1
|
Spampinato M, Giallongo C, Giallongo S, Spina EL, Duminuco A, Longhitano L, Caltabiano R, Salvatorelli L, Broggi G, Pricoco EP, Del Fabro V, Dulcamare I, DI Mauro AM, Romano A, Di Raimondo F, Li Volti G, Palumbo GA, Tibullo D. Lactate accumulation promotes immunosuppression and fibrotic transformation of bone marrow microenvironment in myelofibrosis. J Transl Med 2025; 23:69. [PMID: 39810250 PMCID: PMC11734442 DOI: 10.1186/s12967-025-06083-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Clonal myeloproliferation and fibrotic transformation of the bone marrow (BM) are the pathogenetic events most commonly occurring in myelofibrosis (MF). There is great evidence indicating that tumor microenvironment is characterized by high lactate levels, acting not only as an energetic source, but also as a signaling molecule. METHODS To test the involvement of lactate in MF milieu transformation, we measured its levels in MF patients' sera, eventually finding a massive accumulation of this metabolite, which we showed to promote the expansion of immunosuppressive subsets. Therefore, to assess the significance of its trafficking, we inhibited monocarboxylate transporter 1 (MCT1) by its selective antagonist, AZD3965, eventually finding a mitigation of lactate-mediated immunosuppressive subsets expansion. To further dig into the impact of lactate in tumor microenvironment, we evaluated the effect of this metabolite on mesenchymal stromal cells (MSCs) reprogramming. RESULTS Our results show an activation of a cancer-associated phenotype (CAF) related to mineralized matrix formation and early fibrosis development. Strikingly, MF serum, enriched in lactate, causes a strong deposition of collagen in healthy stromal cells, which was restrained by AZD3965. To corroborate these outcomes, we therefore generated for the first time a TPOhigh zebrafish model for the establishment of experimental fibrosis. By adopting this model, we were able to unveil a remarkable increase in lactate concentration and monocarboxylate transporter 1 (MCT1) expression in the site of hematopoiesis, associated with a strong downregulation of lactate export channel MCT4. Notably, exploiting MCTs expression in biopsy specimens from patients with myeloproliferative neoplasms, we found a loss of MCT4 expression in PMF, corroborating changes in MCT expression during BM fibrosis establishment. CONCLUSIONS In conclusion, our results unveil lactate as a key regulator of immune escape and BM fibrotic transformation in MF patients, suggesting MCT1 blocking as a novel antifibrotic strategy.
Collapse
Affiliation(s)
- Mariarita Spampinato
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Catania, Italy
| | - Cesarina Giallongo
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Division of Hematology, University of Catania, Catania, Italy
| | - Sebastiano Giallongo
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Division of Hematology, University of Catania, Catania, Italy
| | - Enrico La Spina
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Catania, Italy
| | - Andrea Duminuco
- Hematology Unit with BMT, A.O.U. Policlinico "G. Rodolico-San Marco", Catania, Italy
| | - Lucia Longhitano
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Catania, Italy
| | - Rosario Caltabiano
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Division of Anatomic Pathology, University of Catania, Catania, Italy
| | - Lucia Salvatorelli
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Division of Anatomic Pathology, University of Catania, Catania, Italy
| | - Giuseppe Broggi
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Division of Anatomic Pathology, University of Catania, Catania, Italy
| | | | - Vittorio Del Fabro
- Hematology Unit with BMT, A.O.U. Policlinico "G. Rodolico-San Marco", Catania, Italy
| | - Ilaria Dulcamare
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | - Alessandra Romano
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Francesco Di Raimondo
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Catania, Italy.
| | - Giuseppe A Palumbo
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Division of Hematology, University of Catania, Catania, Italy
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Catania, Italy
| |
Collapse
|
2
|
Ng ZY, Fuller KA, Mazza-Parton A, Erber WN. Morphology of myeloproliferative neoplasms. Int J Lab Hematol 2023. [PMID: 37211431 DOI: 10.1111/ijlh.14086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/27/2023] [Indexed: 05/23/2023]
Abstract
Myeloproliferative neoplasms (MPN) are a group of clonal haematological malignancies first described by Dameshek in 1957. The Philadelphia-negative MPN that will be described are polycythaemia vera (PV), essential thrombocythaemia (ET), pre-fibrotic myelofibrosis and primary myelofibrosis (PMF). The blood and bone marrow morphology are essential in diagnosis, for WHO classification, establishing a baseline, monitoring response to treatment and identifying changes that may indicate disease progression. The blood film changes may be in any of the cellular elements. The key bone marrow features are architecture and cellularity, relative complement of individual cell types, reticulin content and bony structure. Megakaryocytes are the most abnormal cell and key to classification, as their number, location, size and cytology are all disease-defining. Reticulin content and grade are integral to assignment of the diagnosis of myelofibrosis. Even with careful assessment of all these features, not all cases fit neatly into the diagnostic entities; there is frequent overlap reflecting the biological disease continuum rather than distinct entities. Notwithstanding this, an accurate morphologic diagnosis in MPN is crucial due to the significant differences in prognosis between different subtypes and the availability of different therapies in the era of novel agents. The distinction between "reactive" and MPN is also not always straightforward and caution needs to be exercised given the prevalence of "triple negative" MPN. Here we describe the morphology of MPN including comments on changes with disease evolution and with treatment.
Collapse
Affiliation(s)
- Zi Yun Ng
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Haematology Department, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Kathryn A Fuller
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Allegra Mazza-Parton
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Wendy N Erber
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Department of Haematology, PathWest Laboratory Medicine, Nedlands, Western Australia, Australia
| |
Collapse
|
3
|
Saleh K, Ribrag V. An evaluation of fedratinib for adult patients with newly diagnosed and previously treated myelofibrosis. Expert Rev Hematol 2023; 16:227-236. [PMID: 36939633 DOI: 10.1080/17474086.2023.2192473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/14/2023] [Indexed: 03/21/2023]
Abstract
INTRODUCTION Myelofibrosis (MF) is a life-shortening myeloproliferative neoplasm that has multiple features such as clonal proliferation, fibrosis and splenomegaly. Until recently, ruxolitinib, a Janus Kinase (JAK) 1/2 inhibitor was the only targeted therapy approved for transplant-ineligible patients with MF and who require treatment for symptoms and/or splenomegaly. However, the discontinuation rate with ruxolitinib at 3 to 5 years is high and mostly due to loss of response or toxicity, and these patients had no subsequent treatment. AREAS COVERED Fedratinib, a selective JAK2 inhibitor, was approved by the Food and Drug Administration (FDA) in August 2019 for the treatment of intermediate-2 or high-risk primary or secondary MF, regardless of prior JAK inhibitor treatment for the management of symptoms and splenomegaly. We discuss herein the development of fedratinib and its pharmacology and pharmacokinetics as well as the clinical development and the future directions. We used PubMed for the search of articles related to fedratinib and myelofibrosis. EXPERT OPINION Fedratinib provided a second-line treatment for patients with MF who failed or discontinued ruxolitinib. New combinations of JAK inhibitors with other targeted therapies are a must in order to improve the management of MF.
