1
|
Becker AS, Klauk F, Freitag T, Strüder DF, Schneider B, Zimpfer A, Maletzki C. Inhibition of platin-induced BCL2 increase overcomes chemoresistance in squamous cell carcinoma of the head and neck through resensitization to cell death. Transl Oncol 2025; 53:102308. [PMID: 39970625 PMCID: PMC11880736 DOI: 10.1016/j.tranon.2025.102308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 11/12/2024] [Accepted: 01/30/2025] [Indexed: 02/21/2025] Open
Abstract
The clinical outcome of head and neck squamous cell carcinoma (HNSCC) remains poor with high recurrence rates, in part due to resistance to concurrent platinum-based chemotherapy. The anti-apoptotic BCL2 protein is involved in apoptosis resistance and tumor cell invasion/migration. Here, we test whether BCL2 overexpression predicts poor therapeutic response of HNSCC to cisplatin-based chemoradiotherapy and the effects of selective BCL2 inhibition on cisplatin-induced cell changes in vitro. BCL2 immunostatus was correlated with survival after chemoradiotherapy in a uniformly treated HNSCC cohort. The combination therapy of ABT-199, a BCL2 inhibitor, and cisplatin was evaluated in vitro using corresponding patient-derived cell lines. Colony formation and the mode of cell death were analyzed in-depth. Patients with BCL2-positive tumors (44/254) prior to treatment (either radiation, cisplatin monotherapy, or both) had shorter overall and progression-free survival (log-rank; p = 0.048) and a higher rate of tumor relapse (Fisher's exact test; p = 0.0032). BCL2 inhibition alone had no effect on cell functions in our triple panel of cisplatin-sensitive cell lines but enhanced cisplatin-induced effects. Rates of autophagy and cell death, including methuosis, were doubled, while epithelial-mesenchymal transformation was inhibited. As selective inhibition of BCL2 is available and standard of care in other malignancies, its immunohistochemical assessment could help personalize therapy by identifying a subpopulation to overcome chemoresistance, particularly in locally advanced HNSCC.
Collapse
Affiliation(s)
| | - Friederike Klauk
- Hematology, Oncology, Palliative Medicine, Department of Medicine, Clinic III, Rostock University Medical Center, Germany
| | - Thomas Freitag
- Hematology, Oncology, Palliative Medicine, Department of Medicine, Clinic III, Rostock University Medical Center, Germany
| | - Daniel Fabian Strüder
- Department of Otorhinolaryngology, Head and Neck Surgery "Otto Koerner", Rostock Medical Center, Germany
| | | | | | - Claudia Maletzki
- Hematology, Oncology, Palliative Medicine, Department of Medicine, Clinic III, Rostock University Medical Center, Germany
| |
Collapse
|
2
|
Mehta H, Ambele MA, Mokgautsi N, Moela P. Probing the Effects of Retinoblastoma Binding Protein 6 (RBBP6) Knockdown on the Sensitivity of Cisplatin in Cervical Cancer Cells. Cells 2024; 13:700. [PMID: 38667315 PMCID: PMC11049397 DOI: 10.3390/cells13080700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/05/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Cervical cancer is a major cause of death in women despite the advancement of current treatment modalities. The conventional therapeutic agent, cisplatin (CCDP), is the standard treatment for CC; however, resistance often develops due to the cancer's heterogeneity. Therefore, a detailed elucidation of the specific molecular mechanisms driving CC is crucial for the development of targeted therapeutic strategies. Retinoblastoma binding protein 6 (RBBP6) is a potential biomarker associated with cell proliferation and is upregulated in cervical cancer sites, exhibiting apoptosis and dysregulated p53 expression. Furthermore, RBBP6 has been demonstrated to sensitize cancer cells to radiation and certain chemotherapeutic agents by regulating the Bcl-2 gene, thus suggesting a crosstalk among RBBP6/p53/BCL-2 oncogenic signatures. The present study, therefore, investigated the relationship between cisplatin and RBBP6 expression in CC cells. Herein, we first explored bioinformatics simulations and identified that the RBBP6/p53/BCL-2 signaling pathway is overexpressed and correlated with CC. For further analysis, we explored the Genomics of Drug Sensitivity in Cancer (GDSC) and found that most of the CC cell lines are sensitive to CCDP. To validate these findings, RBBP6 was silenced in HeLa and Vero cells using RNAi technology, followed by measurement of wild-type p53 and Bcl-2 at the mRNA level using qPCR. Cells co-treated with cisplatin and siRBBP6 were subsequently analyzed for apoptosis induction and real-time growth monitoring using flow cytometry and the xCELLigence system, respectively. Cancer cells in the co-treatment group showed a reduction in apoptosis compared to the cisplatin-treated group. Moreover, the real-time growth monitoring revealed a reduced growth rate in RBBP6 knockdown cells treated with cisplatin. Although wild-type p53 remained unchanged in the co-treatment group of cancer cells, Bcl-2 was completely repressed, suggesting that RBBP6 is necessary for sensitizing cervical cancer cells to cisplatin treatment by downregulating Bcl-2. The Vero cell population, which served as a non-cancerous control cell line in this study, remained viable following treatment with both siRBBP6 and cisplatin. Findings from this study suggest that RBBP6 expression promotes cisplatin sensitivity in HeLa cells through Bcl-2 downregulation. Knockdown of RBBP6 limits apoptosis induction and delays cell growth inhibition in response to cisplatin. The knowledge obtained here has the potential to help improve cisplatin efficacy through personalized administration based on the expression profile of RBBP6 among individual patients.
Collapse
Affiliation(s)
- Harshini Mehta
- Division of Genetics, Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa; (H.M.); (N.M.)
| | - Melvin Anyasi Ambele
- Institute for Cellular and Molecular Medicine, Department of Immunology and SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa;
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Ntlotlang Mokgautsi
- Division of Genetics, Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa; (H.M.); (N.M.)
| | - Pontsho Moela
- Division of Genetics, Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa; (H.M.); (N.M.)
| |
Collapse
|
3
|
Wang L, Xi C, Liu R, Ye T, Xiang N, Deng J, Li H. Dual targeting of Mcl-1 and Bcl-2 to overcome chemoresistance in cervical and colon cancer. Anticancer Drugs 2024; 35:219-226. [PMID: 37948336 DOI: 10.1097/cad.0000000000001553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
After an initial positive response to chemotherapy, cancer patients often become resistant and experience relapse. Our previous research identified eukaryotic translation initiation factor 4E (eIF4E) as a crucial target to overcome chemoresistance. In this study, we delved further into the role and therapeutic potential of myeloid cell leukemia 1 (Mcl-1), an eIF4E-mediated target, in chemoresistance. We showed that the levels of phosphor and total eIF4E, as well as Mcl-1, were elevated in chemoresistant cervical but not colon cancer cells. Mcl-1 inhibitor S64315 decreased Mcl-1 levels in chemoresistant cancer cells, regardless of Mcl-1 upregulation, decreased viability in chemoresistant cancer cells and acted synergistically with chemotherapy drugs. The combined inhibition of Mcl-1 and B-cell lymphoma 2 (Bcl-2), employing both genetic and pharmacological approaches, led to a markedly more substantial decrease in viability compared with the inhibition of either target individually. The combination of S64315 and Bcl-2 inhibitors reduced tumor growth in chemoresistant cervical and colon cancer models without causing general toxicity in mice. This combination also prolonged overall survival compared with using S64315 or venetoclax alone. Our research highlights the therapeutic potential of inhibiting Mcl-1 and Bcl-2 simultaneously in chemoresistant cancers and provides a rationale for initiating clinical trials to investigate the combination of S64315 and venetoclax for the treatment of advanced colon and cervical cancer.
