1
|
Karajannis MA, Onar-Thomas A, Lin T, Baxter PA, Boué DR, Cole BL, Fuller C, Haque S, Jabado N, Lucas JT, MacDonald SM, Matsushima C, Patel N, Pierson CR, Souweidane MM, Thomas DL, Walsh MF, Zaky W, Leary SES, Gajjar A, Fouladi M, Cohen KJ. Phase 2 trial of veliparib, local irradiation, and temozolomide in patients with newly diagnosed high-grade glioma: a Children's Oncology Group study. Neuro Oncol 2025; 27:1092-1101. [PMID: 39560182 PMCID: PMC12083075 DOI: 10.1093/neuonc/noae247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND The outcome for pediatric patients with high-grade glioma (HGG) remains poor. Veliparib, a potent oral poly(adenosine diphosphate-ribose) polymerase (PARP) 1/2 inhibitor, enhances the activity of radiotherapy and DNA-damaging chemotherapy. METHODS We conducted a single-arm, non-randomized phase 2 clinical trial to determine whether treatment with veliparib and radiotherapy, followed by veliparib and temozolomide, improves progression-free survival in pediatric patients with newly diagnosed HGG without H3 K27M or BRAF mutations, compared to patient-level data from historical cohorts with closely matching clinical and molecular features. Following surgical resection, newly diagnosed children with non-metastatic HGG were screened by rapid central pathology review and molecular testing. Eligible patients were enrolled on Stratum 1 (IDH wild-type) or Stratum 2 (IDH mutant). RESULTS Both strata were closed to accrual for futility after planned interim analyses. Among the 23 eligible patients who enrolled on Stratum 1 and received protocol therapy, the 1-year event-free survival (EFS) was 23% (standard error, SE = 9%) and the 1-year overall survival (OS) was 64% (SE = 10%). Among the 14 eligible patients who enrolled on Stratum 2 and received protocol therapy, the 1-year EFS was 57% (SE = 13%) and 1-year OS was 93% (SE = 0.7%). CONCLUSIONS Rapid central pathology review and molecular testing for eligibility were feasible. The protocol therapy including radiation, veliparib, and temozolomide was well tolerated but failed to improve outcomes compared to clinically and molecularly matched historical control cohorts treated with higher doses of alkylator chemotherapy. CLINICALTRIALS.GOV IDENTIFIER NCT03581292 (first posted: July 10, 2018).
Collapse
Affiliation(s)
- Matthias A Karajannis
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Arzu Onar-Thomas
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Tong Lin
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Patricia A Baxter
- Department of Pediatrics, Texas Children’s Hospital/Baylor College of Medicine, Houston, Texas
| | - Daniel R Boué
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Bonnie L Cole
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Christine Fuller
- Department of Pathology, Upstate Medical University, Syracuse, New York, USA
| | - Sofia Haque
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Nada Jabado
- Department of Pediatrics, McGill University, Montreal, Quebec, Canada
| | - John T Lucas
- Department of Radiation Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Shannon M MacDonald
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Celeste Matsushima
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Namrata Patel
- Department of Pharmacy, Stanford Medicine Children’s Health, Palo Alto, California, USA
| | - Christopher R Pierson
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Mark M Souweidane
- Department of Neurological Surgery, Weill Cornell Medicine, New York, New York, USA
- Department of Neurosurgery, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Diana L Thomas
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Michael F Walsh
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Wafik Zaky
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sarah E S Leary
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Amar Gajjar
- Department of Pediatric Medicine, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Maryam Fouladi
- Department of Pediatrics, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Kenneth J Cohen
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| |
Collapse
|
2
|
Zhen T, Sun T, Xiong B, Liu H, Wang L, Chen Y, Sun H. New insight into targeting the DNA damage response in the treatment of glioblastoma. Chin J Nat Med 2024; 22:869-886. [PMID: 39428180 DOI: 10.1016/s1875-5364(24)60694-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Indexed: 10/22/2024]
Abstract
Glioblastoma (GBM) is the most common invasive malignant tumor in human brain tumors, representing the most severe grade of gliomas. Despite existing therapeutic approaches, patient prognosis remains dismal, necessitating the exploration of novel strategies to enhance treatment efficacy and extend survival. Due to the restrictive nature of the blood-brain barrier (BBB), small-molecule inhibitors are prioritized in the treatment of central nervous system tumors. Among these, DNA damage response (DDR) inhibitors have garnered significant attention due to their potent therapeutic potential across various malignancies. This review provides a detailed analysis of DDR pathways as therapeutic targets in GBM, summarizes recent advancements, therapeutic strategies, and ongoing clinical trials, and offers perspectives on future directions in this rapidly evolving field. The goal is to present a comprehensive outlook on the potential of DDR inhibitors in improving GBM management and outcomes.