Collapse
Affiliation(s)
- Khalil Saleh
- Department of Hematology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Vincent Ribrag
- Department of Hematology, Gustave Roussy Cancer Campus, Villejuif, France
- Departement d'Innovation Therapeutique Et d'Essais Precoces (DITEP), Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
4
|
Saha C, Harrison C. Fedratinib, the first selective JAK2 inhibitor approved for treatment of myelofibrosis - an option beyond ruxolitinib. Expert Rev Hematol 2022; 15:583-595. [PMID: 35787092 DOI: 10.1080/17474086.2022.2098105] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Introduction: Myelofibrosis, a life shortening clonal disorder, presents with a constellation of features: bone marrow fibrosis, abnormal blood counts, extramedullary hematopoiesis, splenomegaly, thrombohemorrhagic complications and constitutional symptoms. Until recently Ruxolitinib, a JAK1 and 2 inhibitor, has been the only targeted therapy available for transplant-ineligible patients requiring treatment for splenomegaly and disease related symptoms. However, most patients discontinue Ruxolitinib after 3-5 years, mostly due to loss of response. There has been an unmet need for this patient group. In August 2019 Fedratinib (INREBIC® capsules, Impact Biomedicines, Inc., a wholly owned subsidiary of Bristol Meyer Squibb), a JAK2 inhibitor, was approved by US FDA for treatment of myelofibrosis in both JAK inhibitor naïve and pre-treated patients for the management of symptoms and splenomegaly.Areas covered: Here, we discuss the development, evidence base to date for Fedratinib. Including early and late phase, and ongoing trials, safety issues, potential role and current position of Fedratinib in the treatment of myelofibrosis, as well as future direction of targeted therapy in myelofibrosis.Expert opinion: Fedratinib presents a much needed option of treatment, particularly, for patients failing Ruxolitinib, with response rates that are quite similar. Nonetheless, there remain important questions including sequencing and options for combining therapy.
Collapse
Affiliation(s)
- Chandan Saha
- Department of Hematology, Guy's and St Thomas' NHS Foundation Trust, London
| | - Claire Harrison
- Department of Hematology, Guy's and St Thomas' NHS Foundation Trust, London
| |
Collapse
|
5
|
Harrison CN, Garcia JS, Somervaille TC, Foran JM, Verstovsek S, Jamieson C, Mesa R, Ritchie EK, Tantravahi SK, Vachhani P, O'Connell CL, Komrokji RS, Harb J, Hutti JE, Holes L, Masud AA, Nuthalapati S, Potluri J, Pemmaraju N. Addition of Navitoclax to Ongoing Ruxolitinib Therapy for Patients With Myelofibrosis With Progression or Suboptimal Response: Phase II Safety and Efficacy. J Clin Oncol 2022; 40:1671-1680. [PMID: 35180010 PMCID: PMC9113204 DOI: 10.1200/jco.21.02188] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/21/2021] [Accepted: 01/13/2022] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Targeting the BCL-XL pathway has demonstrated the ability to overcome Janus kinase inhibitor resistance in preclinical models. This phase II trial investigated the efficacy and safety of adding BCL-XL/BCL-2 inhibitor navitoclax to ruxolitinib therapy in patients with myelofibrosis with progression or suboptimal response to ruxolitinib monotherapy (ClinicalTrials.gov identifier: NCT03222609). METHODS Thirty-four adult patients with intermediate-/high-risk myelofibrosis who had progression or suboptimal response on stable ruxolitinib dose (≥ 10 mg twice daily) were administered navitoclax at 50 mg once daily starting dose, followed by escalation to a maximum of 300 mg once daily in once in weekly increments (if platelets were ≥ 75 × 109/L). The primary end point was ≥ 35% spleen volume reduction (SVR35) from baseline at week 24. Secondary end points included ≥ 50% reduction in total symptom score (TSS50) from baseline at week 24, hemoglobin improvement, change in bone marrow fibrosis (BMF) grade, and safety. RESULTS High molecular risk mutations were identified in 58% of patients, and 52% harbored ≥ 3 mutations. SVR35 was achieved by 26.5% of patients at week 24, and by 41%, at any time on study, with an estimated median duration of SVR35 of 13.8 months. TSS50 was achieved by 30% (6 of 20) of patients at week 24, and BMF improved by 1-2 grades in 33% (11 of 33) of evaluable patients. Anemia response was achieved by 64% (7 of 11), including one patient with baseline transfusion dependence. Median overall survival was not reached with a median follow-up of 21.6 months. The most common adverse event was reversible thrombocytopenia without clinically significant bleeding (88%). CONCLUSION The addition of navitoclax to ruxolitinib in patients with persistent or progressive myelofibrosis resulted in durable SVR35, improved TSS, hemoglobin response, and BMF. Further investigation is underway to qualify the potential for disease modification.
Collapse
Affiliation(s)
| | | | - Tim C.P. Somervaille
- The Christie NHS Foundation Trust, Manchester, United Kingdom
- Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom
| | | | | | - Catriona Jamieson
- University of California San Diego Moores Cancer Center, La Jolla, CA
| | - Ruben Mesa
- University of Texas Health San Antonio, San Antonio, TX
| | - Ellen K. Ritchie
- Division of Hematology and Oncology, Weill Cornell Medical College, New York, NY
| | | | | | - Casey L. O'Connell
- University of Southern California Keck School of Medicine, Los Angeles, CA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Chauhan W, Shoaib S, Fatma R, Zaka‐ur‐Rab Z, Afzal M. β‐thalassemia, and the advent of new Interventions beyond Transfusion and Iron chelation. Br J Clin Pharmacol 2022; 88:3610-3626. [DOI: 10.1111/bcp.15343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/10/2022] [Accepted: 03/29/2022] [Indexed: 01/19/2023] Open
Affiliation(s)
- Waseem Chauhan
- Human Genetics and Toxicology Laboratory, Department of Zoology Aligarh Muslim University Aligarh India
| | - Shoaib Shoaib
- Department of Biochemistry, JNMC Aligarh Muslim University Aligarh India
| | - Rafat Fatma
- Human Genetics and Toxicology Laboratory, Department of Zoology Aligarh Muslim University Aligarh India
| | - Zeeba Zaka‐ur‐Rab
- Department of Pediatrics, JNMC Aligarh Muslim University Aligarh India
| | - Mohammad Afzal
- Human Genetics and Toxicology Laboratory, Department of Zoology Aligarh Muslim University Aligarh India
| |
Collapse
|
7
|
Hu M, Yang T, Yang L, Niu L, Zhu J, Zhao A, Shi M, Yuan X, Tang M, Yang J, Pei H, Yang Z, Chen Q, Ye H, Niu T, Chen L. Preclinical studies of Flonoltinib Maleate, a novel JAK2/FLT3 inhibitor, in treatment of JAK2 V617F-induced myeloproliferative neoplasms. Blood Cancer J 2022; 12:37. [PMID: 35256594 PMCID: PMC8901636 DOI: 10.1038/s41408-022-00628-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/05/2023] Open
Abstract
Janus kinase 2 (JAK2) hyperactivation by JAK2V617F mutation leads to myeloproliferative neoplasms (MPNs) and targeting JAK2 could serve as a promising therapeutic strategy for MPNs. Here, we report that Flonoltinib Maleate (FM), a selective JAK2/FLT3 inhibitor, shows high selectivity for JAK2 over the JAK family. Surface plasmon resonance assays verified that FM had a stronger affinity for the pseudokinase domain JH2 than JH1 of JAK2 and had an inhibitory effect on JAK2 JH2V617F. The cocrystal structure confirmed that FM could stably bind to JAK2 JH2, and FM suppressed endogenous colony formation of primary erythroid progenitor cells from patients with MPNs. In several JAK2V617F-induced MPN murine models, FM could dose-dependently reduce hepatosplenomegaly and prolong survival. Similar results were observed in JAK2V617F bone marrow transplantation mice. FM exhibited strong inhibitory effects on fibrosis of the spleen and bone marrow. Long-term FM treatment showed good pharmacokinetic/pharmacodynamic characteristics with high drug exposure in tumor-bearing tissues and low toxicity. Currently, FM has been approved by the National Medical Products Administration of China (CXHL2000628), and this study will guide clinical trials for patients with MPNs.