Collapse
Affiliation(s)
- Ling Wang
- Department of Obstetrics and Gynaecology
| | - Changlei Xi
- Department of Anorectal Surgery, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Rong Liu
- Department of Obstetrics and Gynaecology
| | | | - Ning Xiang
- Department of Obstetrics and Gynaecology
| | | | - Hui Li
- Department of Obstetrics and Gynaecology
| |
Collapse
|
4
|
Marima R, Mosoane B, Mtshali N, Basera A, Kgatle M, Grech G, Dlamini Z. Mechanisms of chemotherapy resistance in cervical cancer. STRATEGIES FOR OVERCOMING CHEMOTHERAPY RESISTANCE IN CERVICAL CANCER 2024:53-70. [DOI: 10.1016/b978-0-443-28985-9.00012-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
5
|
Sadiq NB, Kwon H, Park NI, Hamayun M, Jung JH, Yang SH, Jang SW, Kabadayı SN, Kim HY, Kim YJ. The Impact of Light Wavelength and Darkness on Metabolite Profiling of Korean Ginseng: Evaluating Its Anti-Cancer Potential against MCF-7 and BV-2 Cell Lines. Int J Mol Sci 2023; 24:ijms24097768. [PMID: 37175475 PMCID: PMC10178343 DOI: 10.3390/ijms24097768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Korean ginseng is a source of functional foods and medicines; however, its productivity is hindered by abiotic stress factors, such as light. This study investigated the impacts of darkness and different light wavelengths on the metabolomics and anti-cancer activity of ginseng extracts. Hydroponically-grown Korean ginseng was shifted to a light-emitting diodes (LEDs) chamber for blue-LED and darkness treatments, while white fluorescent (FL) light treatment was the control. MCF-7 breast cancer and lipopolysaccharide (LPS)-induced BV-2 microglial cells were used to determine chemo-preventive and neuroprotective potential. Overall, 53 significant primary metabolites were detected in the treated samples. The levels of ginsenosides Rb1, Rb2, Rc, Rd, and Re, as well as organic and amino acids, were significantly higher in the dark treatment, followed by blue-LED treatment and the FL control. The dark-treated ginseng extract significantly induced apoptotic signaling in MCF-7 cells and dose-dependently inhibited the NF-κB and MAP kinase pathways in LPS-induced BV-2 cells. Short-term dark treatment increased the content of Rd, Rc, Rb1, Rb2, and Re ginsenosides in ginseng extracts, which promoted apoptosis of MCF-7 cells and inhibition of the MAP kinase pathway in BV-2 microglial cells. These results indicate that the dark treatment might be effective in improving the pharmacological potential of ginseng.
Collapse
Affiliation(s)
- Nooruddin Bin Sadiq
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
- Department of Plant Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Hyukjoon Kwon
- Center of Biomaterials, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
| | - Nam Il Park
- Department of Plant Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Je-Hyeong Jung
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
| | - Seung-Hoon Yang
- Department of Medical Biotechnology, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea
| | - Soo-Won Jang
- Korean Ginseng Company (KGC), 71 Beotkkot-gil, Daedeok-gu, Daejeon 34337, Republic of Korea
| | - Seda Nur Kabadayı
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
| | - Ho-Youn Kim
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Young-Joo Kim
- Center of Biomaterials, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
| |
Collapse
|
6
|
Celik A, Orfany A, Dearling J, Del Nido PJ, McCully JD, Bakar-Ates F. Mitochondrial transplantation: Effects on chemotherapy in prostate and ovarian cancer cells in vitro and in vivo. Biomed Pharmacother 2023; 161:114524. [PMID: 36948134 DOI: 10.1016/j.biopha.2023.114524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/24/2023] Open
Abstract
Prostate and ovarian cancers affect the male and female reproductive organs and are among the most common cancers in developing countries. Previous studies have demonstrated that cancer cells have a high rate of aerobic glycolysis that is present in nearly all invasive human cancers and persists even under normoxic conditions. Aerobic glycolysis has been correlated with chemotherapeutic resistance and tumor aggressiveness. These data suggest that mitochondrial dysfunction may confer a significant proliferative advantage during the somatic evolution of cancer. In this study we investigated the effect of direct mitochondria transplantation on cancer cell proliferation and chemotherapeutic sensitivity in prostate and ovarian cancer models, both in vitro and in vivo. Our results show that the transplantation of viable, respiration competent mitochondria has no effect on cancer cell proliferation but significantly decreases migration and alters cell cycle checkpoints. Our results further demonstrate that mitochondrial transplantation significantly increases chemotherapeutic sensitivity, providing similar apoptotic levels with low-dose chemotherapy as that achieved with high-dose chemotherapy. These results suggest that mitochondria transplantation provides a novel approach for early prostate and ovarian cancer therapy, significantly increasing chemotherapeutic sensitivity in in vitro and in vivo murine models.
Collapse
Affiliation(s)
- Aybuke Celik
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey; Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Arzoo Orfany
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Jason Dearling
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Pedro J Del Nido
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - James D McCully
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Filiz Bakar-Ates
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey.
| |
Collapse
|
7
|
Luo Y, Chen Y, Jin H, Hou B, Li H, Li X, Liu L, Zhou Y, Li Y, Song YS, Liu Q, Zou Z. The suppression of cervical cancer ferroptosis by macrophages: The attenuation of ALOX15 in cancer cells by macrophages-derived exosomes. Acta Pharm Sin B 2023. [DOI: 10.1016/j.apsb.2023.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
|
8
|
George IA, Chauhan R, Dhawale R, Iyer R, Limaye S, Sankaranarayanan R, Venkataramanan R, Kumar P. Insights into therapy resistance in cervical cancer. ADVANCES IN CANCER BIOLOGY - METASTASIS 2022; 6:100074. [DOI: 10.1016/j.adcanc.2022.100074] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
9
|
Kumar S, Mulchandani V, Das Sarma J. Methanolic neem (Azadirachta indica) stem bark extract induces cell cycle arrest, apoptosis and inhibits the migration of cervical cancer cells in vitro. BMC Complement Med Ther 2022; 22:239. [PMID: 36088372 PMCID: PMC9463741 DOI: 10.1186/s12906-022-03718-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022] Open
Abstract
Background Cervical cancer remains one of the significant causes of mortality in women due to the limitations of current treatment strategies and their associated side effects. Investigation of alternative medicine, including phytomedicine, has shown effective anti-cancer potential with fewer side effects. Azadirachta indica (commonly known as neem) is known for its medicinal properties. The present study investigated the anti-cancer potential of methanolic neem stem bark extract (MNBE) against cervical cancer using HeLa, SiHa, and ME-180 cell lines. Methods Cytotoxic effect of MNBE on cultured cell lines was evaluated by MTT and clonogenic assay. The growth-inhibiting effect of MNBE was further confirmed by performing cell cycle analysis and apoptosis assay using flow cytometry. The anti-migratory effect of MNBE was evaluated by using wound healing and Boyden chamber assay. Real-time PCR was used to determine the mRNA expression, and western blot and flow cytometry was used to determine the protein levels of growth and migration-related genes. Results MNBE significantly suppressed the growth and survival of cervical cancer cells in a dose-dependent manner by inducing cell cycle arrest and apoptosis. In addition, the growth inhibitory effect of MNBE was specific to cervical cancer cells than normal cells. Cell cycle arrest was correlated to transcriptional downregulation of cyclin dependent kinase 1 (CDK1), cyclin A, and cyclin B. Additionally, MNBE treatment resulted in the upregulation of active caspase-3 protein and downregulation of prosurvival genes, Bcl2, and survivin at mRNA level and NFkB-p65 at the protein level. Furthermore, MNBE inhibited the migration of cervical cancer cells accompanied by modulation of migration-related genes, including zona occludens-1 (ZO-1), matrix metalloproteinase 2 (MMP2), focal adhesion kinase (FAK), N-cadherin, snail, and E-cadherin. Conclusion In summary, the present study provides the first evidence of MNBE in restricting cervical cancer cell growth and migration, which warrants further investigation for developing novel anti-cancer drugs. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03718-7.
