1
|
Zhong B, Zhao Y, Gao L, Yang G, Gao Y, Li F, Li S. Anticancer Effects of Weizmannia coagulans MZY531 Postbiotics in CT26 Colorectal Tumor-Bearing Mice by Regulating Apoptosis and Autophagy. Life (Basel) 2024; 14:1334. [PMID: 39459634 PMCID: PMC11509727 DOI: 10.3390/life14101334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/08/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Weizmannia coagulans has been shown to have anticancer properties. However, there is limited research on the effects of postbiotic W. coagulans on colorectal cancer cell proliferation. Additionally, the exact mechanisms through which it influences apoptosis- and autophagy-related signaling pathways are yet to be thoroughly elucidated. This study explored the role of W. coagulans MZY531 as a postbiotic in inhibiting tumor growth by modulating apoptosis and autophagy in tumor cells. During the experimental period in the model group, tumors proliferated, tumor markers increased significantly, and immunofluorescence results showed that caspase-3 and terminal deoxynucleotidyl transferase dUTP nick-end labeling were significantly decreased. Conversely, supplementation with W. coagulans MZY531 postbiotics significantly reduced the levels of tumor markers carcinoembryonic antigen, colon cancer antigen, and extracellular protein kinase A and promoted cell apoptosis by increasing the caspase-3-positive count and terminal deoxynucleotidyl transferase dUTP nick-end labeling-positive cells in tumor tissue. Mechanistically, W. coagulans MZY531 postbiotics inhibit tumor growth through the modulation of the Bax/Bcl-2/caspase-3 and JAK2/STAT3 apoptosis pathways and PI3K/AKT/mTOR and TGF-β/SMAD4 cell autophagy pathways. W. coagulans MZY531 postbiotics had a more significant effect than that of W. coagulans MZY531 alone. Probiotics are expected to become effective natural functional foods for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Bao Zhong
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, China; (B.Z.); (Y.Z.); (L.G.); (G.Y.); (Y.G.)
- College of Food Science and Nutritional Engineering, Jilin Agriculture Science and Technology University, Jilin 132101, China;
| | - Yujuan Zhao
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, China; (B.Z.); (Y.Z.); (L.G.); (G.Y.); (Y.G.)
| | - Lei Gao
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, China; (B.Z.); (Y.Z.); (L.G.); (G.Y.); (Y.G.)
| | - Ge Yang
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, China; (B.Z.); (Y.Z.); (L.G.); (G.Y.); (Y.G.)
| | - Yansong Gao
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, China; (B.Z.); (Y.Z.); (L.G.); (G.Y.); (Y.G.)
| | - Fenglin Li
- College of Food Science and Nutritional Engineering, Jilin Agriculture Science and Technology University, Jilin 132101, China;
| | - Shengyu Li
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, China; (B.Z.); (Y.Z.); (L.G.); (G.Y.); (Y.G.)
| |
Collapse
|
2
|
Deng X, Shen Y, Yi M, Zhang C, Zhao B, Zhong G, WeiyangLou, Xue D, Leng Q, Ding J, Zhao R, Jia W, Dong C, Dai Z. Combination of novel oncolytic herpesvirus with paclitaxel as an efficient strategy for breast cancer therapy. J Med Virol 2023; 95:e28768. [PMID: 37212336 DOI: 10.1002/jmv.28768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/04/2023] [Accepted: 04/19/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND New strategies are needed to improve the treatment of patients with breast cancer (BC). Oncolytic virotherapy is a promising new tool for cancer treatment but still has a limited overall durable antitumor response. A novel replicable recombinant oncolytic herpes simplex virus type 1 called VG161 has been developed and has demonstrated antitumor effects in several cancers. Here, we explored the efficacy and the antitumor immune response of VG161 cotreatment with paclitaxel (PTX) which as a novel oncolytic viral immunotherapy for BC. METHODS The antitumor effect of VG161 and PTX was confirmed in a BC xenograft mouse model. The immunostimulatory pathways were tested by RNA-seq and the remodeling of tumor microenvironment was detected by Flow cytometry analysis or Immunohistochemistry. Pulmonary lesions were analyzed by the EMT6-Luc BC model. RESULTS In this report, we demonstrate that VG161 can significantly represses BC growth and elicit a robust antitumor immune response in a mouse model. The effect is amplified when combined with PTX treatment. The antitumor effect is associated with the infiltration of lymphoid cells, including CD4+ T cells, CD8+ T cells, and NK cells (expressing TNF and IFN-γ), and myeloid cells, including macrophages, myeloid-derived suppressor cells, and dendritic cell cells. Additionally, VG161 cotreatment with PTX showed a significant reduction in BC lung metastasis, which may result from the enhanced CD4+ and CD8+ T cell-mediated responses. CONCLUSIONS The combination of PTX and VG161 is effective for repressing BC growth by inducing proinflammatory changes in the tumor microenvironment and reducing BC pulmonary metastasis. These data will provide a new strategy and valuable insight for oncolytic virus therapy applications in primary solid or metastatic BC tumors.