Collapse
Affiliation(s)
- Mengshi Hu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Tao Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Linyu Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Lu Niu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Jinbing Zhu
- Department of Hematology and Research Laboratory of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Ailin Zhao
- Department of Hematology and Research Laboratory of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Mingsong Shi
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Xue Yuan
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Minghai Tang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Jianhong Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Heying Pei
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Zhuang Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Qiang Chen
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Haoyu Ye
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Ting Niu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China.
- Department of Hematology and Research Laboratory of Hematology, West China Hospital of Sichuan University, Chengdu, China.
| | - Lijuan Chen
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China.
- Chengdu Zenitar Biomedical Technology Co., Ltd, Chengdu, China.
| |
Collapse
|
8
|
Majeti R, Jamieson C, Pang WW, Jaiswal S, Leeper NJ, Wernig G, Weissman IL. Clonal Expansion of Stem/Progenitor Cells in Cancer, Fibrotic Diseases, and Atherosclerosis, and CD47 Protection of Pathogenic Cells. Annu Rev Med 2022; 73:307-320. [PMID: 35084991 DOI: 10.1146/annurev-med-042420-104436] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We proposed and demonstrated that myelogenous leukemia has a preleukemic phase. In the premalignant phase, normal hematopoietic stem cells (HSCs) gradually accumulate mutations leading to HSC clonal expansion, resulting in the emergence of leukemic stem cells (LSCs). Here, we show that preleukemic HSCs are the basis of clonal hematopoiesis, as well as late-onset blood diseases (chronic-phase chronic myeloid leukemia, myeloproliferative neoplasms, and myelodysplastic disease). The clones at some point each trigger surface expression of "eat me" signals for macrophages, and in the clones and their LSC progeny, this is countered by upregulation of "don't eat me" signals for macrophages such as CD47,opening the possibility of CD47-based therapies. We include evidence that similar processes result in fibroblast expansion in a variety of fibrotic diseases, and arterial smooth muscle clonal expansion is a basis of atherosclerosis, including upregulation of both "eat me" and "don't eat me" molecules on the pathogenic cells.
Collapse
Affiliation(s)
- R Majeti
- Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University Medical Center, Stanford, California 94305, USA;
| | - C Jamieson
- Sanford Stem Cell Clinical Center, University of California, San Diego, La Jolla, California 92093, USA
| | - W W Pang
- Jasper Therapeutics, Redwood City, California 94065, USA
| | - S Jaiswal
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - N J Leeper
- Department of Surgery, Stanford University School of Medicine, Stanford, California 94305, USA
| | - G Wernig
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University Medical Center, Stanford, California 94305, USA;
| | - I L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University Medical Center, Stanford, California 94305, USA;
| |
Collapse
|
9
|
Vachhani P, Verstovsek S, Bose P. Disease Modification in Myelofibrosis: An Elusive Goal? J Clin Oncol 2022; 40:1147-1154. [PMID: 35084934 PMCID: PMC8987221 DOI: 10.1200/jco.21.02246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Pankit Vachhani
- Department of Medicine, Division of Hematology and Oncology, The University of Alabama at Birmingham, Birmingham, AL
| | - Srdan Verstovsek
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Prithviraj Bose
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
10
|
Ruan H, Luan J, Gao S, Li S, Jiang Q, Liu R, Liang Q, Zhang R, Zhang F, Li X, Zhou H, Yang C. Fedratinib Attenuates Bleomycin-Induced Pulmonary Fibrosis via the JAK2/STAT3 and TGF-β1 Signaling Pathway. Molecules 2021; 26:molecules26154491. [PMID: 34361644 PMCID: PMC8347567 DOI: 10.3390/molecules26154491] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/19/2021] [Accepted: 07/25/2021] [Indexed: 12/14/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease with multiple causes, characterized by excessive myofibrocyte aggregation and extracellular matrix deposition. Related studies have shown that transforming growth factor-β1 (TGF-β1) is a key cytokine causing fibrosis, promoting abnormal epithelial-mesenchymal communication and fibroblast-to-myofibroblast transition. Fedratinib (Fed) is a marketed drug for the treatment of primary and secondary myelofibrosis, targeting selective JAK2 tyrosine kinase inhibitors. However, its role in pulmonary fibrosis remains unclear. In this study, we investigated the potential effects and mechanisms of Fed on pulmonary fibrosis in vitro and in vivo. In vitro studies have shown that Fed attenuates TGF-β1- and IL-6-induced myofibroblast activation and inflammatory response by regulating the JAK2/STAT3 signaling pathway. In vivo studies have shown that Fed can reduce bleomycin-induced inflammation and collagen deposition and improve lung function. In conclusion, Fed inhibited inflammation and fibrosis processes induced by TGF-β1 and IL-6 by targeting the JAK2 receptor.
Collapse
Affiliation(s)
- Hao Ruan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China; (H.R.); (J.L.); (S.G.); (S.L.); (Q.J.); (R.L.); (Q.L.); (R.Z.); (F.Z.); (X.L.); (C.Y.)
| | - Jiaoyan Luan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China; (H.R.); (J.L.); (S.G.); (S.L.); (Q.J.); (R.L.); (Q.L.); (R.Z.); (F.Z.); (X.L.); (C.Y.)
- High-Throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin 300070, China
| | - Shaoyan Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China; (H.R.); (J.L.); (S.G.); (S.L.); (Q.J.); (R.L.); (Q.L.); (R.Z.); (F.Z.); (X.L.); (C.Y.)
| | - Shuangling Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China; (H.R.); (J.L.); (S.G.); (S.L.); (Q.J.); (R.L.); (Q.L.); (R.Z.); (F.Z.); (X.L.); (C.Y.)
- High-Throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin 300070, China
| | - Qiuyan Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China; (H.R.); (J.L.); (S.G.); (S.L.); (Q.J.); (R.L.); (Q.L.); (R.Z.); (F.Z.); (X.L.); (C.Y.)
- High-Throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin 300070, China
| | - Rui Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China; (H.R.); (J.L.); (S.G.); (S.L.); (Q.J.); (R.L.); (Q.L.); (R.Z.); (F.Z.); (X.L.); (C.Y.)
- High-Throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin 300070, China
| | - Qing Liang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China; (H.R.); (J.L.); (S.G.); (S.L.); (Q.J.); (R.L.); (Q.L.); (R.Z.); (F.Z.); (X.L.); (C.Y.)
| | - Ruiqin Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China; (H.R.); (J.L.); (S.G.); (S.L.); (Q.J.); (R.L.); (Q.L.); (R.Z.); (F.Z.); (X.L.); (C.Y.)
- High-Throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin 300070, China
| | - Fangxia Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China; (H.R.); (J.L.); (S.G.); (S.L.); (Q.J.); (R.L.); (Q.L.); (R.Z.); (F.Z.); (X.L.); (C.Y.)
- High-Throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin 300070, China
| | - Xiaohe Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China; (H.R.); (J.L.); (S.G.); (S.L.); (Q.J.); (R.L.); (Q.L.); (R.Z.); (F.Z.); (X.L.); (C.Y.)