Collapse
|
10
|
Hasan MM, Tasmin MS, El-Shehawi AM, Elseehy MM, Reza MA, Haque A. R. vesicarius L. exerts nephroprotective effect against cisplatin-induced oxidative stress. BMC Complement Med Ther 2021; 21:225. [PMID: 34481509 PMCID: PMC8417970 DOI: 10.1186/s12906-021-03398-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/17/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Cisplatin is an outstanding anticancer drug, but its use has been decreased remarkably due to sever nephrotoxicity. R. vesicarius L. is a leafy vegetable that is evident with anti-angeogenic, anti-inflammatory, anti-proliferative, hepatoprotective, and nephroprotective potential. Therefore, this study was designed to inspect its methanol extract (RVE) for possible nephroprotective effect. METHODS Primarily, in vitro antioxidant activity of RVE was confirmed based on 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging aptitude. Thereafter, Swiss Albino male mice were treated with cisplatin (2.5 mg/kg) for 5 successive days to induce nephrotoxicity. Recovery from nephrotoxicity was scrutinized by treating the animals with RVE (25, 50, and 100 mg/kg) intraperitoneally (i.p.) for the next 5 consecutive days. After completion of treatment, mice were sacrificed and kidneys were collected. Part of it was homogenized in sodium phosphate buffer for evaluating malondialdehyde (MDA) level, another part was used to evaluate gene (NQO1, p53, and Bcl-2) expression. Moreover, the hydrogen peroxide (H2O2) neutralizing capacity of RVE was evaluated in HK-2 cells in vitro. Finally, bioactive phytochemicals in RVE were determined using gas chromatography-mass spectrometry (GC-MS). RESULTS RVE showed in vitro antioxidant activity in a dose-dependent fashion with 37.39 ± 1.89 μg/mL IC50 value. Treatment with RVE remarkably (p < 0.05) decreased MDA content in kidney tissue. Besides, the expression of NQO, p53, and Bcl-2 genes was significantly (p < 0.05) mitigated in a dose-dependent manner due to the administration of RVE. RVE significantly (p < 0.05) reversed the H2O2 level in HK-2 cells to almost normal. From GC-MS, ten compounds including three known antioxidants "4H-Pyran-4-one, 2, 3-dihydro-3,5-dihydroxy-6-methyl-", "Hexadecanoic acid", and "Squalene" were detected. The extract was rich with an alkaloid "13-Docosenamide". CONCLUSION Overall, RVE possesses a protective effect against cisplatin-induced kidney damage.
Collapse
Affiliation(s)
- Md Mahmudul Hasan
- Molecular Biology and Protein Science Laboratory, Department of Genetic Engineering and Biotechnology, Faculty of Life and Earth Sciences, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Most Sayla Tasmin
- Molecular Pathology Laboratory, Institute of Biological Sciences, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Ahmed M El-Shehawi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mona M Elseehy
- Department of Genetics, Faculty of Agriculture, Alexandria University, Alexandria, 21545, Egypt
| | - Md Abu Reza
- Molecular Biology and Protein Science Laboratory, Department of Genetic Engineering and Biotechnology, Faculty of Life and Earth Sciences, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Ariful Haque
- Molecular Pathology Laboratory, Institute of Biological Sciences, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
11
|
Cisplatin-induced hydroxyl radicals mediate pro-survival autophagy in human lung cancer H460 cells. Biol Res 2021; 54:22. [PMID: 34321115 PMCID: PMC8317380 DOI: 10.1186/s40659-021-00346-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 07/19/2021] [Indexed: 12/24/2022] Open
Abstract
Background Accumulated evidence demonstrates cisplatin, a recommended chemotherapy, modulating pro-survival autophagic response that contributes to treatment failure in lung cancer patients. However, distinct mechanisms involved in cisplatin-induced autophagy in human lung cancer cells are still unclear. Results Herein, role of autophagy in cisplatin resistance was indicated by a decreased cell viability and increased apoptosis in lung cancer H460 cells pre-incubated with wortmannin, an autophagy inhibitor, prior to treatment with 50 µM cisplatin for 24 h. The elevated level of hydroxyl radicals detected via flow-cytometry corresponded to autophagic response, as evidenced by the formation of autophagosomes and autolysosomes in cisplatin-treated cells. Interestingly, apoptosis resistance, autophagosome formation, and the alteration of the autophagic markers, LC3-II/LC3-I and p62, as well as autophagy-regulating proteins Atg7 and Atg3, induced by cisplatin was abrogated by pretreatment of H460 cells with deferoxamine, a specific hydroxyl radical scavenger. The modulations in autophagic response were also indicated in the cells treated with hydroxyl radicals generated via Fenton reaction, and likewise inhibited by pretreatment with deferoxamine. Conclusions In summary, the possible role of hydroxyl radicals as a key mediator in the autophagic response to cisplatin treatment, which was firstly revealed in this study would benefit for the further development of novel therapies for lung cancer.
Collapse
|
12
|
Cancer cell death strategies by targeting Bcl-2's BH4 domain. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118983. [PMID: 33549704 DOI: 10.1016/j.bbamcr.2021.118983] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/15/2022]
Abstract
The Bcl-2-family proteins have long been known for their role as key regulators of apoptosis. Overexpression of various members of the family is associated with oncogenesis. Its founding member, anti-apoptotic Bcl-2 regulates cell death at different levels, whereby Bcl-2 emerged as a major drug target to eradicate cancers through cell death. This resulted in the development of venetoclax, a Bcl-2 antagonist that acts as a BH3 mimetic. Venetoclax already entered the clinic to treat relapse chronic lymphocytic leukemia patients. Here, we discuss the role of Bcl-2 as a decision-maker in cell death with focus on the recent advances in anti-cancer therapeutics that target the BH4 domain of Bcl-2, thereby interfering with non-canonical functions of Bcl-2 in Ca2+-signaling modulation. In particular, we critically discuss previously developed tools, including the peptide BIRD-2 (Bcl-2/IP3R-disrupter-2) and the small molecule BDA-366. In addition, we present a preliminary analysis of two recently identified molecules that emerged from a molecular modeling approach to target Bcl-2's BH4 domain, which however failed to induce cell death in two Bcl-2-dependent diffuse large B-cell lymphoma cell models. Overall, antagonizing the non-canonical functions of Bcl-2 by interfering with its BH4-domain biology holds promise to elicit cell death in cancer, though improved tools and on-target antagonizing small molecules remain necessary and ought to be designed.