Collapse
Affiliation(s)
- Xinyue Deng
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yinan Shen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
| | - Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chaomei Zhang
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Bin Zhao
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Guansheng Zhong
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - WeiyangLou
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Dixuan Xue
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qi Leng
- Department of Geriatics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Ding
- Shanghai Virogin Biotech Co. Ltd., Shanghai, China
| | - Ronghua Zhao
- Shanghai Virogin Biotech Co. Ltd., Shanghai, China
- CNBG-Virogin Biotech (Shanghai) Co. Ltd., Shanghai, China
| | - Weiguo Jia
- Shanghai Virogin Biotech Co. Ltd., Shanghai, China
- CNBG-Virogin Biotech (Shanghai) Co. Ltd., Shanghai, China
| | - Chenfang Dong
- Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Liu Z, Gray BD, Barber C, Wan L, Furenlid LR, Liang R, Li Z, Woolfenden JM, Pak KY, Martin DR. PEGylated and Non-PEGylated TCP-1 Probes for Imaging of Colorectal Cancer. Mol Imaging Biol 2023; 25:133-143. [PMID: 34845659 PMCID: PMC9148376 DOI: 10.1007/s11307-021-01684-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/27/2021] [Accepted: 11/08/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE Previous studies indicate that 99mTc- and fluorescent-labeled c[Cys-Thr-Pro-Ser-Pro-Phe-Ser-His-Cys]OH (TCP-1) peptides were able to detect colorectal cancer (CRC) and tumor-associated vasculature. This study was designed to characterize the targeting properties of PEGylated and non-PEGylated TCP-1 peptides for CRC imaging. PROCEDURES Cell uptake of cyanine 7 (Cy7)-labeled TCP-1 probes (Cy7-PEG4-TCP-1 and Cy7-TCP-1) was investigated in three CRC cell lines (human, HCT116 and HT29; mouse, CT26). Xenograft and orthotopic CRC tumor models with HCT116 and CT26 cells were used to characterize biodistribution and CRC tumor-targeting properties of TCP-1 fluorescence and radioligand with and without PEGylation, [99mTc]Tc-HYNIC-PEG4-TCP-1 vs. [99mTc]Tc-HYNIC-TCP-1. RESULTS Fluorescence images showed that TCP-1 probes were distributed in the cytoplasm and nucleus of CRC cells. When CT26 cells were treated with unlabeled TCP-1 peptide prior to the cell incubation with Cy7-PEG4-TCP-1, cell fluorescent signals were significantly reduced relative to the cells without blockade. Relative to Cy7-TCP-1, superior brilliance and visibility of fluorescence was observed in the tumor with Cy7-PEG4-TCP-1 and maintained up to 18 h post-injection. [99mTc]Tc-HYNIC-PEG4-TCP-1 images in xenograft and orthotopic CRC models demonstrated that TCP-1 PEGylation preserved tumor-targeting capability of TCP-1, but its distribution (%ID/g) in the liver and intestine was higher than that of [99mTc]Tc-HYNIC-TCP-1 (1.51 ± 0.29 vs 0.53 ± 0.12, P < 0.01). Better tumor visualization by [99mTc]Tc-HYNIC-TCP-1 was observed in the orthotopic CRC model due to lower intestinal radioactivity. CONCLUSIONS TCP-1-based probes undergo endocytosis and localize in the cytoplasm and nucleus of human and mouse CRC cells. Tumor detectability of fluorescent TCP-1 peptide with a PEG4 spacer is promising due to its enhanced tumor binding affinity and rapid clearance kinetics from nontumor tissues. Non-PEGylated [99mTc]Tc-HYNIC-TCP-1 exhibits lower nonspecific accumulation in the liver and gastrointestinal tract and might have better capability for detecting CRC lesions in clinical sites. TCP-1 may represent an innovative targeting molecule for detecting CRC noninvasively.