Collapse
Affiliation(s)
- Tengfei Zhen
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Tianyu Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Baichen Xiong
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hui Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lei Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
3
|
Obrador E, Moreno-Murciano P, Oriol-Caballo M, López-Blanch R, Pineda B, Gutiérrez-Arroyo JL, Loras A, Gonzalez-Bonet LG, Martinez-Cadenas C, Estrela JM, Marqués-Torrejón MÁ. Glioblastoma Therapy: Past, Present and Future. Int J Mol Sci 2024; 25:2529. [PMID: 38473776 PMCID: PMC10931797 DOI: 10.3390/ijms25052529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Glioblastoma (GB) stands out as the most prevalent and lethal form of brain cancer. Although great efforts have been made by clinicians and researchers, no significant improvement in survival has been achieved since the Stupp protocol became the standard of care (SOC) in 2005. Despite multimodality treatments, recurrence is almost universal with survival rates under 2 years after diagnosis. Here, we discuss the recent progress in our understanding of GB pathophysiology, in particular, the importance of glioma stem cells (GSCs), the tumor microenvironment conditions, and epigenetic mechanisms involved in GB growth, aggressiveness and recurrence. The discussion on therapeutic strategies first covers the SOC treatment and targeted therapies that have been shown to interfere with different signaling pathways (pRB/CDK4/RB1/P16ink4, TP53/MDM2/P14arf, PI3k/Akt-PTEN, RAS/RAF/MEK, PARP) involved in GB tumorigenesis, pathophysiology, and treatment resistance acquisition. Below, we analyze several immunotherapeutic approaches (i.e., checkpoint inhibitors, vaccines, CAR-modified NK or T cells, oncolytic virotherapy) that have been used in an attempt to enhance the immune response against GB, and thereby avoid recidivism or increase survival of GB patients. Finally, we present treatment attempts made using nanotherapies (nanometric structures having active anti-GB agents such as antibodies, chemotherapeutic/anti-angiogenic drugs or sensitizers, radionuclides, and molecules that target GB cellular receptors or open the blood-brain barrier) and non-ionizing energies (laser interstitial thermal therapy, high/low intensity focused ultrasounds, photodynamic/sonodynamic therapies and electroporation). The aim of this review is to discuss the advances and limitations of the current therapies and to present novel approaches that are under development or following clinical trials.
Collapse
Affiliation(s)
- Elena Obrador
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Paz Moreno-Murciano
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
| | - María Oriol-Caballo
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Rafael López-Blanch
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Begoña Pineda
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Julia Lara Gutiérrez-Arroyo
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Alba Loras
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Luis G. Gonzalez-Bonet
- Department of Neurosurgery, Castellon General University Hospital, 12004 Castellon, Spain;
| | - Conrado Martinez-Cadenas
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - José M. Estrela
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | | |
Collapse
|
4
|
Wegener E, Horsley P, Wheeler H, Jayamanne D, Kastelan M, Guo L, Brown C, Back M. Leptomeningeal neuraxis relapse in glioblastoma is an uncommon but not rare event associated with poor outcome. BMC Neurol 2023; 23:328. [PMID: 37715122 PMCID: PMC10503008 DOI: 10.1186/s12883-023-03378-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Spinal neuraxis leptomeningeal metastasis (LM) relapse in glioblastoma is an uncommon event that is challenging to manage. This study aims to determine the incidence, associated factors, and outcome of LM relapse in patients with glioblastoma managed with radical intent. METHODS Patients managed for glioblastoma using the EORTC-NCIC (Stupp) Protocol from 2007 to 2019 were entered into a prospective ethics-approved database. Follow-up included routine cranial MRI surveillance with further imaging as clinically indicated. LM relapse was determined by MRI findings and/or cerebrospinal fluid analysis. The chi-square test of independence was used to evaluate clinico-pathologic factors associated with increased risk of subsequent LM relapse. Median survival post-LM relapse was calculated using Kaplan-Meier technique. RESULTS Four-hundred-and-seven patients were eligible, with median follow-up of 60 months for surviving patients. Eleven (2.7%) had LM at first relapse and in total 21 (5.1%) experienced LM in the entire follow-up period. Sites of LM relapse were 8 (38%) focal spinal, 2 (10%) focal brainstem medulla and 11 (52%) diffuse spinal. Median overall survival from initial diagnosis for the entire cohort was 17.6 months (95% CI 16.7-19.0). Median survival from LM relapse to death was 39 days (95% CI: 19-107). Factors associated with LM relapse were age less than 50 years (p < 0.01), initial disease located in the temporal lobe (p < 0.01) and tumours lacking MGMT promoter methylation (p < 0.01). CONCLUSIONS LM relapse is an uncommon but not rare event in patients managed radically for glioblastoma. It is associated with poor outcome with the majority of patients deceased within two months of recognition.
Collapse
Affiliation(s)
- Eric Wegener
- Department of Radiation Oncology Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards Sydney, NSW, 2065, Australia
| | - Patrick Horsley
- Department of Radiation Oncology Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards Sydney, NSW, 2065, Australia.