Collapse
|
13
|
Sen P, Ghosal S, Hazra R, Mohanty R, Arega S, Sahu B, Ganguly N. CRISPR-mediated knockdown of miR-214 modulates cell fate in response to anti-cancer drugs in HPV-negative and HPV-positive cervical cancer cells. J Biosci 2020. [DOI: 10.1007/s12038-020-00054-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Dudea-Simon M, Mihu D, Irimie A, Cojocneanu R, Korban SS, Oprean R, Braicu C, Berindan-Neagoe I. Identification of Core Genes Involved in the Progression of Cervical Cancer Using an Integrative mRNA Analysis. Int J Mol Sci 2020; 21:ijms21197323. [PMID: 33023042 PMCID: PMC7583959 DOI: 10.3390/ijms21197323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023] Open
Abstract
In spite of being a preventable disease, cervical cancer (CC) remains at high incidence, and it has a significant mortality rate. Although hijacking of the host cellular pathway is fundamental for developing a better understanding of the human papillomavirus (HPV) pathogenesis, a major obstacle is identifying the central molecular targets involved in HPV-driven CC. The aim of this study is to investigate transcriptomic patterns of HPV-infected and normal tissues to identify novel prognostic markers. Analyses of functional enrichment and interaction networks reveal that altered genes are mainly involved in cell cycle, DNA damage, and regulated cell-to-cell signaling. Analysis of The Cancer Genome Atlas (TCGA) data has suggested that patients with unfavorable prognostics are more likely to have DNA repair defects attributed, in most cases, to the presence of HPV. However, further studies are needed to fully unravel the molecular mechanisms of such genes involved in CC.
Collapse
Affiliation(s)
- Marina Dudea-Simon
- 2nd Obstetrics and Gynecology Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (M.D.-S.); (D.M.)
| | - Dan Mihu
- 2nd Obstetrics and Gynecology Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (M.D.-S.); (D.M.)
| | - Alexandru Irimie
- Department of Surgery, “Prof. Dr. Ion Chiricuta” Oncology Institute, 400015 Cluj-Napoca, Romania;
- Department of Surgical Oncology and Gynecological Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Roxana Cojocneanu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (R.C.); (I.B.-N.)
| | - Schuyler S. Korban
- Department of Natural and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | - Radu Oprean
- Analytical Chemistry Department, Iuliu Hatieganu University of Medicine and Pharmacy, 4, Louis Pasteur Street, 400349 Cluj-Napoca, Romania;
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (R.C.); (I.B.-N.)
- Correspondence:
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (R.C.); (I.B.-N.)
- Department of Functional Genomics and Experimental Pathology, “Prof. Dr. Ion Chiricuţă” Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| |
Collapse
|
15
|
Baglo Y, Sorrin AJ, Liang BJ, Huang HC. Harnessing the Potential Synergistic Interplay Between Photosensitizer Dark Toxicity and Chemotherapy. Photochem Photobiol 2020; 96:636-645. [PMID: 31856423 DOI: 10.1111/php.13196] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/20/2022]
Abstract
The combination of photodynamic therapy and taxol- or platinum-based chemotherapy (photochemotherapy) is an effective and promising cancer treatment. While the mechanisms of action of photochemotherapy are actively studied, relatively little is known about the cytotoxicity and molecular alterations induced by the combination of chemotherapy and photosensitizers without light activation in cancer cells. This study investigates the interplay between the photosensitizer benzoporphyrin derivative (BPD) without light activation and cisplatin or paclitaxel in two glioblastoma lines, U87 and U251. The combination effect of BPD and cisplatin in U87 cells is slightly synergistic (combination index, CI = 0.93), showing 1.8- to 2.6-fold lower half-maximal inhibitory concentrations (IC50 ) compared to those of individual drugs. In contrast, combining BPD and paclitaxel is slightly antagonistic (CI = 1.14) in U87 cells. In U251 cells, the combinations of BPD and cisplatin or paclitaxel are both antagonistic (CI = 1.24 and 1.34, respectively). Western blotting was performed to investigate changes in the expression levels of YAP, TAZ, Bcl-2 and EGFR in U87 and U251 cells treated with BPD, cisplatin and paclitaxel, both as monotherapies and in combination. Our study provides insights into the molecular alterations in two glioma lines caused by each monotherapy and the combinations, in order to inform the design of effective treatments.
Collapse
Affiliation(s)
- Yan Baglo
- Fischell Department of Bioengineering, University of Maryland, College Park, MD
| | - Aaron J Sorrin
- Fischell Department of Bioengineering, University of Maryland, College Park, MD
| | - Barry J Liang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD
| | - Huang-Chiao Huang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD.,Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
16
|
Hu QL, Xu ZP, Lan YF, Li B. miR-636 represses cell survival by targeting CDK6/Bcl-2 in cervical cancer. Kaohsiung J Med Sci 2019; 36:328-335. [PMID: 31889428 DOI: 10.1002/kjm2.12181] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/15/2019] [Indexed: 12/11/2022] Open
Abstract
Cervical cancer is widely known as one of the most common types of cancer diagnosed in women, and microRNAs (miRNAs) has been characterized as an important regulator in tumor progression, such as cervical cancer. MiR-636 was found to play a tumor suppressor role in hepatocellular carcinoma tumorigenesis. However, the tumorigenic mechanism of miR-636 on cervical cancer has not yet been found. In the present study, we first found that miR-636 was significantly downregulated in cervical cancer tissues and cell lines. in vitro gain- and loss-of-function assays revealed that overexpression of miR-636 inhibited cell proliferation and induced cell apoptosis, while knockdown of miR-636 reversed the effect on cervical tumorigenesis. Furthermore, cyclin-dependent kinase 6 (CDK6) and B-cell lymphoma 2 (Bcl-2) were characterized as targets of miR-636. Notably, overexpression of CDK6 or Bcl-2 could reverse the inhibitory effect of miR-636 on cervical cancer progression. Mechanistically, miR-636 repressed cell survival by targeting CDK6/Bcl-2 in cervical cancer, which may be the underlying mechanism of miR-636-inhibited cervical progression. In conclusion, our findings clarified the biologic significance of miR-636/CDK6/Bcl-2 axis in cervical cancer progression and suggested the potential therapeutic target ability of miR-636 in treatment of cervical cancer.