Collapse
Affiliation(s)
- Zhonglin Liu
- Department of Medical Imaging at College of Medicine, University of Arizona, Tucson, AZ , USA.
- Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA.
| | - Brian D Gray
- Molecular Targeting Technologies, Inc., West Chester, PA, USA.
| | - Christy Barber
- Department of Medical Imaging at College of Medicine, University of Arizona, Tucson, AZ , USA
| | - Li Wan
- Department of Medical Imaging at College of Medicine, University of Arizona, Tucson, AZ , USA
| | - Lars R Furenlid
- Department of Medical Imaging at College of Medicine, University of Arizona, Tucson, AZ , USA
- James C. Wyant College of Optical Sciences, University of Arizona, Tucson, AZ, USA
| | - Rongguang Liang
- James C. Wyant College of Optical Sciences, University of Arizona, Tucson, AZ, USA
| | - Zheng Li
- Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - James M Woolfenden
- Department of Medical Imaging at College of Medicine, University of Arizona, Tucson, AZ , USA
| | - Koon Y Pak
- Molecular Targeting Technologies, Inc., West Chester, PA, USA
| | - Diego R Martin
- Department of Medical Imaging at College of Medicine, University of Arizona, Tucson, AZ , USA
- Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
4
|
Holder PG, Lim SA, Huang CS, Sharma P, Dagdas YS, Bulutoglu B, Sockolosky JT. Engineering interferons and interleukins for cancer immunotherapy. Adv Drug Deliv Rev 2022; 182:114112. [PMID: 35085624 DOI: 10.1016/j.addr.2022.114112] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 02/08/2023]
Abstract
Cytokines are a class of potent immunoregulatory proteins that are secreted in response to various stimuli and act locally to regulate many aspects of human physiology and disease. Cytokines play important roles in cancer initiation, progression, and elimination, and thus, there is a long clinical history associated with the use of recombinant cytokines to treat cancer. However, the use of cytokines as therapeutics has been limited by cytokine pleiotropy, complex biology, poor drug-like properties, and severe dose-limiting toxicities. Nevertheless, cytokines are crucial mediators of innate and adaptive antitumor immunity and have the potential to enhance immunotherapeutic approaches to treat cancer. Development of immune checkpoint inhibitors and combination immunotherapies has reinvigorated interest in cytokines as therapeutics, and a variety of engineering approaches are emerging to improve the safety and effectiveness of cytokine immunotherapy. In this review we highlight recent advances in cytokine biology and engineering for cancer immunotherapy.
Collapse
|
5
|
Wang C, Cui A, Bukenya M, Aung A, Pradhan D, Whittaker CA, Agarwal Y, Thomas A, Liang S, Amlashi P, Suh H, Spranger S, Hacohen N, Irvine DJ. Reprogramming NK cells and macrophages via combined antibody and cytokine therapy primes tumors for elimination by checkpoint blockade. Cell Rep 2021; 37:110021. [PMID: 34818534 PMCID: PMC8653865 DOI: 10.1016/j.celrep.2021.110021] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/29/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022] Open
Abstract
Treatments aiming to augment immune checkpoint blockade (ICB) in cancer often focus on T cell immunity, but innate immune cells may have important roles to play. Here, we demonstrate a single-dose combination treatment (termed AIP) using a pan-tumor-targeting antibody surrogate, half-life-extended interleukin-2 (IL-2), and anti-programmed cell death 1 (PD-1), which primes tumors to respond to subsequent ICB and promotes rejection of large established tumors in mice. Natural killer (NK) cells and macrophages activated by AIP treatment underwent transcriptional reprogramming; rapidly killed cancer cells; governed the recruitment of cross-presenting dendritic cells (DCs) and other leukocytes; and induced normalization of the tumor vasculature, facilitating further immune infiltration. Thus, innate cell-activating therapies can initiate critical steps leading to a self-sustaining cycle of T cell priming driven by ICB. Wang et al. report an immune priming therapy based on a single dose of anti-tumor antibodies, IL-2, and anti-PD-1, which engages natural killer cells and macrophages, promotes lymphocyte recruitment and activation, and elicits vascular normalization. This priming strategy allows subsequent immune checkpoint blockade (ICB) to eradicate large, established tumors.