- High-Throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin 300070, China
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China; (H.R.); (J.L.); (S.G.); (S.L.); (Q.J.); (R.L.); (Q.L.); (R.Z.); (F.Z.); (X.L.); (C.Y.)
- High-Throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin 300070, China
- Correspondence:
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China; (H.R.); (J.L.); (S.G.); (S.L.); (Q.J.); (R.L.); (Q.L.); (R.Z.); (F.Z.); (X.L.); (C.Y.)
- High-Throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin 300070, China
| |
Collapse
|
11
|
Patel AA, Odenike O. The Next Generation of JAK Inhibitors: an Update on Fedratinib, Momelotonib, and Pacritinib. Curr Hematol Malig Rep 2021; 15:409-418. [PMID: 32780250 DOI: 10.1007/s11899-020-00596-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE OF REVIEW Ruxolitinib is the first FDA-approved JAK inhibitor for the treatment of myeloproliferative neoplasms and is an effective means of controlling symptom burden and improving splenomegaly. However, a majority of patients will develop disease progression with long-term use. Fedratinib, momelotinib, and pacritinib are three newer-generation JAK inhibitors being prospectively evaluated and we will discuss their roles in the treatment of myeloproliferative neoplasms. RECENT FINDINGS Fedratinib has a role in both JAK-inhibitor naive intermediate-/high-risk myelofibrosis patients and in patients that have previously received ruxolitinib. It has recently received FDA approval for these indications as well. Momelotinib does not appear to have an advantage over ruxolitinib with regards to improving splenomegaly in intermediate-/high-risk JAK-inhibitor naive myelofibrosis. However, increased rates of transfusion independence have been noted with momelotinib. Pacritinib has been studied in myelofibrosis patients with significant baseline anemia and thrombocytopenia; these trials support the use of pacritinib in myelofibrosis patients with significant thrombocytopenia. While ruxolitinib is effective in reducing the symptom burden and splenomegaly of patients with myeloproliferative neoplasms, a majority of patients will ultimately progress on therapy. Newer-generation JAK inhibitors including fedratinib, momelotinib, and pacritinib are being prospectively evaluated to determine their appropriate roles in the management of myeloproliferative neoplasms. In addition, both combination therapies with JAK inhibitors and novel investigational therapies are being actively explored.
Collapse
Affiliation(s)
- Anand A Patel
- Section of Hematology/Oncology, Department of Medicine, University of Chicago Medicine, 5841 S. Maryland Avenue, MC 2115, Chicago, IL, 60637, USA
| | - Olatoyosi Odenike
- Section of Hematology/Oncology, Department of Medicine, University of Chicago Medicine, 5841 S. Maryland Avenue, MC 2115, Chicago, IL, 60637, USA.
| |
Collapse
|
12
|
Zhong L, Li Y, Xiong L, Wang W, Wu M, Yuan T, Yang W, Tian C, Miao Z, Wang T, Yang S. Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Signal Transduct Target Ther 2021; 6:201. [PMID: 34054126 PMCID: PMC8165101 DOI: 10.1038/s41392-021-00572-w] [Citation(s) in RCA: 818] [Impact Index Per Article: 204.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/23/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Due to the advantages in efficacy and safety compared with traditional chemotherapy drugs, targeted therapeutic drugs have become mainstream cancer treatments. Since the first tyrosine kinase inhibitor imatinib was approved to enter the market by the US Food and Drug Administration (FDA) in 2001, an increasing number of small-molecule targeted drugs have been developed for the treatment of malignancies. By December 2020, 89 small-molecule targeted antitumor drugs have been approved by the US FDA and the National Medical Products Administration (NMPA) of China. Despite great progress, small-molecule targeted anti-cancer drugs still face many challenges, such as a low response rate and drug resistance. To better promote the development of targeted anti-cancer drugs, we conducted a comprehensive review of small-molecule targeted anti-cancer drugs according to the target classification. We present all the approved drugs as well as important drug candidates in clinical trials for each target, discuss the current challenges, and provide insights and perspectives for the research and development of anti-cancer drugs.
Collapse
Affiliation(s)
- Lei Zhong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People's Republic of China
| | - Yueshan Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Liang Xiong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Wenjing Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ming Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ting Yuan
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People's Republic of China
| | - Wei Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Chenyu Tian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Zhuang Miao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Tianqi Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Shengyong Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
13
|
Khadernaick AB, Kumar GS, Sandhya P, Bhikshapathi D. A Highly Sensitive LC–MS/MS Method Development and Validation of Fedratinib in Human Plasma and Pharmacokinetic Evaluation in Healthy Rabbits. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412916999200512121023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
A simple and sensitive quantitation analytical technique by liquid chromatography–tandem mass
spectrometry (LC-MS/MS) is essential for fedratinib in biological media with kinetic study in healthy rabbits.
Objective:
The main objectives of the present research work are to LC-MS/MS method development and validate procedure
for the quantitation of fedratinib and its application to kinetic study in rabbits.
Methods:
Separation of processed samples were employed on zorbax SB C18 column (50mm×4.6 mm) 3.5µm with a movable
phase of methanol, acetonitrile and 0.1% formic acid in the ratio of 30:60:10. The movable phase was monitored through
column at 0.8 ml/min flow rate. The drug and ibrutinib internal standard (IS) were evaluated by monitoring the transitions of
m/z -525.260/57.07 and 441.2/55.01 for fedratinib and IS respectively in multiple reaction monitoring mode.
Results:
The linear equation and coefficient of correlation (R2) results were y =0.00348x+0.00245 and
0.9984, respectively. Intra and inter-day precision RSD findings of the developed technique were
found in the range of 2.4 - 5.3% for the quality control (QC)-samples (252.56, 1804.0 and 2706 ng/ml).
The proposed method was subjected to pharmacokinetic study in healthy rabbits and the kinetic study,
fedratinib showed mean AUClast 13190±18.1 hr*ng/ml and Cmax was found to be 3550±4.31 ng/ml in
healthy rabbits.
Conclusion:
The validated method can be applicable for the pharmacokinetic and toxicokinetic studies in the clinical and
forensic analysis of fedratinib in different kinds of biological matrices successfully.
Collapse
Affiliation(s)
| | | | - Pamu Sandhya
- Department of Pharmaceutics, Shadan Women’s college of Pharmacy, Hyderabad, India
| | | |
Collapse
|
14
|
Liang X, Wu P, Yang Q, Xie Y, He C, Yin L, Yin Z, Yue G, Zou Y, Li L, Song X, Lv C, Zhang W, Jing B. An update of new small-molecule anticancer drugs approved from 2015 to 2020. Eur J Med Chem 2021; 220:113473. [PMID: 33906047 DOI: 10.1016/j.ejmech.2021.113473] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/02/2021] [Accepted: 04/09/2021] [Indexed: 01/09/2023]
Abstract
A high incidence of cancer has given rise to the development of more anti-tumor drugs. From 2015 to 2020, fifty-six new small-molecule anticancer drugs, divided into ten categories according to their anti-tumor target activities, have been approved. These include TKIs (30 drugs), MAPK inhibitors (3 drugs), CDK inhibitors (3 drugs), PARP inhibitors (3 drugs), PI3K inhibitors (3 drugs), SMO receptor antagonists (2 drugs), AR antagonists (2 drugs), SSTR inhibitors (2 drugs), IDH inhibitors (2 drugs) and others (6 drugs). Among them, PTK inhibitors (30/56) have led to a paradigm shift in cancer treatment with less toxicity and more potency. Each of their structures, approval statuses, applications, SAR analyses, and original research synthesis routes have been summarized, giving us a more comprehensive map for further efforts to design more specific targeted agents for reducing cancer in the future. We believe this review will help further research of potential antitumor agents in clinical usage.