Collapse
Affiliation(s)
- Qing-Lan Hu
- Department of Gynecology, Qinyuan Women and Children Hospital, Qingyuan, China
| | - Zun-Peng Xu
- Department of Prenatal Diagnosis Center, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Yun-Fei Lan
- Department of Pathology, Qinyuan Women and Children Hospital, Qingyuan, China
| | - Bei Li
- Department of National Demonstration Base for Early Childhood Development, Guangzhou Women and Children's Medical Center, Guangzhou, China
| |
Collapse
|
17
|
Li JL, Wang JP, Chang H, Deng SM, Du JH, Wang XX, Hu HJ, Li DY, Xu XB, Guo WQ, Song YH, Guo Z, Sun MX, Wu YW, Liu SB. FEN1 inhibitor increases sensitivity of radiotherapy in cervical cancer cells. Cancer Med 2019; 8:7774-7780. [PMID: 31670906 PMCID: PMC6912068 DOI: 10.1002/cam4.2615] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 09/28/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022] Open
Abstract
Background Cervical cancer is one of the most common causes of cancer‐associated mortality among affected women in the world. At present, treatment with weekly cisplatin plus ionizing radiation (IR) therapy is the standard regimen for cervical cancer, especially for locally advanced cervical cancer. The purpose of this study is to determine whether FEN1 inhibitors could enhance the therapeutic effect of IR therapy. Methods Western blot was applied to determine the expression of FEN1‐ and apoptosis‐related proteins. Cell growth inhibition assay and colony formation assay were used to determine the effects of FEN1 inhibitor and IR exposure for Hela cells in vitro. CRISPR technology was used to knockdown FEN1 expression level of 293T cells, and tumor xenograft in nude mice was employed to determine the effects of FEN1 inhibitor and IR exposure on tumor growth in vivo. Results Our data revealed that FEN1 is overexpressed in HeLa cell and can be upregulated further by IR. We also demonstrated that FEN1 inhibitor enhances IR sensitivity of cervical cancer in vitro and in vivo. Conclusion FEN1 inhibitor SC13 could sensitize radiotherapy of cervical cancer cell.
Collapse
Affiliation(s)
- Jin-Li Li
- Department of Radiation Oncology, The Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian-Ping Wang
- Department of Radiation Oncology, The Affiliated Hospital of Soochow University, Suzhou, China
| | - Hong Chang
- Suzhou Key Laboratory for Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
| | - Sheng-Ming Deng
- Department of Nuclear Medicine, The Affiliated Hospital of Soochow University, Suzhou, China
| | - Jia-Hui Du
- Suzhou Key Laboratory for Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
| | - Xiao-Xiao Wang
- Suzhou Key Laboratory for Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
| | - He-Juan Hu
- Suzhou Key Laboratory for Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
| | - Dong-Yin Li
- Suzhou Key Laboratory for Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
| | - Xiang-Bin Xu
- College of Food Science and Technology, Hainan University, Haikou, China
| | - Wei-Qiang Guo
- School of Chemistry, Biology and Materials Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Yao-Hua Song
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Min-Xuan Sun
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Yi-Wei Wu
- Department of Nuclear Medicine, The Affiliated Hospital of Soochow University, Suzhou, China
| | - Song-Bai Liu
- Suzhou Key Laboratory for Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
| |
Collapse
|
18
|
Gkelis S, Panou M, Konstantinou D, Apostolidis P, Kasampali A, Papadimitriou S, Kati D, Di Lorenzo GM, Ioakeim S, Zervou SK, Christophoridis C, Triantis TM, Kaloudis T, Hiskia A, Arsenakis M. Diversity, Cyanotoxin Production, and Bioactivities of Cyanobacteria Isolated from Freshwaters of Greece. Toxins (Basel) 2019; 11:toxins11080436. [PMID: 31349572 PMCID: PMC6723990 DOI: 10.3390/toxins11080436] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/12/2019] [Accepted: 07/23/2019] [Indexed: 12/28/2022] Open
Abstract
Cyanobacteria are a diverse group of photosynthetic Gram-negative bacteria that produce an array of secondary compounds with selective bioactivity against a broad spectrum of organisms and cell lines. In this study, 29 strains isolated from freshwaters in Greece were classified using a polyphasic approach and assigned to Chroococcales, Synechococcales, and Nostocales, representing 11 genera and 17 taxa. There were good agreements between 16S ribosomal RNA (rRNA)-cpcBA-internal genetic spacer (IGS) characterization and morphological features, except for the Jaaginema-Limnothrix group which appears intermixed and needs further elucidation. Methanol extracts of the strains were analyzed for cyanotoxin production and tested against pathogenic bacteria species and several cancer cell lines. We report for the first time a Nostoc oryzae strain isolated from rice fields capable of producing microcystins (MCs) and a Chlorogloeopsis fritschii strain isolated from the plankton of a lake, suggesting that this species may also occur in freshwater temperate habitats. Strains with very high or identical 16S rRNA gene sequences displayed different antibacterial and cytotoxic activities. Extracts from Synechococcus cf. nidulans showed the most potent antibacterial activity against Staphylococcus aureus, whereas Jaaginema sp. strains exhibited potent cytotoxic activities against human colorectal adenocarcinoma and hepatocellular carcinoma cells. Jaaginema Thessaloniki Aristotle University Microalgae and Cyanobacteria (TAU-MAC) 0110 and 0210 strains caused pronounced changes in the actin network and triggered the formation of numerous lipid droplets in hepatocellular carcinoma and green monkey kidney cells, suggesting oxidative stress and/or mitochondrial damage leading to apoptosis.
Collapse
Affiliation(s)
- Spyros Gkelis
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece.
| | - Manthos Panou
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Despoina Konstantinou
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Panagiotis Apostolidis
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Antonia Kasampali
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Sofia Papadimitriou
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Dominiki Kati
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Giorgia Maria Di Lorenzo
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Stamatia Ioakeim
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Sevasti-Kiriaki Zervou
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience & Nanotechnology, National Center for Scientific Research "Demokritos", Patriarchou Grigoriou & Neapoleos, Agia Paraskevi, 15341 Athens, Greece
| | - Christophoros Christophoridis
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience & Nanotechnology, National Center for Scientific Research "Demokritos", Patriarchou Grigoriou & Neapoleos, Agia Paraskevi, 15341 Athens, Greece
| | - Theodoros M Triantis
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience & Nanotechnology, National Center for Scientific Research "Demokritos", Patriarchou Grigoriou & Neapoleos, Agia Paraskevi, 15341 Athens, Greece
| | - Triantafyllos Kaloudis
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience & Nanotechnology, National Center for Scientific Research "Demokritos", Patriarchou Grigoriou & Neapoleos, Agia Paraskevi, 15341 Athens, Greece
| | - Anastasia Hiskia
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience & Nanotechnology, National Center for Scientific Research "Demokritos", Patriarchou Grigoriou & Neapoleos, Agia Paraskevi, 15341 Athens, Greece
| | - Minas Arsenakis
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| |
Collapse
|
19
|
Chen X, Chen F, Ren Y, Weng G, Xu L, Xue X, Keng PC, Lee SO, Chen Y. IL-6 signaling contributes to radioresistance of prostate cancer through key DNA repair-associated molecules ATM, ATR, and BRCA 1/2. J Cancer Res Clin Oncol 2019; 145:1471-1484. [PMID: 31020420 DOI: 10.1007/s00432-019-02917-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/15/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE To study an association between IL-6 signaling and resistance to radiotherapy of prostate cancer (PCa) and explore the molecular mechanisms involved. METHODS IL-6 expressing C4-2 and CWR22Rv1 (C4-2IL-6/CWRIL-6) and vector control (C4-2vec/CWRvec) cell lines were developed. Radiation-sensitivities of these cells were compared in clonogenic assay, Comet assay, and γH2AX staining. In xenograft animal studies, radiation-sensitivity of C4-2IL-6 cell-derived tumors vs. C4-2vec cell-derived tumors was investigated. To reveal IL-6 downstream molecules involved in DNA repair after radiation, qPCR and Western blot analyses as well as immunofluorescence staining were performed. Transcriptional control of IL-6 on ATM and ATR molecules was also investigated. RESULTS We found C4-2IL-6 and CWRIL-6 cells survived better than their vector control cells after irradiation, and animal studies confirmed such in vitro results. We discovered that DNA repair-related molecules such as ATM, ATR, BRCA1, and BRCA2 were significantly upregulated in irradiated IL-6 expressing cells compared with vector control cells. We further defined that IL-6 signaling regulated cellular expressions of ATM and ATR at the transcriptional level through the activation of Stat3 signaling pathway. CONCLUSIONS IL-6 leads to PCa resistance to radiation through upregulation of DNA repair associated molecules ATM, ATR, BRCA1, and BRCA2.