Collapse
Affiliation(s)
- Chensu Wang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ang Cui
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard-MIT Division of Health Sciences and Technology, MIT, Cambridge, MA, USA
| | - Maurice Bukenya
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Aereas Aung
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dikshant Pradhan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Charles A Whittaker
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yash Agarwal
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ayush Thomas
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Simon Liang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Parastoo Amlashi
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Heikyung Suh
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Stefani Spranger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
6
|
Manfredi F, Cianciotti BC, Potenza A, Tassi E, Noviello M, Biondi A, Ciceri F, Bonini C, Ruggiero E. TCR Redirected T Cells for Cancer Treatment: Achievements, Hurdles, and Goals. Front Immunol 2020; 11:1689. [PMID: 33013822 PMCID: PMC7494743 DOI: 10.3389/fimmu.2020.01689] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022] Open
Abstract
Adoptive T cell therapy (ACT) is a rapidly evolving therapeutic approach designed to harness T cell specificity and function to fight diseases. Based on the evidence that T lymphocytes can mediate a potent anti-tumor response, initially ACT solely relied on the isolation, in vitro expansion, and infusion of tumor-infiltrating or circulating tumor-specific T cells. Although effective in a subset of cases, in the first ACT clinical trials several patients experienced disease progression, in some cases after temporary disease control. This evidence prompted researchers to improve ACT products by taking advantage of the continuously evolving gene engineering field and by improving manufacturing protocols, to enable the generation of effective and long-term persisting tumor-specific T cell products. Despite recent advances, several challenges, including prioritization of antigen targets, identification, and optimization of tumor-specific T cell receptors, in the development of tools enabling T cells to counteract the immunosuppressive tumor microenvironment, still need to be faced. This review aims at summarizing the major achievements, hurdles and possible solutions designed to improve the ACT efficacy and safety profile in the context of liquid and solid tumors.
Collapse
Affiliation(s)
- Francesco Manfredi
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Beatrice Claudia Cianciotti
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Fondazione Centro San Raffaele, Milan, Italy
| | - Alessia Potenza
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Medicine and Surgery, University of Milano – Bicocca, Milan, Italy
| | - Elena Tassi
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maddalena Noviello
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Biondi
- Clinica Pediatrica Università degli Studi di Milano Bicocca, Fondazione MBBM, Monza, Italy
| | - Fabio Ciceri
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Bonini
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Eliana Ruggiero
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
7
|
Peptide-based targeted therapeutics: Focus on cancer treatment. J Control Release 2018; 292:141-162. [DOI: 10.1016/j.jconrel.2018.11.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/03/2018] [Accepted: 11/03/2018] [Indexed: 12/14/2022]
|
8
|
Li M, Yue GGL, Tsui SKW, Fung KP, Lau CBS. Turmeric extract, with absorbable curcumin, has potent anti-metastatic effect in vitro and in vivo. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 46:131-141. [PMID: 30097113 DOI: 10.1016/j.phymed.2018.03.065] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 02/16/2018] [Accepted: 03/31/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Curcumin, a well-studied component in turmeric, exhibits potent antitumor effects in colorectal cancer. Previous studies showed that turmerones raised the accumulation of curcumin inside colonic cells, and curcumin present in turmeric ethanolic extract had enhanced anti-tumor activities in mice. Metastasis accounts for more than 90% colorectal cancer deaths. However, the anti-metastatic effect of turmeric extract on colorectal cancer is still unknown. METHODS In the present study, colony formation, scratch, transwell and Western blot were used to assess colony formation, motility, migration and underlying mechanisms in vitro, respectively. Anti-tumor and anti-metastatic effects in vivo were investigated using an orthotopic xenograft model. RESULTS Turmeric extract exhibited cytotoxic effect, inhibited colony formation, decreased cell motility, migration and epithelial-mesenchymal transitions through regulating multiple pathways including cofilin, FAK/p-Src, AKT, Erk and STAT3 signaling pathways in murine colorectal cancer cells. Furthermore, turmeric extract at 200 mg/kg could decrease colon tumor burden and inhibit liver and lung metastasis in vivo. Treatment of turmeric extract enhanced immunity through T cell stimulation, changed tumor microenvironment, exerted anti-metastatic effects which were shown for the first time in pre-clinical colorectal cancer models. The decrease of immunity after FOLFOX treatment was also firstly demonstrated in mouse model. CONCLUSIONS Turmeric extract was demonstrated for the first time for its anti-tumor and anti-metastatic effects in both colorectal cancer cells and orthotopic mouse model through regulation of multiple targets. These findings strongly suggested the promising use of turmeric extract as chemopreventive or chemotherapeutic agent for colorectal cancer patients with metastasis.