Collapse
Affiliation(s)
- Xiaoxia Liang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China.
| | - Pan Wu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Qian Yang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yunyu Xie
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Changliang He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Lizi Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Guizhou Yue
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Cheng Lv
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Wei Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Bo Jing
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| |
Collapse
|
15
|
Kuykendall AT, Horvat NP, Pandey G, Komrokji R, Reuther GW. Finding a Jill for JAK: Assessing Past, Present, and Future JAK Inhibitor Combination Approaches in Myelofibrosis. Cancers (Basel) 2020; 12:E2278. [PMID: 32823910 PMCID: PMC7464183 DOI: 10.3390/cancers12082278] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
Myelofibrosis (MF) is a myeloproliferative neoplasm hallmarked by the upregulation of the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway with associated extramedullary hematopoiesis and a high burden of disease-related symptoms. While JAK inhibitor therapy is central to the management of MF, it is not without limitations. In an effort to improve treatment for MF patients, there have been significant efforts to identify combination strategies that build upon the substantial benefits of JAK inhibition. Early efforts to combine agents with additive therapeutic profiles have given way to rationally designed combinations hoping to demonstrate clinical synergism and modify the underlying disease. In this article, we review the preclinical basis and existing clinical data for JAK inhibitor combination strategies while highlighting emerging strategies of particular interest.
Collapse
Affiliation(s)
- Andrew T. Kuykendall
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
| | - Nathan P. Horvat
- Morsani College of Medicine, University of South Florida, Tampa, FL 33612 USA;
| | - Garima Pandey
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (G.P.); (G.W.R.)
| | - Rami Komrokji
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
| | - Gary W. Reuther
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (G.P.); (G.W.R.)
| |
Collapse
|
16
|
Fedratinib, a newly approved treatment for patients with myeloproliferative neoplasm-associated myelofibrosis. Leukemia 2020; 35:1-17. [PMID: 32647323 PMCID: PMC7787977 DOI: 10.1038/s41375-020-0954-2] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/15/2020] [Accepted: 06/25/2020] [Indexed: 01/04/2023]
Abstract
Myeloproliferative neoplasm (MPN)-associated myelofibrosis (MF) is characterized by cytopenias, marrow fibrosis, constitutional symptoms, extramedullary hematopoiesis, splenomegaly, and shortened survival. Constitutive activation of the janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway in MF leads to cell proliferation, inhibition of cell death, and clonal expansion of myeloproliferative malignant cells. Fedratinib is a selective oral JAK2 inhibitor recently approved in the United States for treatment of adult patients with intermediate-2 or high-risk MF. In mouse models of JAK2V617F-driven myeloproliferative disease, fedratinib blocked phosphorylation of STAT5, increased survival, and improved MF-associated disease features, including reduction of white blood cell counts, hematocrit, splenomegaly, and fibrosis. Fedratinib exerts off-target inhibitory activity against bromodomain-containing protein 4 (BRD4); combination JAK/STAT and BRD4 inhibition was shown to synergistically block NF-kB hyperactivation and inflammatory cytokine production, attenuating disease burden and reversing bone marrow fibrosis in animal models of MPNs. In patients, fedratinib is rapidly absorbed and dosed once daily (effective half-life 41 h). Fedratinib showed robust clinical activity in JAK-inhibitor-naïve patients and in patients with MF who were relapsed, refractory, or intolerant to prior ruxolitinib therapy. Fedratinib is effective regardless of JAK2 mutation status. Onset of spleen and symptom responses are typically seen within the first 1–2 months of treatment. The most common adverse events (AEs) with fedratinib are grades 1–2 gastrointestinal events, which are most frequent during early treatment and decrease over time. Treatment discontinuation due to hematologic AEs in clinical trials was uncommon (~3%). Suspected cases of Wernicke’s encephalopathy were reported during fedratinib trials in ~1% of patients; thiamine levels should be monitored before and during fedratinib treatment as medically indicated. Phase III trials are ongoing to assess fedratinib effects on long-term safety, efficacy, and overall survival. The recent approval of fedratinib provides a much-needed addition to the limited therapeutic options available for patients with MF.
Collapse
|
17
|
Curto-Garcia N, Harrison C, McLornan DP. Bone marrow niche dysregulation in myeloproliferative neoplasms. Haematologica 2020; 105:1189-1200. [PMID: 32241851 PMCID: PMC7193484 DOI: 10.3324/haematol.2019.243121] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/06/2020] [Indexed: 12/11/2022] Open
Abstract
The bone marrow niche is a complex and dynamic structure composed of a multitude of cell types which functionally create an interactive network facilitating hematopoietic stem cell development and maintenance. Its specific role in the pathogenesis, response to therapy, and transformation of myeloproliferative neoplasms has only recently been explored. Niche functionality is likely affected not only by the genomic background of the myeloproliferative neoplasm-associated mutated hematopoietic stem cells, but also by disease-associated 'chronic inflammation', and subsequent adaptive and innate immune responses. 'Cross-talk' between mutated hematopoietic stem cells and multiple niche components may contribute to propagating disease progression and mediating drug resistance. In this timely article, we will review current knowledge surrounding the deregulated bone marrow niche in myeloproliferative neoplasms and suggest how this may be targeted, either directly or indirectly, potentially influencing therapeutic choices both now and in the future.
Collapse
Affiliation(s)
| | - Claire Harrison
- Department of Hematology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Donal P McLornan
- Department of Hematology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
18
|
Abstract
Fedratinib (INREBIC®) is a JAK2-selective inhibitor that has been developed as an oral treatment for myelofibrosis. In August 2019, fedratinib received its first global approval in the USA for the treatment of adult patients with intermediate-2 or high-risk primary or secondary (post-polycythemia vera or post-essential thrombocythemia) myelofibrosis. Phase III clinical development for myelofibrosis is ongoing worldwide. This article summarizes the milestones in the development of fedratinib leading to this first approval for myelofibrosis.
Collapse
|
19
|
Garmezy B, Schaefer JK, Mercer J, Talpaz M. A provider's guide to primary myelofibrosis: pathophysiology, diagnosis, and management. Blood Rev 2020; 45:100691. [PMID: 32354563 DOI: 10.1016/j.blre.2020.100691] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 03/20/2020] [Accepted: 04/02/2020] [Indexed: 12/23/2022]
Abstract
Although understanding of the pathogenesis and molecular biology of primary myelofibrosis continues to improve, treatment options are limited, and several biological features remain unexplained. With an appropriate clinical history, exam, laboratory evaluation, and bone marrow biopsy, the diagnosis can often be established. Recent studies have better characterized prognostic factors and driver mutations in myelofibrosis, facilitated by use of next-generation sequencing. These advances have facilitated development of a management strategy that is based on both risk factors and clinical phenotype. For low-risk patients, treatment will depend on symptom severity. For patients with higher-risk disease, several treatments are available including JAK inhibitors, allogeneic hematopoietic stem cell transplant, and clinical trials using novel molecularly targeted therapies and rational drug combinations. In this review, we outline what is known about the disease pathogenesis, discuss an approach to reaching the diagnosis, review the prognosis of myelofibrosis, and detail current therapeutic strategies.
