.00199] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/10/2017] [Indexed: 12/14/2022] Open
Abstract
Idiopathic pulmonary fibrosis is a very common interstitial lung disease derived from chronic inflammatory insults, characterized by massive scar tissue deposition that causes the progressive loss of lung function and subsequent death for respiratory failure. Bleomycin is used as the standard agent to induce experimental pulmonary fibrosis in animal models for the study of its pathogenesis. However, to visualize the establishment of lung fibrosis after treatment, the animal sacrifice is necessary. Thus, the aim of this study was to avoid this limitation by using an innovative approach based on a double bleomycin treatment protocol, along with the in vivo images analysis of bleomycin-treated mice. A reporter gene construct, containing the luciferase open reading frame under the matrix metalloproteinase-1 promoter control region, was tested on double bleomycin-treated mice to investigate, in real time, the correlation between bleomycin treatment, inflammation, tissue remodeling and fibrosis. Bioluminescence emitted by the lungs of bleomycin-treated mice, corroborated by fluorescent molecular tomography, successfully allowed real time monitoring of fibrosis establishment. The reporter gene technology experienced in this work could represent an advanced functional approach for real time non-invasive assessment of disease evolution during therapy, in a reliable and translational living animal model.
Collapse
Affiliation(s)
| | | | - Daniela Pompilio
- Chiesi Farmaceutici S.p.A., Corporate Pre-Clinical R&D, Parma, Italy; Dipartimento di Scienze Medico Veterinarie, Università di Parma, Parma, Italy
| | - Francesca Ravanetti
- Dipartimento di Scienze Medico Veterinarie, Università di Parma , Parma , Italy
| | - Giulia Tebaldi
- Dipartimento di Scienze Medico Veterinarie, Università di Parma , Parma , Italy
| | - Francesca Macchi
- Dipartimento di Scienze Medico Veterinarie, Università di Parma , Parma , Italy
| | | | - Gino Villetti
- Chiesi Farmaceutici S.p.A., Corporate Pre-Clinical R&D , Parma , Italy
| | - Gaetano Donofrio
- Dipartimento di Scienze Medico Veterinarie, Università di Parma , Parma , Italy
| |
Collapse
|
18
|
Leal T, Bergamini G, Huaux F, Panin N, Noel S, Dhooghe B, Haaf JB, Mauri P, Motta S, Di Silvestre D, Melotti P, Sorio C. Azithromycin Attenuates Pseudomonas-Induced Lung Inflammation by Targeting Bacterial Proteins Secreted in the Cultured Medium. Front Immunol 2016; 7:499. [PMID: 27895643 PMCID: PMC5108761 DOI: 10.3389/fimmu.2016.00499] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/26/2016] [Indexed: 12/20/2022] Open
Abstract
Background Pseudomonas aeruginosa airway infections are a major cause of morbidity and mortality in patients with cystic fibrosis (CF). Azithromycin improves the related clinical outcomes, but its mechanisms of action remain poorly understood. We tested the hypothesis that azithromycin downregulates P. aeruginosa-induced pro-inflammatory responses by modifying release of bacterial proteins. Methods We monitored inflammatory markers in lungs of CF mutant mice and their littermate controls in response to conditioned media (CM) collected from the reference P. aeruginosa PAO1 strain cultured in the presence or in the absence of azithromycin. A mass spectrometry-based proteomic approach was applied to examine whether the macrolide elicits a differential release of bacterial proteins. Results CM collected from azithromycin-untreated PAO1 cultures induced powerful pro-inflammatory neutrophil-dominated responses. Azithromycin attenuated the responses, mainly of macrophage chemoattractant protein-1, tumor necrosis factor-α, and interferon-γ, in CF but not in wild-type mice. Proteomic analysis showed that azithromycin upregulated an array of bacterial proteins including those associated with regulation of immune functions and with repair and resolution of inflammatory responses like the chaperone DnaK and the S-adenosylmethionine synthase, while it downregulated the extracellular heme acquisition protein HasA and the catalytic enzyme lysylendopeptidase. Conclusion Supernatants collected from cultures of the bacterial strain PAO1 represent a novel experimental model to trigger in vivo lung inflammatory responses that should be closer to those obtained with live bacteria, but without bacterial infection. Combined with a bactericidal effect, complex regulation of bacterial innate immune and metabolic factors released in the cultured medium by the action of the macrolide can contribute to its anti-inflammatory effects.