Collapse
Affiliation(s)
- Mingyue Li
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Grace Gar-Lee Yue
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Kwok-Pui Fung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Clara Bik-San Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| |
Collapse
|
9
|
Nonviral Gene Therapy for Cancer: A Review. Diseases 2018; 6:diseases6030057. [PMID: 29970866 PMCID: PMC6164850 DOI: 10.3390/diseases6030057] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/29/2018] [Accepted: 07/01/2018] [Indexed: 12/29/2022] Open
Abstract
Although the development of effective viral vectors put gene therapy on the road to commercialization, nonviral vectors show promise for practical use because of their relative safety and lower cost. A significant barrier to the use of nonviral vectors, however, is that they have not yet proven effective. This apparent lack of interest can be attributed to the problem of the low gene transfer efficiency associated with nonviral vectors. The efficiency of gene transfer via nonviral vectors has been reported to be 1/10th to 1/1000th that of viral vectors. Despite the fact that new gene transfer methods and nonviral vectors have been developed, no significant improvements in gene transfer efficiency have been achieved. Nevertheless, some notable progress has been made. In this review, we discuss studies that report good results using nonviral vectors in vivo in animal models, with a particular focus on studies aimed at in vivo gene therapy to treat cancer, as this disease has attracted the interest of researchers developing nonviral vectors. We describe the conditions in which nonviral vectors work more efficiently for gene therapy and discuss how the goals might differ for nonviral versus viral vector development and use.
Collapse
|
10
|
Moradi Marjaneh R, Hassanian SM, Ghobadi N, Ferns GA, Karimi A, Jazayeri MH, Nasiri M, Avan A, Khazaei M. Targeting the death receptor signaling pathway as a potential therapeutic target in the treatment of colorectal cancer. J Cell Physiol 2018; 233:6538-6549. [DOI: 10.1002/jcp.26640] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/30/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Reyhaneh Moradi Marjaneh
- Department of Physiology, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center Mashhad University of Medical Sciences Mashhad Iran
- Department of Medical Biochemistry, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
- Microanatomy Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Niloofar Ghobadi
- Metabolic Syndrome Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Gordon A. Ferns
- Brighton & Sussex Medical School Division of Medical Education Falmer, Brighton, Sussex UK
| | - Afshin Karimi
- Quality Department of Nutricia Mashhad Mild Powder Industrial Mashhad Iran
| | - Mir Hadi Jazayeri
- Immunology Research Center and Department of Immunology, School of Medicine Iran University of Medical Sciences Tehran Iran
| | - Mohammadreza Nasiri
- Recombinant Proteins Research Group The Research Institute of Biotechnology, Ferdowsi University of Mashhad Mashhad Iran
| | - Amir Avan
- Metabolic Syndrome Research Center Mashhad University of Medical Sciences Mashhad Iran
- Cancer Research Center Mashhad University of Medical Sciences Mashhad Iran
- Department of Modern Sciences and Technologies, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
- Surgical Oncology Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Majid Khazaei
- Department of Physiology, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
11
|
Gang W, Wang JJ, Guan R, Yan S, Shi F, Zhang JY, Li ZM, Gao J, Fu XL. Strategy to targeting the immune resistance and novel therapy in colorectal cancer. Cancer Med 2018; 7:1578-1603. [PMID: 29658188 PMCID: PMC5943429 DOI: 10.1002/cam4.1386] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/16/2018] [Accepted: 01/16/2018] [Indexed: 12/11/2022] Open
Abstract
Assessing the CRC subtypes that can predict the outcome of colorectal cancer (CRC) in patients with immunogenicity seems to be a promising strategy to develop new drugs that target the antitumoral immune response. In particular, the disinhibition of the antitumoral T‐cell response by immune checkpoint blockade has shown remarkable therapeutic promise for patients with mismatch repair (MMR) deficient CRC. In this review, the authors provide the update of the molecular features and immunogenicity of CRC, discuss the role of possible predictive biomarkers, illustrate the modern immunotherapeutic approaches, and introduce the most relevant ongoing preclinical study and clinical trials such as the use of the combination therapy with immunotherapy. Furthermore, this work is further to understand the complex interactions between the immune surveillance and develop resistance in tumor cells. As expected, if the promise of these developments is fulfilled, it could develop the effective therapeutic strategies and novel combinations to overcome immune resistance and enhance effector responses, which guide clinicians toward a more “personalized” treatment for advanced CRC patients.