| | - Helen Wheeler
- Department of Radiation Oncology Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards Sydney, NSW, 2065, Australia
- The Brain Cancer group, St Leonards, NSW, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
| | - Dasantha Jayamanne
- Department of Radiation Oncology Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards Sydney, NSW, 2065, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
| | | | - Linxin Guo
- Department of Radiation Oncology Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards Sydney, NSW, 2065, Australia
| | - Chris Brown
- NHMRC Clinical Trials Centre, Sydney, Australia
| | - Michael Back
- Department of Radiation Oncology Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards Sydney, NSW, 2065, Australia
- The Brain Cancer group, St Leonards, NSW, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
- Genesis Cancer Care, Sydney, Australia
- Central Coast Cancer Centre, Gosford Hospital, Gosford, Australia
| |
Collapse
|
5
|
Gueble SE, Vasquez JC, Bindra RS. The Role of PARP Inhibitors in Patients with Primary Malignant Central Nervous System Tumors. Curr Treat Options Oncol 2022; 23:1566-1589. [PMID: 36242713 DOI: 10.1007/s11864-022-01024-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2022] [Indexed: 01/30/2023]
Abstract
OPINION STATEMENT Primary malignant central nervous (CNS) tumors are a devastating group of diseases with urgent need for improved treatment options. Surgery, radiation, and cytotoxic chemotherapy remain the primary standard treatment modalities, with molecularly targeted therapies having proven efficacy in only small subsets of cases. Poly(ADP-ribose) polymerase (PARP) inhibitors, which have had immense success in the treatment of extracranial cancers with homologous recombination deficiency (HRD), are emerging as a potential targeted treatment for various CNS tumors. Although few primary CNS tumors display canonical BRCA gene defects, preclinical evidence suggests that PARP inhibitors may benefit certain CNS tumors with functional HRD or elevated replication stress. In addition, other preclinical studies indicate that PARP inhibitors may synergize with standard therapies used for CNS tumors including radiation and alkylating agents and may prevent or overcome drug resistance. Thus far, initial clinical trials with early-generation PARP inhibitors, typically as monotherapy or in the absence of selective biomarkers, have shown limited efficacy. However, the scientific rationale remains promising, and many clinical trials are ongoing, including investigations of more CNS penetrant or more potent inhibitors and of combination therapy with immune checkpoint inhibitors. Early phase trials are also critically focusing on determining active drug CNS penetration and identifying biomarkers of therapy response. In this review, we will discuss the preclinical evidence supporting use of PARP inhibitors in primary CNS tumors and clinical trial results to date, highlighting ongoing trials and future directions in the field that may yield important findings and potentially impact the treatment of these devastating malignancies in the coming years.
Collapse
Affiliation(s)
- Susan E Gueble
- Department of Therapeutic Radiology, Yale School of Medicine, P.O. Box 208040, HRT 134, New Haven, CT, 06520-8040, USA
| | - Juan C Vasquez
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Ranjit S Bindra
- Department of Therapeutic Radiology, Yale School of Medicine, P.O. Box 208040, HRT 134, New Haven, CT, 06520-8040, USA. .,Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
6
|
Daddacha W, Monroe D, Carver K, Usoro ER, Alptekin A, Xu H, Osuka S, Arbab AS, Sakamuro D. Viral Particle-Mediated SAMHD1 Depletion Sensitizes Refractory Glioblastoma to DNA-Damaging Therapeutics by Impairing Homologous Recombination. Cancers (Basel) 2022; 14:4490. [PMID: 36139652 PMCID: PMC9497202 DOI: 10.3390/cancers14184490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 12/04/2022] Open
Abstract
The current standard-of-care treatment for glioblastoma includes DNA damaging agents, γ-irradiation (IR) and temozolomide (TMZ). These treatments fail frequently and there is limited alternative strategy. Therefore, identifying a new therapeutic target is urgently needed to develop a strategy that improves the efficacy of the existing treatments. Here, we report that tumor samples from GBM patients express a high level of SAMHD1, emphasizing SAMHD1's importance. The depletion of SAMHD1 using virus-like particles containing Vpx, VLP(+Vpx), sensitized two independent GBM cell lines (LN-229 and U-87) to veliparib, a well-established PARP inhibitor, and slowed cell growth in a dose-dependent manner. In the mouse GBM xenograft model, Vpx-mediated SAMHD1 depletion reduced tumor growth and SAMHD1 knockout (KO) improved survival. In combination with IR or TMZ, SAMHD1 KO and exposure to 50% growth inhibitory dose (gID50) of VLP(+Vpx) displayed a synergistic effect, resulting in impaired HR, and improved LN-229 cells' sensitivity to TMZ and IR. In conclusion, our finding demonstrates that SAMHD1 promotes GBM resistance to treatment, and it is a plausible therapeutic target to improve the efficacy of TMZ and IR in GBM. Furthermore, we show that Vpx could be a potential therapeutic tool that can be utilized to deplete SAMHD1 in GBM.
Collapse
Affiliation(s)
- Waaqo Daddacha
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Dominique Monroe
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Kristen Carver
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Edidiong R. Usoro
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Ahmet Alptekin
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Hongyan Xu
- Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Satoru Osuka
- Department of Neurosurgery, Heersink School of Medicine, The University of Alabama, Birmingham, AL 35233, USA
| | - Ali S. Arbab
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Daitoku Sakamuro
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
7
|
Bisht P, Kumar VU, Pandey R, Velayutham R, Kumar N. Role of PARP Inhibitors in Glioblastoma and Perceiving Challenges as Well as Strategies for Successful Clinical Development. Front Pharmacol 2022; 13:939570. [PMID: 35873570 PMCID: PMC9297740 DOI: 10.3389/fphar.2022.939570] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma multiform is the most aggressive primary type of brain tumor, representing 54% of all gliomas. The average life span for glioblastoma multiform is around 14-15 months instead of treatment. The current treatment for glioblastoma multiform includes surgical removal of the tumor followed by radiation therapy and temozolomide chemotherapy for 6.5 months, followed by another 6 months of maintenance therapy with temozolomide chemotherapy (5 days every month). However, resistance to temozolomide is frequently one of the limiting factors in effective treatment. Poly (ADP-ribose) polymerase (PARP) inhibitors have recently been investigated as sensitizing drugs to enhance temozolomide potency. However, clinical use of PARP inhibitors in glioblastoma multiform is difficult due to a number of factors such as limited blood-brain barrier penetration of PARP inhibitors, inducing resistance due to frequent use of PARP inhibitors, and overlapping hematologic toxicities of PARP inhibitors when co-administered with glioblastoma multiform standard treatment (radiation therapy and temozolomide). This review elucidates the role of PARP inhibitors in temozolomide resistance, multiple factors that make development of these PARP inhibitor drugs challenging, and the strategies such as the development of targeted drug therapies and combination therapy to combat the resistance of PARP inhibitors that can be adopted to overcome these challenges.