Collapse
Affiliation(s)
- Xiaodong Chen
- Department of Radiation Oncology, James P. Wilmot Cancer Center, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave., Box 647, Rochester, NY, 14642, USA
- Department of Urology, Ningbo Urology and Nephrology Hospital, Ningbo, 315100, Zhejiang, People's Republic of China
| | - Feng Chen
- Department of Radiation Oncology, James P. Wilmot Cancer Center, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave., Box 647, Rochester, NY, 14642, USA
- Department of Urology, Ningbo Urology and Nephrology Hospital, Ningbo, 315100, Zhejiang, People's Republic of China
| | - Yu Ren
- Department of Urology, Ningbo Urology and Nephrology Hospital, Ningbo, 315100, Zhejiang, People's Republic of China
| | - Guobin Weng
- Department of Urology, Ningbo Urology and Nephrology Hospital, Ningbo, 315100, Zhejiang, People's Republic of China
| | - Lijun Xu
- Department of Urology, Ningbo Urology and Nephrology Hospital, Ningbo, 315100, Zhejiang, People's Republic of China
| | - Xiang Xue
- Department of Radiation Oncology, James P. Wilmot Cancer Center, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave., Box 647, Rochester, NY, 14642, USA
| | - Peter C Keng
- Department of Radiation Oncology, James P. Wilmot Cancer Center, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave., Box 647, Rochester, NY, 14642, USA
| | - Soo Ok Lee
- Department of Radiation Oncology, James P. Wilmot Cancer Center, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave., Box 647, Rochester, NY, 14642, USA.
| | - Yuhchyau Chen
- Department of Radiation Oncology, James P. Wilmot Cancer Center, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave., Box 647, Rochester, NY, 14642, USA.
| |
Collapse
|
20
|
Zhu R, Xue X, Shen M, Tsai Y, Keng PC, Chen Y, Lee SO, Chen Y. NFκB and TNFα as individual key molecules associated with the cisplatin-resistance and radioresistance of lung cancer. Exp Cell Res 2019; 374:181-188. [DOI: 10.1016/j.yexcr.2018.11.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/21/2018] [Accepted: 11/23/2018] [Indexed: 12/23/2022]
|
21
|
Zhang X, Yu J, Zhao C, Ren H, Yuan Z, Zhang B, Zhuang J, Wang J, Feng B. MiR-181b-5p modulates chemosensitivity of glioma cells to temozolomide by targeting Bcl-2. Biomed Pharmacother 2018; 109:2192-2202. [PMID: 30551476 DOI: 10.1016/j.biopha.2018.11.074] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/13/2018] [Accepted: 11/19/2018] [Indexed: 12/30/2022] Open
Abstract
Chemotherapy is the main postsurgical and adjuvant therapy for glioma, and intrinsic or acquired temozolomide (TMZ) resistance may result in poor prognosis. The miR-181 family was discovered to play an important role in regulating biological functions in glioma, and miR-181b is less expressed in human gliomas as a tumor-suppressive miRNA. The aim of this study was to explore the molecular mechanism of miR-181b-5p and its target gene on modulating TMZ chemosensitivity in glioma cells. The enhanced chemosensitivity effect of miR-181b-5p to TMZ in glioma cells U87MG and U251 was detected by MTT method. Dual luciferase reporter assay, quantitative real-time PCR (qRT-PCR) and Western blotting were performed to demonstrate that miR-181b-5p directly targets Bcl-2 to reduce the expression. Transwell and flow cytometry assays showed that combination of miR-181b-5p and TMZ exerted stronger effects on inhibiting U87MG cells proliferation, migration and invasion as well as promoting apoptosis and S phase arrest than miR-181b-5p and TMZ alone. The same tendency was observed in the upregulation of apoptosis-related protein Bax and downregulation of cycle-related proteins CyclinD1 and CDK4. In vivo experiments indicated that miR-181b-5p could enhance the tumor-suppressive effect of TMZ. In conclusion, our findings indicate that upregulation of miR-181b-5p targets Bcl-2 directly and may function as an important modifier to sensitize glioma cells to TMZ.
Collapse
Affiliation(s)
- Xiyue Zhang
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Jiawen Yu
- Department of Hematology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Chunhui Zhao
- Liaoning Normal University, School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Dalian 116029, China
| | - Huifang Ren
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Zhen Yuan
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Baihui Zhang
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Jingling Zhuang
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Jia Wang
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Bin Feng
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
22
|
Role of ZIP8 in regulation of cisplatin sensitivity through Bcl-2. Toxicol Appl Pharmacol 2018; 362:52-58. [PMID: 30342059 DOI: 10.1016/j.taap.2018.10.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/12/2018] [Accepted: 10/16/2018] [Indexed: 02/06/2023]
Abstract
ZIP8 is a membrane transporter that facilitates the uptake of divalent metals (e.g., Zn, Mn, Fe, Cd) and the mineral selenite in anionic form. ZIP8 functionality has been recently reported to regulate cell proliferation, migration and cytoskeleton arrangement, exhibiting an essential role for normal physiology. In this study, we report a ZIP8 role in chemotherapy response. We show ZIP8 regulates cell sensitivity to the anti-cancer drug cisplatin. Overexpression of ZIP8 in mouse embryonic fibroblast (MEF) cells induces cisplatin sensitivity, while knockout of ZIP8 in leukemia HAP1 cells leads to cisplatin resistance. In ZIP8 altered cells and transgenic mice, we show cisplatin is not a direct ZIP8 substrate. Further studies demonstrate that ZIP8 regulates anti-apoptotic protein Bcl-2. ZIP8 overexpression decreases Bcl-2 levels in cultured cells, mice lung and liver tissue while loss of ZIP8 elevates Bcl-2 expression in HAP1 cells and liver tissue. We also observe that ZIP8 overexpression modulates cisplatin-induced cell apoptosis, manifested by the increased protein level of cleaved Caspase-3. Since Bcl-2 elevation was previously discovered to induce cisplatin drug resistance, our results suggest ZIP8 may modulate cisplatin drug responses as well as apoptosis through Bcl-2. We therefore conclude ZIP8 is a new molecule to be involved in cisplatin drug responses and is predicted as a genetic factor to be considered in cisplatin therapy.