Collapse
Affiliation(s)
- Wang Gang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, 200235, Shanghai, China
| | - Jun-Jie Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, 200235, Shanghai, China
| | - Rui Guan
- Hubei University of Medicine, NO. 30 People South Road, Shiyan City, Hubei Province, 442000, China
| | - Sun Yan
- Hubei University of Medicine, NO. 30 People South Road, Shiyan City, Hubei Province, 442000, China
| | - Feng Shi
- Department of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province, 212001, China
| | - Jia-Yan Zhang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, 200235, Shanghai, China
| | - Zi-Meng Li
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, 200235, Shanghai, China
| | - Jing Gao
- Department of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province, 212001, China
| | - Xing-Li Fu
- Department of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province, 212001, China
| |
Collapse
|
12
|
Shen J, Xiao Z, Zhao Q, Li M, Wu X, Zhang L, Hu W, Cho CH. Anti-cancer therapy with TNFα and IFNγ: A comprehensive review. Cell Prolif 2018; 51:e12441. [PMID: 29484738 DOI: 10.1111/cpr.12441] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/04/2018] [Indexed: 12/21/2022] Open
Abstract
Tumour necrosis factor alpha (TNFα) and interferon gamma (IFNγ) were originally found to be produced by inflammatory cells and play important roles in the immune system and surveillance of tumour growth. By activating distinct signalling pathways of nuclear factor-κB (NF-κB), mitogen-activated protein kinase (MAPK), and JAK/STAT, TNFα and IFNγ were reported to effectively trigger cell death and perform powerful anti-cancer effects. In this review, we will discuss the new advancements of TNFα and IFNγ in anti-cancer therapy.
Collapse
Affiliation(s)
- Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Qijie Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Lin Zhang
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong
| | - Wei Hu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong
| | - Chi H Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
13
|
Natural small molecule bigelovin suppresses orthotopic colorectal tumor growth and inhibits colorectal cancer metastasis via IL6/STAT3 pathway. Biochem Pharmacol 2018; 150:191-201. [PMID: 29454618 DOI: 10.1016/j.bcp.2018.02.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 02/14/2018] [Indexed: 01/12/2023]
Abstract
Bigelovin, a sesquiterpene lactone, has been demonstrated to induce apoptosis, inhibit inflammation and angiogenesis in vitro, but its potential anti-metastatic activity remains unclear. In the present study, two colon cancer mouse models, orthotopic tumor allografts and experimental metastatic models were utilized to investigate the progression and metastatic spread of colorectal cancer after bigelovin treatments. Results showed that bigelovin (intravenous injection; 0.3-3 mg/kg) significantly suppressed tumor growth and inhibited liver/lung metastasis with modulation of tumor microenvironment (e.g. increased populations of T lymphocytes and macrophages) in orthotopic colon tumor allograft-bearing mice. Furthermore, the inhibitory activities were also validated in the experimental human colon cancer metastatic mouse model. The underlying mechanisms involved in the anti-metastatic effects of bigelovin were then revealed in murine colon tumor cells colon 26-M01 and human colon cancer cells HCT116. Results showed that bigelovin induced cytotoxicity, inhibition of cell proliferation, motility and migration in both cell lines, which were through interfering IL6/STAT3 and cofilin pathways. Alternations of the key molecules including Rock, FAK, RhoA, Rac1/2/3 and N-cadherin, which were detected in bigelovin-treated cancer cells, were also observed in the tumor allografts of bigelovin-treated mice. These findings strongly indicated that bigelovin has potential to be developed as anti-tumor and anti-metastatic agent for colorectal cancer.