Collapse
Affiliation(s)
- Priya Bisht
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-Hajipur), Hajipur, India
| | - V. Udaya Kumar
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER-Hajipur), Hajipur, India
| | - Ruchi Pandey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-Hajipur), Hajipur, India
| | - Ravichandiran Velayutham
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-Hajipur), Hajipur, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-Hajipur), Hajipur, India
| |
Collapse
|
8
|
Tooth Formation as Experimental Model to Study Chemotherapy on Tissue Development: Effect of a Specific Dose of Temozolomide/Veliparib. Genes (Basel) 2022; 13:genes13071198. [PMID: 35885982 PMCID: PMC9322384 DOI: 10.3390/genes13071198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Chemotherapy treatment of cancer in children can influence formation of normal tissues, leading to irreversible changes in their structure and function. Tooth formation is susceptible to several types of chemotherapy that induce irreversible changes in the structure of enamel, dentin and dental root morphology. These changes can make the teeth more prone to fracture or to caries when they have erupted. Recent studies report successful treatment of brain tumors with the alkylating drug temozolomide (TMZ) in combination with veliparib (VLP) in a glioblastoma in vivo mouse model. Whether these drugs also affect tooth formation is unknown. Aim: In this study the effect of TMZ/VLP on incisor formation was investigated in tissue sections of jaws from mice and compared with mice not treated with these drugs. Materials and method: The following aspects were studied using immunohistochemistry of specific protein markers including: (1) proliferation (by protein expression of proliferation marker Ki67) (2) a protein involved in paracellular ion transport (expression of tight junction (TJ) protein claudin-1) and (3) in transcellular passage of ions across the dental epithelium (expression of Na+, K+ 2Cl- cotransporter/NKCC1). Results: Chemotherapy with TMZ/VLP strongly reduced immunostaining for claudin-1 in distal parts of maturation ameloblasts. No gross changes were found in the treated mice, either in cell proliferation in the dental epithelium at the cervical loop or in the immunostaining pattern for NKCC1 in (non-ameloblastic) dental epithelium. The salivary glands in the treated mice contained strongly reduced immunostaining for NKCC1 in the basolateral membranes of acinar cells. Discussion/Conclusions: Based on the reduction of claudin-1 immunostaining in ameloblasts, TMZ/VLP may potentially influence forming enamel by changes in the structure of TJs structures in maturation ameloblasts, structures that are crucial for the selective passage of ions through the intercellular space between neighboring ameloblasts. The strongly reduced basolateral NKCC1 staining seen in fully-grown salivary glands of TMZ/VLP-treated mice suggests that TMZ/VLF could also influence ion transport in adult saliva by the salivary gland epithelium. This may cause treated children to be more susceptible to caries.
Collapse
|
9
|
Rammohan N, Ho A, Saxena M, Bajaj A, Kruser TJ, Horbinski C, Korutz A, Tate M, Sachdev S. Tumor-associated alterations in white matter connectivity have prognostic significance in MGMT-unmethylated glioblastoma. J Neurooncol 2022; 158:331-339. [PMID: 35525907 DOI: 10.1007/s11060-022-04018-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/16/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE We investigated the prognostic significance of tumor-associated white matter (TA-WM) tracts in glioblastoma (GBM) using magnetic resonance-diffusion tensor imaging (MR-DTI). We hypothesized that (1) TA-WM tracts harbor microscopic disease not targeted through surgery or radiotherapy (RT), and (2) the greater the extent of TA-WM involvement, the worse the survival outcomes. METHODS We studied a retrospective cohort of 76 GBM patients. TA-WM tracts were identified by MR-DTI fractional anisotropy (FA) maps. For each patient, 22 TA-WM tracts were analyzed and each tract was graded 1-3 based on FA. A TA-WM score (TA-WMS) was computed based on number of involved tracts and corresponding FA grade of involvement. Kaplan-Meier statistics were utilized to determine survival outcomes, log-rank test was used to compare survival between groups, and Cox regression was utilized to determine prognostic variables. RESULTS For the MGMT-unmethylated cohort, there was a decrease in OS for increasing TA-WMS (median OS 16.5 months for TA-WMS 0-4; 13.6 months for TA-WMS 5-8; 7.3 months for TA-WMS > 9; p = 0.0002). This trend was not observed in the MGMT-methylated cohort. For MGMT-unmethylated patients with TA-WMS > 6 and involvement of tracts passing through brainstem or contralateral hemisphere, median OS was 8.3 months versus median OS 14.1 months with TA-WMS > 6 but not involving aforementioned critical tracts (p = 0.003 log-rank test). For MGMT-unmethylated patients, TA-WMS was predictive of overall survival in multivariate analysis (HR = 1.14, 95% CI 1.03-1.27, p = 0.012) while age, gender, and largest tumor dimension were non-significant. CONCLUSION Increased TA-WMS and involvement of critical tracts are associated with decreased overall survival in MGMT-unmethylated GBM.