Collapse
Affiliation(s)
- Teresinha Leal
- Louvain Centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain , Brussels , Belgium
| | - Gabriella Bergamini
- Cystic Fibrosis Translational Research Laboratory "D. Lissandrini", Department of Medicine, Division of General Pathology, University of Verona, Verona, Italy; Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - François Huaux
- Louvain Centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain , Brussels , Belgium
| | - Nadtha Panin
- Louvain Centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain , Brussels , Belgium
| | - Sabrina Noel
- Louvain Centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain , Brussels , Belgium
| | - Barbara Dhooghe
- Louvain Centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain , Brussels , Belgium
| | - Jeremy B Haaf
- Louvain Centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain , Brussels , Belgium
| | - Pierluigi Mauri
- Institute for Biomedical Technologies (ITB-CNR), Segrate , Milan , Italy
| | - Sara Motta
- Institute for Biomedical Technologies (ITB-CNR), Segrate , Milan , Italy
| | - Dario Di Silvestre
- Institute for Biomedical Technologies (ITB-CNR), Segrate , Milan , Italy
| | - Paola Melotti
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata di Verona , Verona , Italy
| | - Claudio Sorio
- Cystic Fibrosis Translational Research Laboratory "D. Lissandrini", Department of Medicine, Division of General Pathology, University of Verona , Verona , Italy
| |
Collapse
|
19
|
Stellari F, Bergamini G, Ruscitti F, Sandri A, Ravanetti F, Donofrio G, Boschi F, Villetti G, Sorio C, Assael BM, Melotti P, Lleo MM. In vivo monitoring of lung inflammation in CFTR-deficient mice. J Transl Med 2016; 14:226. [PMID: 27468800 PMCID: PMC4964274 DOI: 10.1186/s12967-016-0976-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/13/2016] [Indexed: 12/14/2022] Open
Abstract
Background Experimentally, lung inflammation in laboratory animals is usually detected by the presence of inflammatory markers, such as immune cells and cytokines, in the bronchoalveolar lavage fluid (BALF) of sacrificed animals. This method, although extensively used, is time, money and animal life consuming, especially when applied to genetically modified animals. Thus a new and more convenient approach, based on in vivo imaging analysis, has been set up to evaluate the inflammatory response in the lung of CFTR-deficient (CF) mice, a murine model of cystic fibrosis. Methods Wild type (WT) and CF mice were stimulated with P. aeruginosa LPS, TNF-alpha and culture supernatant derived from P. aeruginosa (strain VR1). Lung inflammation was detected by measuring bioluminescence in vivo in mice transiently transgenized with a luciferase reporter gene under the control of a bovine IL-8 gene promoter. Results Differences in bioluminescence (BLI) signal were revealed by comparing the two types of mice after intratracheal challenge with pro-inflammatory stimuli. BLI increased at 4 h after stimulation with TNF-alpha and at 24 h after administration of LPS and VR1 supernatant in CF mice with respect to untreated animals. The BLI signal was significantly more intense and lasted for longer times in CF animals when compared to WT mice. Analysis of BALF markers: leukocytes, cytokines and histology revealed no significant differences between CF and WT mice. Conclusions In vivo gene delivery technology and non-invasive bioluminescent imaging has been successfully adapted to CFTR-deficient mice. Activation of bIL-8 transgene promoter can be monitored by non-invasive BLI imaging in the lung of the same animal and compared longitudinally in both CF or WT mice, after challenge with pro-inflammatory stimuli. The combination of these technologies and the use of CF mice offer the unique opportunity of evaluating the impact of therapies aimed to control inflammation in a CF background. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-0976-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fabio Stellari
- Pharmacology & Toxicology Department Corporate Pre-Clinical R&D, Chiesi Farmaceutici, Largo Belloli, 11/A, 43122, Parma, Italy.
| | | | - Francesca Ruscitti
- Dipartimento di Scienze Biomediche, Biotecnologiche e Traslazionali, Università di Parma, Parma, Italy
| | - Angela Sandri
- Dipartimento di Diagnostica e Salute Pubblica, Università di Verona, Verona, Italy
| | - Francesca Ravanetti
- Dipartimento di Scienze Medico Veterinarie, Università di Parma, Parma, Italy
| | - Gaetano Donofrio
- Dipartimento di Scienze Medico Veterinarie, Università di Parma, Parma, Italy
| | - Federico Boschi
- Dipartimento di Informatica, Università di Verona, Verona, Italy
| | - Gino Villetti
- Pharmacology & Toxicology Department Corporate Pre-Clinical R&D, Chiesi Farmaceutici, Largo Belloli, 11/A, 43122, Parma, Italy
| | - Claudio Sorio
- Dipartimento di Medicina, Università di Verona, Verona, Italy
| | - Barouk M Assael
- Centro Fibrosi Cistica, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Paola Melotti
- Centro Fibrosi Cistica, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Maria M Lleo
- Dipartimento di Diagnostica e Salute Pubblica, Università di Verona, Verona, Italy
| |
Collapse
|