Collapse
|
14
|
Schaaf MB, Garg AD, Agostinis P. Defining the role of the tumor vasculature in antitumor immunity and immunotherapy. Cell Death Dis 2018; 9:115. [PMID: 29371595 PMCID: PMC5833710 DOI: 10.1038/s41419-017-0061-0] [Citation(s) in RCA: 443] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 06/30/2017] [Accepted: 07/10/2017] [Indexed: 12/12/2022]
Abstract
It is now well established that cancer cells co-exist within a complex environment with stromal cells and depend for their growth and dissemination on tight and plastic interactions with components of the tumor microenvironment (TME). Cancer cells incite the formation of new blood and lymphatic vessels from preexisting vessels to cope with their high nutrient/oxygen demand and favor tumor outgrowth. Research over the past decades has highlighted the crucial role played by tumor-associated blood and lymphatic vasculature in supporting immunoevasion and in subverting T-cell-mediated immunosurveillance, which are the main hallmarks of cancers. The structurally and functionally aberrant tumor vasculature contributes to the protumorigenic and immunosuppressive TME by maintaining a cancer cell’s permissive environment characterized by hypoxia, acidosis, and high interstitial pressure, while simultaneously generating a physical barrier to T cells' infiltration. Recent research moreover has shown that blood endothelial cells forming the tumor vessels can actively suppress the recruitment, adhesion, and activity of T cells. Likewise, during tumorigenesis the lymphatic vasculature undergoes dramatic remodeling that facilitates metastatic spreading of cancer cells and immunosuppression. Beyond carcinogenesis, the erratic tumor vasculature has been recently implicated in mechanisms of therapy resistance, including those limiting the efficacy of clinically approved immunotherapies, such as immune checkpoint blockers and adoptive T-cell transfer. In this review, we discuss emerging evidence highlighting the major role played by tumor-associated blood and lymphatic vasculature in thwarting immunosurveillance mechanisms and antitumor immunity. Moreover, we also discuss novel therapeutic approaches targeting the tumor vasculature and their potential to help overcoming immunotherapy resistance.
Collapse
Affiliation(s)
- Marco B Schaaf
- Cell Death Research & Therapy (CDRT) Laboratory, Department for Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Abhishek D Garg
- Cell Death Research & Therapy (CDRT) Laboratory, Department for Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) Laboratory, Department for Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium.
| |
Collapse
|
15
|
Colangelo T, Polcaro G, Muccillo L, D'Agostino G, Rosato V, Ziccardi P, Lupo A, Mazzoccoli G, Sabatino L, Colantuoni V. Friend or foe? The tumour microenvironment dilemma in colorectal cancer. Biochim Biophys Acta Rev Cancer 2016; 1867:1-18. [PMID: 27864070 DOI: 10.1016/j.bbcan.2016.11.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/21/2016] [Accepted: 11/14/2016] [Indexed: 12/13/2022]
Abstract
The network of bidirectional homotypic and heterotypic interactions established among parenchymal tumour cells and surrounding mesenchymal stromal cells generates the tumour microenvironment (TME). These intricate crosstalks elicit both beneficial and adverse effects on tumour initiation and progression unbalancing the signals and responses from the neighbouring cells. Here, we highlight the structure, activities and evolution of TME cells considering a novel colorectal cancer (CRC) classification based on differential stromal composition and gene expression profiles. In this scenario, we scrutinise the molecular pathways that either change or become corrupted during CRC development and their relative prognostic value. Finally, we survey the therapeutic molecules directed against TME components currently available in clinical trials as well as those with stronger potential in preclinical studies. Elucidation of dynamic variations in the CRC TME cell composition and their relative contribution could provide novel diagnostic or prognostic biomarkers and allow more personalised therapeutic strategies.