Collapse
Affiliation(s)
- Nikhil Rammohan
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, 676 N St. Clair St, Ste 1820, Chicago, IL, 60611, USA
| | - Alexander Ho
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, 676 N St. Clair St, Ste 1820, Chicago, IL, 60611, USA
| | - Mohit Saxena
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Amishi Bajaj
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, 676 N St. Clair St, Ste 1820, Chicago, IL, 60611, USA
| | - Tim J Kruser
- Turville Bay Radiation Oncology Center, SSM Health Dean Medical Group, Madison, WI, USA
| | - Craig Horbinski
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alexander Korutz
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Matthew Tate
- Department of Neurologic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sean Sachdev
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, 676 N St. Clair St, Ste 1820, Chicago, IL, 60611, USA.
| |
Collapse
|
10
|
Perspective on the Use of DNA Repair Inhibitors as a Tool for Imaging and Radionuclide Therapy of Glioblastoma. Cancers (Basel) 2022; 14:cancers14071821. [PMID: 35406593 PMCID: PMC8997380 DOI: 10.3390/cancers14071821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 01/03/2023] Open
Abstract
Simple Summary The current routine treatment for glioblastoma (GB), the most lethal high-grade brain tumor in adults, aims to induce DNA damage in the tumor. However, the tumor cells might be able to repair that damage, which leads to therapy resistance. Fortunately, DNA repair defects are common in GB cells, and their survival is often based on a sole backup repair pathway. Hence, targeted drugs inhibiting essential proteins of the DNA damage response have gained momentum and are being introduced in the clinic. This review gives a perspective on the use of radiopharmaceuticals targeting DDR kinases for imaging in order to determine the DNA repair phenotype of GB, as well as for effective radionuclide therapy. Finally, four new promising radiopharmaceuticals are suggested with the potential to lead to a more personalized GB therapy. Abstract Despite numerous innovative treatment strategies, the treatment of glioblastoma (GB) remains challenging. With the current state-of-the-art therapy, most GB patients succumb after about a year. In the evolution of personalized medicine, targeted radionuclide therapy (TRT) is gaining momentum, for example, to stratify patients based on specific biomarkers. One of these biomarkers is deficiencies in DNA damage repair (DDR), which give rise to genomic instability and cancer initiation. However, these deficiencies also provide targets to specifically kill cancer cells following the synthetic lethality principle. This led to the increased interest in targeted drugs that inhibit essential DDR kinases (DDRi), of which multiple are undergoing clinical validation. In this review, the current status of DDRi for the treatment of GB is given for selected targets: ATM/ATR, CHK1/2, DNA-PK, and PARP. Furthermore, this review provides a perspective on the use of radiopharmaceuticals targeting these DDR kinases to (1) evaluate the DNA repair phenotype of GB before treatment decisions are made and (2) induce DNA damage via TRT. Finally, by applying in-house selection criteria and analyzing the structural characteristics of the DDRi, four drugs with the potential to become new therapeutic GB radiopharmaceuticals are suggested.
Collapse
|
11
|
Abstract
Faced with unique immunobiology and marked heterogeneity, treatment strategies for glioblastoma require therapeutic approaches that diverge from conventional oncological strategies. The selection and prioritization of targeted and immunotherapeutic strategies will need to carefully consider these features and companion biomarkers developed alongside treatment strategies to identify the appropriate patient populations. Novel clinical trial strategies that interrogate the tumor microenvironment for drug penetration and target engagement will inform go/no-go later-stage clinical studies. Innovative trial designs and analyses are needed to move effective agents toward regulatory approvals more rapidly.
Collapse
Affiliation(s)
- Mustafa Khasraw
- Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Yoko Fujita
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Catalina Lee-Chang
- Department of Neurosurgery, Northwestern University, Chicago, Illinois 60611, USA;
| | - Irina V Balyasnikova
- Department of Neurosurgery, Northwestern University, Chicago, Illinois 60611, USA;
| | - Hinda Najem
- Department of Neurosurgery, Northwestern University, Chicago, Illinois 60611, USA;
| | - Amy B Heimberger
- Department of Neurosurgery, Northwestern University, Chicago, Illinois 60611, USA;
| |
Collapse
|
12
|
Liu D, Yang T, Ma W, Wang Y. Clinical strategies to manage adult glioblastoma patients without MGMT hypermethylation. J Cancer 2022; 13:354-363. [PMID: 34976195 PMCID: PMC8692679 DOI: 10.7150/jca.63595] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 11/21/2021] [Indexed: 01/11/2023] Open
Abstract
Glioblastoma (GBM) is a highly malignant brain tumor with a dismal prognosis. Standard therapy for GBM comprises surgical resection, followed by radiotherapy plus concomitant and adjuvant temozolomide (TMZ) therapy. The methylation status of the O6-methylguanine DNA methyltransferase (MGMT) promoter is one of the most essential predictive biomarkers for patients with GBM treated with TMZ. Patients with an unmethylated MGMT promoter (umMGMT), who comprise 60% of patients with GBM, present an even worse prognosis because of TMZ resistance. Radiotherapy with various fractionation, chemotherapy compensating for TMZ, targeted therapy against diverse oncogenic pathways, immunotherapy of vaccine or immune checkpoint inhibitor, and tumor treating fields have been studied in umMGMT GBM patients. However, most efforts have yielded negative results or merely minimal improvements. Therefore, effective patient subgroup selection concerning precision medicine has become the focus. By assigning different treatments to the corresponding patient subgroups, a better curative effect and subsequently prolonged survival can be achieved. In this review, we re-evaluate the value of standard TMZ therapy and summarize the new clinical strategies and attempts to treat patients with umMGMT, which yielded positive and negative results, to provide alternative treatment options and discuss future directions of umMGMT GBM treatment.