Collapse
Affiliation(s)
- Benjamin Garmezy
- Division of Cancer Medicine, UT MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Jordan K Schaefer
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Jessica Mercer
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Moshe Talpaz
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
20
|
McLornan DP, Harrison CN. Forging ahead or moving back: dilemmas and disappointments of novel agents for myeloproliferative neoplasms. Br J Haematol 2020; 191:21-36. [PMID: 32167592 DOI: 10.1111/bjh.16573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 02/20/2020] [Indexed: 12/14/2022]
Abstract
The common 'Philadelphia chromosome'-negative myeloproliferative neoplasms (MPN) comprise essential thrombocythaemia, polycythaemia vera and myelofibrosis. These are clinically diverse disorders and present many challenges during their course, ranging from the management of very indolent, chronic-phase disease through to very aggressive stages frequently associated with poor quality of life, heavy symptom burdens and potentially life expectancies of <18 months. Their management also requires expertise in thrombosis and haemostasis in addition to marrow failure, debilitating symptom control and balancing the 'pros and cons' of intensive therapy such as allogeneic stem cell transplant versus novel and established therapies. In the past 15 years this field has seen rapid advances following an understanding of the pivotal importance of constitutive Janus kinase/signal transducers and activators of transcription (JAK/STAT) signalling, the interplay of the wider genomic landscape and the development of updated diagnostic criteria, prognostic scores and targeted therapies. In this article, we review the successes and failures of novel agents and approaches to MPN management.
Collapse
Affiliation(s)
- Donal P McLornan
- Department of Haematology, 4th Floor Southwark Wing, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Claire N Harrison
- Department of Haematology, 4th Floor Southwark Wing, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
21
|
Xu P, Shen P, Yu B, Xu X, Ge R, Cheng X, Chen Q, Bian J, Li Z, Wang J. Janus kinases (JAKs): The efficient therapeutic targets for autoimmune diseases and myeloproliferative disorders. Eur J Med Chem 2020; 192:112155. [PMID: 32120325 DOI: 10.1016/j.ejmech.2020.112155] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/16/2020] [Accepted: 02/16/2020] [Indexed: 02/06/2023]
Abstract
The Janus kinases or JAKs are a family of intracellular tyrosine kinases that play an essential role in the signaling of numerous cytokines that have been implicated in the pathogenesis of autoimmune diseases and myeloproliferative disorders. JAKs are activated upon ligand induced receptor homo- or heterodimerization, which results in the immediate phosphorylation of tyrosine residues and the phosphotyrosines then serve as docking sites for cytoplasmic signal transducer and activator of transcription (STAT) proteins which become phosphorylated by the JAKs upon recruitment to the receptor complex. The phosphorylated STAT proteins dimerize and travel to the cellular nucleus, where they act as transcription factors. Interfering in the JAK-STAT pathway has yielded the only approved small molecule kinase inhibitors for immunological indications. Numerous medicinal chemistry studies are currently aimed at the design of novel and potent inhibitors for JAKs. Additionally, whether the second-generation inhibitors which possessed selectivity for JAKs are more efficient are under research. This Perspective summarizes the progress in the discovery and development of JAKs inhibitors, including the potential binding site and approaches for identifying small-molecule inhibitors, as well as future therapeutic perspectives in autoimmune diseases and myeloproliferative disorders are also put forward in order to provide reference and rational for the drug discovery of novel and potent JAKs inhibitors.
Collapse
Affiliation(s)
- Pengfei Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Pei Shen
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Bin Yu
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Xi Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Raoling Ge
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, 650000, China
| | - Xinying Cheng
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Qiuyu Chen
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Jinlei Bian
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 21009, China
| | - Zhiyu Li
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 21009, China.
| | - JuBo Wang
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 21009, China.
| |
Collapse
|
22
|
Li B, Rampal RK, Xiao Z. Targeted therapies for myeloproliferative neoplasms. Biomark Res 2019; 7:15. [PMID: 31346467 PMCID: PMC6636147 DOI: 10.1186/s40364-019-0166-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/10/2019] [Indexed: 01/02/2023] Open
Abstract
The discovery of JAK2V617F and the demonstration that BCR-ABL-negative myeloproliferative neoplasms (MPNs) are driven by abnormal JAK2 activation have led to advances in diagnostic algorithms, prognosis and ultimately also treatment strategies. The JAK 1/2 inhibitor ruxolitinib was a pivotal moment in the treatment of MPNs, representing the first targeted treatment in this field. Despite a weak effect on the cause of the disease itself in MPNs, ruxolitinib improves the clinical state of patients and increases survival in myelofibrosis. In parallel, other JAK inhibitors with potential for pathologic and molecular remissions, less myelosuppression, and with greater selectivity for JAK1 or JAK2, and the ability to overcome JAK inhibitor persistence are in various stages of development. Moreover, many novel classes of targeted agents continue to be investigated in efforts to build on the progress made with ruxolitinib. This article will discuss some of the advances in the targeted therapy in this field in recent years and explore in greater detail some of the most advanced emerging agents as well as those with greatest potential.
Collapse
Affiliation(s)
- Bing Li
- 1MDS and MPN Centre, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020 China.,2State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Raajit K Rampal
- 3Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Zhijian Xiao
- 1MDS and MPN Centre, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020 China.,2State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| |
Collapse
|
23
|
SOHO State of the Art Updates and Next Questions: Myelofibrosis. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2019; 19:191-199. [PMID: 30987952 DOI: 10.1016/j.clml.2019.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 03/12/2019] [Indexed: 01/09/2023]
Abstract
The discovery of a mutation in the Janus Kinase 2 gene in 2005 spurred significant progress in the field of myeloproliferative neoplasms. A comprehensive description of genomic factors at play in the malignant clone in myeloproliferative neoplasms, particularly myelofibrosis (MF), have recently led to more precise, personalized prognostic tools. Despite this, understanding of the disease pathogenesis remains relatively limited. We continue to lack a detailed description of the interaction between the hematopoietic stem cell clone, abnormal bone marrow niche cells, and circulating signaling molecules and an understanding of how they cooperate to promote cell proliferation, fibrogenesis, and extramedullary hematopoiesis. Despite our knowledge gaps, recent research in MF has led to promising clinical translation. In this article, we summarize recent insights into MF pathophysiology, progress in the development of novel therapeutics, and opportunities for further advancement of the field.
Collapse
|
24
|
Abstract
In 2017, the revised World Health Organization was published. Regarding myeloproliferative neoplasms, histological findings of bone marrow biopsy is becoming more important for diagnosis. This article highlights particularly the morphology of megakaryocytes and evaluation of myelofibrosis for pathological diagnosis, and immunohistochemistry which can detect somatic mutation.
Collapse
|
25
|
Kvasnicka HM, Thiele J, Bueso-Ramos CE, Sun W, Cortes J, Kantarjian HM, Verstovsek S. Long-term effects of ruxolitinib versus best available therapy on bone marrow fibrosis in patients with myelofibrosis. J Hematol Oncol 2018; 11:42. [PMID: 29544547 PMCID: PMC5856218 DOI: 10.1186/s13045-018-0585-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/01/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Myelofibrosis (MF) is a life-shortening complication of myeloproliferative neoplasms associated with ineffective hematopoiesis, splenomegaly, and progressive bone marrow (BM) fibrosis. The oral Janus kinase (JAK) 1/JAK2 inhibitor ruxolitinib has been shown to improve splenomegaly, symptom burden, and overall survival in patients with intermediate-2 or high-risk MF compared with placebo or best available therapy (BAT). METHODS The effects of ruxolitinib therapy for up to 66 months on BM morphology in 68 patients with advanced MF with variable BM fibrosis grade were compared with those in 192 matching patients treated with BAT. Available trephine biopsies underwent independent, blinded review by three hematopathologists for consensus-based adjudication of grades for reticulin fibrosis, collagen deposition, and osteosclerosis. RESULTS Ruxolitinib treatment versus BAT was associated with greater odds of BM fibrosis improvement or stabilization and decreased odds of BM fibrosis worsening based on changes from baseline in reticulin fibrosis grade. Generally, these changes were accompanied by a sustained higher level of individual spleen size reduction and regression of leukoerythroblastosis. Patients with more advanced baseline fibrosis showed lower spleen size response. CONCLUSIONS The finding that long-term ruxolitinib therapy may reverse or markedly delay BM fibrosis progression in advanced MF suggests that sustained JAK inhibition may be disease-modifying. TRIAL REGISTRATION INCB18424-251, ClinicalTrials.gov identifier NCT00509899 .