Collapse
|
23
|
Cypripedin, a phenanthrenequinone from Dendrobium densiflorum, sensitizes non-small cell lung cancer H460 cells to cisplatin-mediated apoptosis. J Nat Med 2018; 72:503-513. [PMID: 29426985 DOI: 10.1007/s11418-018-1176-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 01/17/2018] [Indexed: 12/13/2022]
Abstract
The life-threatening potential of lung cancer has increased over the years due to its acquisition of chemotherapeutic resistance, especially to cisplatin, a first-line therapy. In response to this development, researchers have turned their attention to several compounds derived from natural origins, including cypripedin (CYP), a phenanthrenequinone substance extracted from Dendrobium densiflorum. The aim of the present study was to investigate the ability of CYP to induce apoptosis and enhance cisplatin-mediated death of human lung cancer NCI-H460 cells using cell viability and apoptosis assays. The induction of apoptosis by CYP was observed at a concentration of > 50 μM with the appearance of morphological changes, including DNA condensation and chromatin fragmentation. Together with, CYP was able to activate caspase-3 and downregulate the anti-apoptotic proteins Bcl-2 and Bcl-xL. Also, a non-cytotoxic dose of CYP synergistically potentiated the effect of cisplatin in non-small cell lung cancer line H460 cells, which clearly exhibited the apoptotic phenotype. Western blot analysis revealed that the underlying mechanism involved the downregulation of anti-apoptotic Bcl-xL, whereas the levels of other apoptotic regulatory proteins were not altered. This study provides interesting information on the potent effect of CYP as a chemotherapeutic sensitizer that could be further developed to improve the clinical outcomes of lung cancer patients.
Collapse
|
24
|
Tung MC, Lin PL, Cheng YW, Wu DW, Yeh SD, Chen CY, Lee H. Reduction of microRNA-184 by E6 oncoprotein confers cisplatin resistance in lung cancer via increasing Bcl-2. Oncotarget 2017; 7:32362-74. [PMID: 27083050 PMCID: PMC5078019 DOI: 10.18632/oncotarget.8708] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/28/2016] [Indexed: 12/04/2022] Open
Abstract
MicroRNA-184 suppresses cell growth and survival via targeting c-Myc and Bcl- 2. We recently reported that miR-184 promotes tumor progression in non-small cell lung cancer via targeting CDC25A and c-Myc. We here hypothesized that miR-184 could be down-regulated by E6 oncoprotein to confer cisplatin resistance in NSCLC. Human papillomavirus (HPV) 16-positive lung cancer TL-1 and cervical cancer SiHa cells compared with HPV16-negative TL-10 and C33A cells were enrolled for E6 manipulation. MiR-184 expression levels were increased by E6-knockdown in TL-1 and SiHa cells, but decreased by E6-overexpression in TL-10 and C33A cells. The MTT assay showed that the inhibition concentration of cisplatin yielding for 50% cell viability was dependent on miR-184 levels. Bcl-2 de-targeted by E6-mediated miR- 184 reduction was responsible for cisplatin resistance. Luciferase reporter assay and real- time PCR analysis indicated that the miR-184 promoter activity and its expression were modulated by E6 and/or p53 manipulation. Chromatin immunoprecipitation (ChIP) assay confirmed that p53 was bound onto the miR-184 promoter and its binding activity was modulated by E6 and/or p53 manipulation. Among patients, high miR184 and high Bcl-2 mRNA expression was more commonly occurred in E6- positive tumors than in E6-negative tumors. Fifty-nine out of 136 patients receiving cisplatin-based chemotherapy were available for the retrospective study. Patients with low-mR-184, E6-positive, high-Bcl-2 tumors, and both combinations were more prevalently occurred unfavorable response to cisplatin-based chemotherapy than their counterparts. In conclusion, a decrease in miR-184 level by E6 oncoprotein may predict unfavorable response to cisplatin-based chemotherapy in HPV-infected NSCLC patients via increasing Bcl-2 expression.
Collapse
Affiliation(s)
- Min-Che Tung
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Surgery, Tung's Taichung Metro-Harbor Hospital, Taichung, Taiwan
| | - Po-Lin Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ya-Wen Cheng
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - De-Wei Wu
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Sauh-Der Yeh
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chi-Yi Chen
- Department of Surgery, Chung Shan Medical University, Taichung, Taiwan
| | - Huei Lee
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
25
|
Davidson KT, Zhu Z, Bai Q, Xiao H, Wakefield MR, Fang Y. Blueberry as a Potential Radiosensitizer for Treating Cervical Cancer. Pathol Oncol Res 2017; 25:81-88. [DOI: 10.1007/s12253-017-0319-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/21/2017] [Indexed: 12/23/2022]
|
26
|
Zhang F, Shen M, Yang L, Yang X, Tsai Y, Keng PC, Chen Y, Lee SO, Chen Y. Simultaneous targeting of ATM and Mcl-1 increases cisplatin sensitivity of cisplatin-resistant non-small cell lung cancer. Cancer Biol Ther 2017; 18:606-615. [PMID: 28686074 DOI: 10.1080/15384047.2017.1345391] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Development of cisplatin-resistance is an obstacle in non-small cell lung cancer (NSCLC) therapeutics. To investigate which molecules are associated with cisplatin-resistance, we analyzed expression profiles of several DNA repair and anti-apoptosis associated molecules in parental (A549P and H157P) and cisplatin-resistant (A549CisR and H157CisR) NSCLC cells. We detected constitutively upregulated nuclear ATM and cytosolic Mcl-1 molcules in cisplatin-resistant cells compared with parental cells. Increased levels of phosphorylated ATM (p-ATM) and its downstream molecules, CHK2, p-CHK2, p-53, and p-p53 were also detected in cisplatin-resistant cells, suggesting an activation of ATM signaling in these cells. Upon inhibition of ATM and Mcl-1 expression/activity using specific inhibitors of ATM and/or Mcl-1, we found significantly enhanced cisplatin-cytotoxicity and increased apoptosis of A549CisR cells after cisplatin treatment. Several A549CisR-derived cell lines, including ATM knocked down (A549CisR-siATM), Mcl-1 knocked down (A549CisR-shMcl1), ATM/Mcl-1 double knocked down (A549CisR-siATM/shMcl1) as well as scramble control (A549CisR-sc), were then developed. Higher cisplatin-cytotoxicity and increased apoptosis were observed in A549CisR-siATM, A549CisR-shMcl1, and A549CisR-siATM/shMcl1 cells compared with A549CisR-sc cells, and the most significant effect was shown in A549CisR-siATM/shMcl1 cells. In in vivo mice studies using subcutaneous xenograft mouse models developed with A549CisR-sc and A549CisR-siATM/shMcl1 cells, significant tumor regression in A549CisR-siATM/shMcl1 cells-derived xenografts was observed after cisplatin injection, but not in A549CisR-sc cells-derived xenografts. Finally, inhibitor studies revealed activation of Erk signaling pathway was most important in upregulation of ATM and Mcl-1 molcules in cisplatin-resistant cells. These studies suggest that simultaneous blocking of ATM/Mcl-1 molcules or downstream Erk signaling may recover the cisplatin-resistance of lung cancer.