Collapse
Affiliation(s)
- Delin Liu
- Department of Neurosurgery, Peking Union Medical College Hospital, Beijing, China
| | - Tianrui Yang
- Department of Neurosurgery, Peking Union Medical College Hospital, Beijing, China
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Beijing, China
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
13
|
Targeting the DNA damage response: PARP inhibitors and new perspectives in the landscape of cancer treatment. Crit Rev Oncol Hematol 2021; 168:103539. [PMID: 34800653 DOI: 10.1016/j.critrevonc.2021.103539] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/26/2021] [Accepted: 11/15/2021] [Indexed: 12/27/2022] Open
Abstract
Cancer derives from alterations of pathways responsible for cell survival, differentiation and proliferation. Dysfunctions of mechanisms protecting genome integrity can promote oncogenesis but can also be exploited as therapeutic target. Poly-ADP-Ribose-Polymerase (PARP)-inhibitors, the first approved targeted agents able to tackle DNA damage response (DDR), have demonstrated antitumor activity, particularly when homologous recombination impairment is present. Despite the relevant results achieved, a large proportion of patients fail to obtain durable responses. The development of innovative treatments, able to overcome resistance and ensure long-lasting benefit for a wider population is still an unmet need. Moreover, improvement in biomarker assays is necessary to properly identify patients who can benefit from DDR targeting agents. Here we summarize the main DDR pathways, explain the current role of PARP inhibitors in cancer therapy and illustrate new therapeutic strategies targeting the DDR, focusing on the combinations of PARP inhibitors with other agents and on cell-cycle checkpoint inhibitors.
Collapse
|
14
|
Shen N, Zhang S, Cho J, Li S, Zhang J, Xie Y, Wang Y, Zhu W. Application of Cluster Analysis of Time Evolution for Magnetic Resonance Imaging -Derived Oxygen Extraction Fraction Mapping: A Promising Strategy for the Genetic Profile Prediction and Grading of Glioma. Front Neurosci 2021; 15:736891. [PMID: 34671241 PMCID: PMC8520989 DOI: 10.3389/fnins.2021.736891] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The intratumoral heterogeneity of oxygen metabolism and angiogenesis are core hallmarks of glioma, unveiling that genetic aberrations associated with magnetic resonance imaging (MRI) phenotypes may aid in the diagnosis and treatment of glioma. Objective: To explore the predictability of MRI-based oxygen extraction fraction (OEF) mapping using cluster analysis of time evolution (CAT) for genetic profiling and glioma grading. Methods: Ninety-one patients with histopathologically confirmed glioma were examined with CAT for quantitative susceptibility mapping and quantitative blood oxygen level–dependent magnitude-based OEF mapping and dynamic contrast-enhanced (DCE) MRI. Imaging biomarkers, including oxygen metabolism (OEF) and angiogenesis [volume transfer constant, cerebral blood volume (CBV), and cerebral blood flow], were investigated to predict IDH mutation, O6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation status, receptor tyrosine kinase (RTK) subgroup, and differentiation of glioblastoma (GBM) vs. lower-grade glioma (LGG). The corresponding DNA sequencing was also obtained. Results were compared with DCE-MRI using receiver operating characteristic (ROC) analysis. Results: IDH1-mutated LGGs exhibited significantly lower OEF and hypoperfusion than IDH wild-type tumors (all p < 0.01). OEF and perfusion metrics showed a tendency toward higher values in MGMT unmethylated GBM, but only OEF retained significance (p = 0.01). Relative prevalence of RTK alterations was associated with increased OEF (p = 0.003) and perfusion values (p < 0.05). ROC analysis suggested OEF achieved best performance for IDH mutation detection [area under the curve (AUC) = 0.828]. None of the investigated parameters enabled prediction of MGMT status except OEF with a moderate AUC of 0.784. Predictive value for RTK subgroup was acceptable by using OEF (AUC = 0.764) and CBV (AUC = 0.754). OEF and perfusion metrics demonstrated excellent performance in glioma grading. Moreover, mutational landscape revealed hypoxia or angiogenesis-relevant gene signatures were associated with specific imaging phenotypes. Conclusion: CAT for MRI-based OEF mapping is a promising technology for oxygen measurement and along with perfusion MRI can predict genetic profiles and tumor grade in a non-invasive and clinically relevant manner. Clinical Impact: Physiological imaging provides an in vivo portrait of genetic alterations in glioma and offers a potential strategy for non-invasively selecting patients for individualized therapies.