Collapse
Affiliation(s)
- Hans Michael Kvasnicka
- Senckenberg Institute of Pathology, University of Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
| | | | - Carlos E Bueso-Ramos
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Jorge Cortes
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hagop M Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Srdan Verstovsek
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
26
|
Lee S, Shah T, Yin C, Hochberg J, Ayello J, Morris E, van de Ven C, Cairo MS. Ruxolitinib significantly enhances in vitro apoptosis in Hodgkin lymphoma and primary mediastinal B-cell lymphoma and survival in a lymphoma xenograft murine model. Oncotarget 2018; 9:9776-9788. [PMID: 29515770 PMCID: PMC5839401 DOI: 10.18632/oncotarget.24267] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/09/2018] [Indexed: 12/13/2022] Open
Abstract
Hodgkin lymphoma (HL) and primary mediastinal B-cell lymphoma (PMBL) share similar molecular features by gene expression profiling. Frequent gains of chromosome 9p exhibit higher Janus Kinase 2 (JAK2) transcript levels with increased JAK2 activity, suggesting aberrant activity of JAK2 and STAT pathways. This signaling pathway alteration may in part play an important role in the pathogenesis and/or chemoradiotherapy resistance in HL and PMBL. Ruxolitinib is a potent and selective JAK1/JAK2 inhibitor, with activity against myeloproliferative neoplasms (MPNs) including those harboring the JAK2V617F mutation. We investigated the in vitro and in vivo efficacy of ruxolitinib and changes in downstream signaling pathways in HL and PMBL. We demonstrated that ruxolitinib significantly inhibited STAT signaling in both HL and PMBL with constitutively active JAK2 signaling. We also observed that ruxolitinib significantly induced in vitro anti-proliferative effects (p < 0.05) and increased programmed cell death (p < 0.05) against both HL and PMBL cells. Importantly, ruxolitinib significantly inhibited tumor progression by bioluminescence (p < 0.05) and significantly improved survival in HL (p = 0.0001) and PMBL (p < 0.0001) xenograft NSG mice. Taken altogether, these studies suggest that ruxolitinib may be a potential adjuvant targeted agent in the therapeutic approach in patients with high risk HL and PMBL.
Collapse
Affiliation(s)
- Sanghoon Lee
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, USA
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA
| | - Tishi Shah
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, USA
| | - Changhong Yin
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, USA
| | - Jessica Hochberg
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, USA
| | - Janet Ayello
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, USA
| | - Erin Morris
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, USA
| | | | - Mitchell S. Cairo
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, USA
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA
- Department of Medicine, Pathology, Microbiology and Immunology New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
27
|
Vainchenker W, Leroy E, Gilles L, Marty C, Plo I, Constantinescu SN. JAK inhibitors for the treatment of myeloproliferative neoplasms and other disorders. F1000Res 2018; 7:82. [PMID: 29399328 PMCID: PMC5773931 DOI: 10.12688/f1000research.13167.1] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/11/2018] [Indexed: 01/04/2023] Open
Abstract
JAK inhibitors have been developed following the discovery of the
JAK2V617F in 2005 as the driver mutation of the majority of non-
BCR-ABL1 myeloproliferative neoplasms (MPNs). Subsequently, the search for JAK2 inhibitors continued with the discovery that the other driver mutations (
CALR and
MPL) also exhibited persistent JAK2 activation. Several type I ATP-competitive JAK inhibitors with different specificities were assessed in clinical trials and exhibited minimal hematologic toxicity. Interestingly, these JAK inhibitors display potent anti-inflammatory activity. Thus, JAK inhibitors targeting preferentially JAK1 and JAK3 have been developed to treat inflammation, autoimmune diseases, and graft-versus-host disease. Ten years after the beginning of clinical trials, only two drugs have been approved by the US Food and Drug Administration: one JAK2/JAK1 inhibitor (ruxolitinib) in intermediate-2 and high-risk myelofibrosis and hydroxyurea-resistant or -intolerant polycythemia vera and one JAK1/JAK3 inhibitor (tofacitinib) in methotrexate-resistant rheumatoid arthritis. The non-approved compounds exhibited many off-target effects leading to neurological and gastrointestinal toxicities, as seen in clinical trials for MPNs. Ruxolitinib is a well-tolerated drug with mostly anti-inflammatory properties. Despite a weak effect on the cause of the disease itself in MPNs, it improves the clinical state of patients and increases survival in myelofibrosis. This limited effect is related to the fact that ruxolitinib, like the other type I JAK2 inhibitors, inhibits equally mutated and wild-type JAK2 (JAK2WT) and also the JAK2 oncogenic activation. Thus, other approaches need to be developed and could be based on either (1) the development of new inhibitors specifically targeting
JAK2V617F or (2) the combination of the actual JAK2 inhibitors with other therapies, in particular with molecules targeting pathways downstream of JAK2 activation or the stability of JAK2 molecule. In contrast, the strong anti-inflammatory effects of the JAK inhibitors appear as a very promising therapeutic approach for many inflammatory and auto-immune diseases.