Collapse
Affiliation(s)
- Tommaso Colangelo
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy; present address: Institute for Stem-cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Casa Sollievo della Sofferenza-IRCCS, 71013 San Giovanni Rotondo (FG), Italy
| | - Giovanna Polcaro
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy
| | - Livio Muccillo
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy
| | - Giovanna D'Agostino
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy
| | - Valeria Rosato
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy
| | - Pamela Ziccardi
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy
| | - Angelo Lupo
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy
| | - Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Unit, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", 71013 San Giovanni Rotondo (FG), Italy
| | - Lina Sabatino
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy.
| | - Vittorio Colantuoni
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy.
| |
Collapse
|
16
|
Liu Z, Gray BD, Barber C, Bernas M, Cai M, Furenlid LR, Rouse A, Patel C, Banerjee B, Liang R, Gmitro AF, Witte MH, Pak KY, Woolfenden JM. Characterization of TCP-1 probes for molecular imaging of colon cancer. J Control Release 2016; 239:223-30. [PMID: 27574992 DOI: 10.1016/j.jconrel.2016.08.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/09/2016] [Accepted: 08/25/2016] [Indexed: 12/11/2022]
Abstract
Molecular probes capable of detecting colorectal cancer (CRC) are needed for early CRC diagnosis. The objective of this study was to characterize c[CTPSPFSHC]OH (TCP-1), a small peptide derived from phage display selection, for targeting human CRC xenografts using technetium-99m ((99m)Tc)-labeled TCP-1 and fluorescent cyanine-7 (Cy7)-labeled form of the peptide (Cy7-TCP-1). (99m)Tc-TCP-1 was generated by modifying TCP-1 with succinimidyl-6-hydrazino-nicotinamide (S-HYNIC) followed by radiolabeling. In vitro saturation binding experiments were performed for (99m)Tc-TCP-1 in human HCT116 colon cancer cells. SCID mice with human HCT116 cancer xenografts were imaged with (99m)Tc-TCP-1 or control peptide using a small-animal SPECT imager: Group I (n=5) received no blockade; Group II (n=5) received a blocking dose of non-radiolabeled TCP-1. Group III (n=5) were imaged with (99m)Tc-labeled control peptide (inactive peptide). SCID mice with human PC3 prostate cancer xenografts (Group IV, n=5) were also imaged with (99m)Tc-TCP-1. Eight additional SCID mice bearing HCT116 xenografts in dorsal skinfold window chambers (DSWC) were imaged by direct positron imaging of (18)F-fluorodeoxyglucose ((18)F-FDG) and fluorescence microscopy of Cy7-TCP-1. In vitro(99m)Tc-HYNIC-TCP-1 binding assays on HCT 116 cells indicated a mean Kd of 3.04±0.52nM. In cancer xenografts, (99m)Tc-TCP-1 radioactivity (%ID/g) was 1.01±0.15 in the absence of blockade and was reduced to 0.26±0.04 (P<0.01) with blockade. No radioactive uptake was observed in the PC3 tumors with (99m)Tc-TCP-1 or HCT116 tumors with inactive peptide. Cy7-TCP-1 activity localized not only in metabolically active tumors, as defined by (18)F-FDG imaging, but also in peritumoral microvasculature. In conclusion, TCP-1 probes may have a distinct targeting mechanism with high selectivity for CRC and tumor-associated vasculature. Molecular imaging with TCP-1 probes appears promising to detect malignant colorectal lesions.
Collapse
Affiliation(s)
- Zhonglin Liu
- Department of Medical Imaging, The University of Arizona, Tucson, AZ, United States.
| | - Brian D Gray
- Molecular Targeting Technologies, Inc., West Chester, PA, United States
| | - Christy Barber
- Department of Medical Imaging, The University of Arizona, Tucson, AZ, United States
| | - Michael Bernas
- Department of Surgery, The University of Arizona, Tucson, AZ, United States
| | - Minying Cai
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ, United States
| | - Lars R Furenlid
- Department of Medical Imaging, The University of Arizona, Tucson, AZ, United States; College of Optical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Andrew Rouse
- Department of Medical Imaging, The University of Arizona, Tucson, AZ, United States
| | - Charmi Patel
- Department of Pathology, The University of Arizona, Tucson, AZ, United States
| | - Bhaskar Banerjee
- Department of Medicine, The University of Arizona, Tucson, AZ, United States; Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, United States; College of Optical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Rongguang Liang
- College of Optical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Arthur F Gmitro
- Department of Medical Imaging, The University of Arizona, Tucson, AZ, United States; Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, United States; College of Optical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Marlys H Witte
- Department of Surgery, The University of Arizona, Tucson, AZ, United States
| | - Koon Y Pak
- Molecular Targeting Technologies, Inc., West Chester, PA, United States
| | - James M Woolfenden
- Department of Medical Imaging, The University of Arizona, Tucson, AZ, United States
| |
Collapse
|