Collapse
Affiliation(s)
- Nanxi Shen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shun Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junghun Cho
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
| | - Shihui Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ju Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Xie
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Wang
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States.,Department of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Li JH, Li SY, Shen MX, Qiu RZ, Fan HW, Li YB. Anti-tumor effects of Solanum nigrum L. extraction on C6 high-grade glioma. JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:114034. [PMID: 33746002 DOI: 10.1016/j.jep.2021.114034] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/07/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Solanum nigrum L. (SN) is a traditional Chinese medicine with anti-tumor effects, has been used in cancer for centuries, but the role on high-grade gliomas (HGG) is not clear. AIM OF THE STUDY This work was to investigate the anti-tumor effects of SN extract on rat C6 glioma in vitro and in vivo, providing a new medium for the treatment of HGG. MATERIALS AND METHODS After identification and quality inspection of SN medicinal materials by HPLC-MS/MS and HPLC, CCK8 and colony formation assay were conducted to study the effects of SN on vitality and proliferation of C6 cells. Cell morphology was evaluated by HE staining, and flow cytometry was used for apoptosis analysis. The effects on cell migration and invasion were determined by transwell and wound healing assay. Western blot was used to further investigate the influence of SN on migration, invasion and apoptosis of tumor cells. In addition, the rat intracranial transplanted tumor model was used to evaluate the effects of SN on growth and infiltration of tumor and proliferation of transplanted tumor cells. RESULTS SN extract suppressed the viability of C6 cells in a dose-dependent manner. The extract attenuated cell cloning, migration and invasion, and induced cell Annexin V+ PI+ late-stage apoptosis. Besides, SN induced the expression of apoptotic proteins including Bax and Cleaved Caspase-3, downregulated anti-apoptotic protein Bcl-2, and decreased the level of migratory proteins MMP-2 and MMP-9. Moreover, SN reduced the growth and infiltration of C6 glioma tissue and suppressed the proliferation of tumor cells in rat brain. CONCLUSIONS SN extract has significant inhibitory activity on the growth and invasion of C6 HGG in vivo and in vitro.
Collapse
Affiliation(s)
- Jia-Hui Li
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, China
| | - Song-Ya Li
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, China
| | - Ming-Xue Shen
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, China
| | - Run-Ze Qiu
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, China
| | - Hong-Wei Fan
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, China.
| | - Ying-Bin Li
- Department of Neurosurgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China.
| |
Collapse
|
16
|
Kirstein A, Schilling D, Combs SE, Schmid TE. Lomeguatrib Increases the Radiosensitivity of MGMT Unmethylated Human Glioblastoma Multiforme Cell Lines. Int J Mol Sci 2021; 22:ijms22136781. [PMID: 34202589 PMCID: PMC8268804 DOI: 10.3390/ijms22136781] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Treatment resistance of glioblastoma multiforme to chemo- and radiotherapy remains a challenge yet to overcome. In particular, the O6-methylguanine-DNA-methyltransferase (MGMT) promoter unmethylated patients have only little benefit from chemotherapy treatment using temozolomide since MGMT counteracts its therapeutic efficacy. Therefore, new treatment options in radiotherapy need to be developed to inhibit MGMT and increase radiotherapy response. Methods: Lomeguatrib, a highly specific MGMT inhibitor, was used to inactivate MGMT protein in vitro. Radiosensitivity of established human glioblastoma multiforme cell lines in combination with lomeguatrib was investigated using the clonogenic survival assay. Inhibition of MGMT was analyzed using Western Blot. Cell cycle distribution and apoptosis were investigated to determine the effects of lomeguatrib alone as well as in combination with ionizing radiation. Results: Lomeguatrib significantly decreased MGMT protein and reduced radiation-induced G2/M arrest. A radiosensitizing effect of lomeguatrib was observed when administered at 1 µM and increased radioresistance at 20 µM. Conclusion: Low concentrations of lomeguatrib elicit radiosensitization, while high concentrations mediate a radioprotective effect.
Collapse
Affiliation(s)
- Anna Kirstein
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany; (A.K.); (D.S.); (S.E.C.)
- Department of Radiation Oncology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Daniela Schilling
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany; (A.K.); (D.S.); (S.E.C.)
- Department of Radiation Oncology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Stephanie E. Combs
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany; (A.K.); (D.S.); (S.E.C.)
- Department of Radiation Oncology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, 81675 Munich, Germany
| | - Thomas E. Schmid
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany; (A.K.); (D.S.); (S.E.C.)
- Department of Radiation Oncology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
- Correspondence: ; Tel.: +49-89-3187-43040
| |
Collapse
|
17
|
Sim HW, McDonald KL, Lwin Z, Barnes EH, Rosenthal M, Foote MC, Koh ES, Back M, Wheeler H, Sulman EP, Buckland ME, Fisher L, Leonard R, Hall M, Ashley DM, Yip S, Simes J, Khasraw M. A randomized phase II trial of veliparib, radiotherapy and temozolomide in patients with unmethylated MGMT glioblastoma: the VERTU study. Neuro Oncol 2021; 23:1736-1749. [PMID: 33984151 PMCID: PMC8485443 DOI: 10.1093/neuonc/noab111] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Background Temozolomide offers minimal benefit in patients with glioblastoma with unmethylated O6-methylguanine-DNA methyltransferase (MGMT) promoter status, hence, the need for novel therapies. This study evaluated whether veliparib, a brain-penetrant poly(ADP-ribose) polymerase (PARP) inhibitor, acts synergistically with radiation and temozolomide. Methods VERTU was a multicenter 2:1 randomized phase II trial in patients with newly diagnosed glioblastoma and MGMT-unmethylated promotor status. The experimental arm consisted of veliparib and radiotherapy, followed by adjuvant veliparib and temozolomide. The standard arm consisted of concurrent temozolomide and radiotherapy, followed by adjuvant temozolomide. The primary objective was to extend the progression-free survival rate at six months (PFS-6m) in the experimental arm. Results A total of 125 participants were enrolled, with 84 in the experimental arm and 41 in the standard arm. The median age was 61 years, 70% were male, 59% had Eastern Cooperative Oncology Group (ECOG) performance status of 0, and 87% underwent macroscopic resection. PFS-6m was 46% (95% confidence interval [CI]: 36%-57%) in the experimental arm and 31% (95% CI: 18%-46%) in the standard arm. Median overall survival was 12.7 months (95% CI: 11.4-14.5 months) in the experimental arm and 12.8 months (95% CI: 9.5-15.8 months) in the standard arm. The most common grade 3-4 adverse events were thrombocytopenia and neutropenia, with no new safety signals. Conclusion The veliparib-containing regimen was feasible and well tolerated. However, there was insufficient evidence of clinical benefit in this population. Further information from correlative translational work and other trials of PARP inhibitors in glioblastoma are still awaited.