Collapse
Affiliation(s)
- Fuquan Zhang
- a Department of Radiation Oncology , University of Rochester School of Medicine and Dentistry , Rochester , NY , USA.,b Department of Cardiothoracic Surgery , The Second Affiliated Hospital of Soochow University , Suzhou , Jiangsu , P.R. China
| | - Mingjing Shen
- a Department of Radiation Oncology , University of Rochester School of Medicine and Dentistry , Rochester , NY , USA.,b Department of Cardiothoracic Surgery , The Second Affiliated Hospital of Soochow University , Suzhou , Jiangsu , P.R. China
| | - Li Yang
- a Department of Radiation Oncology , University of Rochester School of Medicine and Dentistry , Rochester , NY , USA
| | - Xiaodong Yang
- a Department of Radiation Oncology , University of Rochester School of Medicine and Dentistry , Rochester , NY , USA
| | - Ying Tsai
- a Department of Radiation Oncology , University of Rochester School of Medicine and Dentistry , Rochester , NY , USA
| | - Peter C Keng
- a Department of Radiation Oncology , University of Rochester School of Medicine and Dentistry , Rochester , NY , USA
| | - Yongbing Chen
- b Department of Cardiothoracic Surgery , The Second Affiliated Hospital of Soochow University , Suzhou , Jiangsu , P.R. China
| | - Soo Ok Lee
- a Department of Radiation Oncology , University of Rochester School of Medicine and Dentistry , Rochester , NY , USA
| | - Yuhchyau Chen
- a Department of Radiation Oncology , University of Rochester School of Medicine and Dentistry , Rochester , NY , USA
| |
Collapse
|
27
|
Zhu D, Tu M, Zeng B, Cai L, Zheng W, Su Z, Yu Z. Up-regulation of miR-497 confers resistance to temozolomide in human glioma cells by targeting mTOR/Bcl-2. Cancer Med 2017; 6:452-462. [PMID: 28064447 PMCID: PMC5313645 DOI: 10.1002/cam4.987] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 10/27/2016] [Accepted: 11/07/2016] [Indexed: 12/21/2022] Open
Abstract
The occurrence of an inherent or acquired resistance to temozolomide (TMZ) is a major burden for patients suffering from glioma. Recently, studies have demonstrated that microRNAs play an important role in the regulation of tumor properties in cancers. However, whether miR‐497 contributes to glioma resistance to chemotherapy is not fully understood. In this study, we showed that the expression of miR‐497 was markedly up‐regulated in TMZ‐resistant glioma cells; high miR‐497 expression level was associated with TMZ‐resistant phenotype of glioma cells. The down‐regulation of miR‐497 in glioma cells enhanced the apoptosis‐induction and growth inhibition effects of TMZ both in vitro and in vivo, whereas promotion of miR‐497 increased the chemosensitization of glioma cells to TMZ. The increased level of miR‐497 in TMZ‐resistant glioma cells was concurrent with the up‐regulation of insulin‐like growth factor 1 receptor (IGF1R)/insulin receptor substrate 1 (IRS1) pathway‐related proteins, that is, IGF1R, IRS1, mammalian target of rapamycin (mTOR), and Bcl‐2. In addition, the knockdown of mTOR and Bcl‐2 reduced the tolerance of glioma cells to TMZ. Our results demonstrated that overexpression of miR‐497 is significantly correlated with TMZ resistance in glioma cells by regulating the IGF1R/IRS1 pathway. Therefore, miR‐497 may be used as a new target for treatment of chemotherapy‐resistant glioma.
Collapse
Affiliation(s)
- Danhua Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Canglang District, Suzhou, Jiangsu, 215000, China.,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Ming Tu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Bo Zeng
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Lin Cai
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Weiming Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Zhipeng Su
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Zhengquan Yu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Canglang District, Suzhou, Jiangsu, 215000, China
| |
Collapse
|
28
|
Xie Q, Su J, Jiao B, Shen L, Ma L, Qu X, Yu C, Jiang X, Xu Y, Sun L. ABT737 reverses cisplatin resistance by regulating ER-mitochondria Ca2+ signal transduction in human ovarian cancer cells. Int J Oncol 2016; 49:2507-2519. [DOI: 10.3892/ijo.2016.3733] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 10/07/2016] [Indexed: 11/05/2022] Open
|
29
|
Poy D, Akbarzadeh A, Ebrahimi Shahmabadi H, Ebrahimifar M, Farhangi A, Farahnak Zarabi M, Akbari A, Saffari Z, Siami F. Preparation, characterization, and cytotoxic effects of liposomal nanoparticles containing cisplatin: an in vitro study. Chem Biol Drug Des 2016; 88:568-573. [PMID: 27178305 DOI: 10.1111/cbdd.12786] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/21/2016] [Accepted: 03/28/2016] [Indexed: 11/27/2022]
Abstract
Cisplatin is a chemotherapeutic agent used for treating various malignancies. The study aimed to prepare pegylated liposomal cisplatin and evaluate its efficacy against human breast cancer cell line MCF-7. Drug-loaded nanoparticles were synthesized by reverse phase evaporation technique. The study is highlighted by extensive characterization of nanoparticles in terms of nanoparticle morphology, type of drug entrapment, cisplatin retention capability, and cytotoxicity effects. The size, size distribution, and zeta potential of nanodrug were estimated 142 nm, 0.33, and -22 mV, respectively. Drug-loading efficiency was equal to 48% that occurred physically. Furthermore, high retention capability (39% of drug was released after 72 h) with significantly enhanced cytotoxicity of nanodrug (1.75 times more than the standard drug) confirmed the potency of liposomal nanoparticles as proper cisplatin carrier.
Collapse
Affiliation(s)
- Donya Poy
- Department of Biotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Azim Akbarzadeh
- Department of Pilot Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran.
| | - Hasan Ebrahimi Shahmabadi
- Department of Microbiology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Meysam Ebrahimifar
- Department of Toxicology, Faculty of Pharmacy, Islamic Azad University, Shahreza, Iran
| | - Ali Farhangi
- Department of Pilot Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Azam Akbari
- Department of Pilot Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Zahra Saffari
- Department of Pilot Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Siami
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
30
|
miR-27a regulates the sensitivity of breast cancer cells to cisplatin treatment via BAK-SMAC/DIABLO-XIAP axis. Tumour Biol 2015; 37:6837-45. [PMID: 26662313 DOI: 10.1007/s13277-015-4500-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 11/24/2015] [Indexed: 12/14/2022] Open
Abstract
MicroRNA-27a (miR-27a) has been reported to be an onco-microRNA in multiple cancers promoting tumor growth and metastasis, but the role of miR-27a in regulating the cancer sensitivity to chemotherapy remains unknown. In this study, upregulation of miR-27a was validated by real-time PCR analysis in breast cancer (BC) cell lines and samples of BC patients. A negative correlation between miR-27a and bak was also observed in normal breast epithelial cell line MCF-10A and BC cell lines, suggesting that the bak is the potential target of miR-27a. miR-27a could modulate the growth and metastasis of BC cells. More importantly, we found that knockdown of miR-27a by the specific inhibitors significantly increased the sensitivity of T-47D cells to cisplatin (CDDP) treatment. After further investigation, we indicated that the knockdown of miR-27a promoted the apoptosis via mitochondrial pathway in T-47D cells treated with CDDP, depending on the BAK-second mitochondria-derived activator of caspase/direct IAP binding protein with low pI (SMAC/DIABLO)-X-linked inhibitor of apoptosis (XIAP) axis. Interestingly, we found that the sensitivity of T-47D cells to some other chemotherapeutic agents (5-fluorouracil, doxorubicin, and tumor necrosis factor-related apoptosis-inducing ligand) was also regulated by miR-27a. These findings improve our understanding of the role of miR-27a in breast cancer and might provide a novel strategy for cancer therapy.
Collapse
|