Collapse
Affiliation(s)
- William Vainchenker
- INSERM UMR 1170, Gustave Roussy, Villejuif, France.,Université Paris-Saclay, UMR1170, Gustave Roussy, Villejuif, France.,UMR 1170, Gustave Roussy, Villejuif, France
| | - Emilie Leroy
- Signal Transduction & Molecular Hematology Unit, Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Laure Gilles
- Institut National de la Transfusion Sanguine, Paris, France
| | - Caroline Marty
- INSERM UMR 1170, Gustave Roussy, Villejuif, France.,Université Paris-Saclay, UMR1170, Gustave Roussy, Villejuif, France.,UMR 1170, Gustave Roussy, Villejuif, France
| | - Isabelle Plo
- INSERM UMR 1170, Gustave Roussy, Villejuif, France.,Université Paris-Saclay, UMR1170, Gustave Roussy, Villejuif, France.,UMR 1170, Gustave Roussy, Villejuif, France
| | - Stefan N Constantinescu
- Signal Transduction & Molecular Hematology Unit, Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
28
|
Casu C, Presti VL, Oikonomidou PR, Melchiori L, Abdulmalik O, Ramos P, Rivella S. Short-term administration of JAK2 inhibitors reduces splenomegaly in mouse models of β-thalassemia intermedia and major. Haematologica 2017; 103:e46-e49. [PMID: 29097498 DOI: 10.3324/haematol.2017.181511] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Carla Casu
- Department of Pediatrics, Division of Hematology, Children's Hospital of Philadelphia (CHOP), PA, USA
| | - Vania Lo Presti
- Department of Pediatrics, Division of Hematology, Children's Hospital of Philadelphia (CHOP), PA, USA
| | - Paraskevi Rea Oikonomidou
- Department of Pediatrics, Division of Hematology, Children's Hospital of Philadelphia (CHOP), PA, USA.,Penteli's Children's Hospital, Pediatric Department, Athens, Greece
| | | | - Osheiza Abdulmalik
- Department of Pediatrics, Division of Hematology, Children's Hospital of Philadelphia (CHOP), PA, USA
| | | | - Stefano Rivella
- Department of Pediatrics, Division of Hematology, Children's Hospital of Philadelphia (CHOP), PA, USA
| |
Collapse
|
29
|
Lin C, Cao W, Ren Z, Tang Y, Zhang C, Yang R, Chen Y, Liu Z, Peng C, Wang L, Wang X, Ji T. GDNF secreted by nerves enhances PD-L1 expression via JAK2-STAT1 signaling activation in HNSCC. Oncoimmunology 2017; 6:e1353860. [PMID: 29147602 PMCID: PMC5674951 DOI: 10.1080/2162402x.2017.1353860] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/28/2017] [Accepted: 06/28/2017] [Indexed: 02/08/2023] Open
Abstract
Programmed death ligand 1 (PD-L1) functions as a key immune inhibitory factor by binding with its receptor, programmed death 1 (PD-1), to induce immune cell dysfunction and escape of the immune system. However, the mechanisms of PD-L1 expression under growth factor stimulation are not well characterized. Here, we demonstrate a novel role for glial cell line-derived neurotrophic factor (GDNF) in upregulating PD-L1 expression in head and neck squamous cell carcinoma (HNSCC). The expression and correlation of PD-L1, GDNF and perineural invasion (PNI) status were evaluated by bioinformatics analysis of TCGA database and IHC assays from 145 HNSCC patients. PD-L1 expression was investigated by flow cytometry, Western blot and real-time PCR analyses in HNSCC cells after GNDF incubation. The cell signaling pathways activated by GDNF were analyzed with an antibody array and blocked by specific signaling inhibitors in cancer cell lines. PD-L1 expression was significantly higher in cancer cells that exhibited PNI in the HNSCC specimens, and elevated PD-L1 expression was significantly correlated with GDNF levels. GDNF not only enhanced cancer cell PNI in a co-culture of dorsal root ganglions and cancer cells but also had a potent role in inducing PD-L1 expression through the JAK2-STAT1 signaling pathway. Moreover, a JAK2 inhibitor attenuated GDNF-induced PD-L1 and enhanced tumor cell susceptibility to NK cell killing. Our findings provide clinically novel evidence that nerve-derived GDNF can increase PD-L1 levels in cancer cells around the perineural niche and that regulatory signaling is critical for cancer cell escape from immune surveillance in the nerve-cancer microenvironment.
Collapse
Affiliation(s)
- Chengzhong Lin
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, PR China
| | - Wei Cao
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, PR China
| | - Zhenhu Ren
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, PR China
| | - Yu Tang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, PR China
| | - Chunye Zhang
- Department of Oral Pathology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Yang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, PR China
| | - Yiming Chen
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, PR China
| | - Zheqi Liu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, PR China
| | - Canbang Peng
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, PR China
| | - Lizhen Wang
- Department of Oral Pathology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xu Wang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, PR China
| | - Tong Ji
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, PR China
| |
Collapse
|
30
|
Hazell AS, Afadlal S, Cheresh DA, Azar A. Treatment of rats with the JAK-2 inhibitor fedratinib does not lead to experimental Wernicke's encephalopathy. Neurosci Lett 2017; 642:163-167. [PMID: 28109775 DOI: 10.1016/j.neulet.2017.01.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 01/13/2017] [Accepted: 01/17/2017] [Indexed: 12/26/2022]
Abstract
Recent clinical trials suggest that patients with myelofibrosis can develop Wernicke's encephalopathy (WE) when treated with fedratinib, a specific Janus kinase-2 (JAK-2) inhibitor. To investigate this issue, we have examined (1) if fedratinib can produce or alter the course of this disorder, (2) its effects on thiamine-dependent enzyme activity and thiamine status, and (3) its influence on the uptake of thiamine. Animals administered fedratinib for 28days at a comparable dose used to treat human cases of myelofibrosis showed no evidence of clinical signs of thiamine deficiency (TD). Rats treated with a combination of fedratinib and TD exhibited no neurological differences in their progress to the symptomatic stage when compared to thiamine-deficient animals only. Treatment with the JAK-2 inhibitor did not compromise erythrocyte transketolase activity, and thiamine status was not affected in a major way unlike animals with TD. In addition, treatment of cultured astrocytes with fedratinib did not diminish the uptake of thiamine into these cells. Our findings suggest that treatment with fedratinib does not lead to or alter the progress of TD, and do not support the notion that administration of this JAK-2 inhibitor directly results in the development of WE due to inhibition of thiamine transport. Known adverse effects of fedratinib involving compromised gastrointestinal function may be an important indirect contributing factor to previously reported cases of WE in patients with myelofibrosis.
Collapse
Affiliation(s)
- Alan S Hazell
- Department of Medicine, University of Montreal, Montreal, QC, Canada; Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil.
| | - Szeifoul Afadlal
- Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - David A Cheresh
- Department of Pathology, University of California, San Diego, CA, USA
| | - Ashraf Azar
- Department of Medicine, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
31
|
Barbui T, Thiele J, Vannucchi AM, Tefferi A. Myeloproliferative neoplasms: Morphology and clinical practice. Am J Hematol 2016; 91:430-3. [PMID: 26718907 DOI: 10.1002/ajh.24288] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 12/22/2015] [Indexed: 12/26/2022]
Abstract
In myeloproliferative neoplasms (MPNs), controversy persists regarding the usefulness and reproducibility of bone marrow (BM) features. Disagreements concerning the WHO classification are mainly focused on the discrimination between essential thrombocythemia (ET) and prefibrotic/early primary myelofibrosis (prePMF) and prodromal polycythemia vera (PV). Criticism mostly refers to lack of standardization of distinctive BM features precluding correct morphological pattern recognition. The distinction between WHO-defined ET and prePMF is not trivial because outcome is significantly worse in prePMF. Morphology was generally considered to be non-specific for the diagnosis of PV. Recent studies have revealed under-diagnosis of morphologically and biologically consistent PV.
Collapse
Affiliation(s)
- Tiziano Barbui
- Research Foundation, Papa Giovanni XXIII Hospital; Bergamo Italy
| | - Jürgen Thiele
- Institute of pathology, University of Cologne; Cologne Germany
| | | | | |
Collapse
|
32
|
Primary myelofibrosis: current therapeutic options. Rev Bras Hematol Hemoter 2016; 38:257-63. [PMID: 27521865 PMCID: PMC4997889 DOI: 10.1016/j.bjhh.2016.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 12/24/2022] Open
Abstract
Primary myelofibrosis is a Philadelphia-negative myeloproliferative neoplasm characterized by clonal myeloid expansion, followed by progressive fibrous connective tissue deposition in the bone marrow, resulting in bone marrow failure. Clonal evolution can also occur, with an increased risk of transformation to acute myeloid leukemia. In addition, disabling constitutional symptoms secondary to the high circulating levels of proinflammatory cytokines and hepatosplenomegaly frequently impair quality of life. Herein the main current treatment options for primary myelofibrosis patients are discussed, contemplating disease-modifying therapeutics in addition to palliative measures, in an individualized patient-based approach.
Collapse
|