Collapse
Affiliation(s)
- Hao-Wen Sim
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, Australia.,St Vincent's Clinical School, University of New South Wales, Sydney, Australia.,Department of Medical Oncology, The Kinghorn Cancer Centre, Sydney, Australia.,Department of Medical Oncology, Chris O'Brien Lifehouse, Sydney, Australia
| | - Kerrie L McDonald
- Cure Brain Cancer Neuro-Oncology Lab, University of New South Wales, Sydney, Australia
| | - Zarnie Lwin
- School of Medicine, University of Queensland, Brisbane, Australia.,Department of Medical Oncology, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | | | - Mark Rosenthal
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia.,Department of Medical Oncology, Royal Melbourne Hospital, Melbourne, Australia
| | - Matthew C Foote
- School of Medicine, University of Queensland, Brisbane, Australia.,Department of Radiation Oncology, Princess Alexandra Hospital, Brisbane, Australia
| | - Eng-Siew Koh
- South Western Sydney Clinical School, University of New South Wales, Sydney, Australia.,Ingham Institute for Applied Medical Research, Sydney, Australia.,Department of Radiation Oncology, Liverpool Hospital, Sydney, Australia
| | - Michael Back
- Department of Radiation Oncology, Royal North Shore Hospital, Sydney, Australia
| | - Helen Wheeler
- Department of Medical Oncology, Royal North Shore Hospital, Sydney, Australia
| | - Erik P Sulman
- Department of Radiation Oncology, NYU Grossman School of Medicine and Brain and Spine Tumors, New York, USA.,Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, USA
| | - Michael E Buckland
- Neuropathology Department, Royal Prince Alfred Hospital, Sydney, Australia.,Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Lauren Fisher
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, Australia
| | - Robyn Leonard
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, Australia
| | - Merryn Hall
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, Australia
| | - David M Ashley
- Duke University School of Medicine, Duke University, Durham, NC, USA
| | - Sonia Yip
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, Australia
| | - John Simes
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, Australia.,Department of Medical Oncology, Chris O'Brien Lifehouse, Sydney, Australia
| | - Mustafa Khasraw
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, Australia.,Duke University School of Medicine, Duke University, Durham, NC, USA
| |
Collapse
|
18
|
Buck J, Dyer PJC, Hii H, Carline B, Kuchibhotla M, Byrne J, Howlett M, Whitehouse J, Ebert MA, McDonald KL, Gottardo NG, Endersby R. Veliparib Is an Effective Radiosensitizing Agent in a Preclinical Model of Medulloblastoma. Front Mol Biosci 2021; 8:633344. [PMID: 33996894 PMCID: PMC8116896 DOI: 10.3389/fmolb.2021.633344] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/30/2021] [Indexed: 11/29/2022] Open
Abstract
Medulloblastoma is the most common malignant childhood brain tumor, and 5-year overall survival rates are as low as 40% depending on molecular subtype, with new therapies critically important. As radiotherapy and chemotherapy act through the induction of DNA damage, the sensitization of cancer cells through the inhibition of DNA damage repair pathways is a potential therapeutic strategy. The poly-(ADP-ribose) polymerase (PARP) inhibitor veliparib was assessed for its ability to augment the cellular response to radiation-induced DNA damage in human medulloblastoma cells. DNA repair following irradiation was assessed using the alkaline comet assay, with veliparib inhibiting the rate of DNA repair. Veliparib treatment also increased the number of γH2AX foci in cells treated with radiation, and analysis of downstream pathways indicated persistent activation of the DNA damage response pathway. Clonogenicity assays demonstrated that veliparib effectively inhibited the colony-forming capacity of medulloblastoma cells, both as a single agent and in combination with irradiation. These data were then validated in vivo using an orthotopic implant model of medulloblastoma. Mice harboring intracranial D425 medulloblastoma xenografts were treated with vehicle, veliparib, 18 Gy multifractionated craniospinal irradiation (CSI), or veliparib combined with 18 Gy CSI. Animals treated with combination therapy exhibited reduced tumor growth rates concomitant with increased intra-tumoral apoptosis observed by immunohistochemistry. Kaplan–Meier analyses revealed a statistically significant increase in survival with combination therapy compared to CSI alone. In summary, PARP inhibition enhanced radiation-induced cytotoxicity of medulloblastoma cells; thus, veliparib or other brain-penetrant PARP inhibitors are potential radiosensitizing agents for the treatment of medulloblastoma.
Collapse
Affiliation(s)
- Jessica Buck
- Brain Tumour Research Program, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia.,Centre for Child Health Research, University of Western Australia, Perth, WA, Australia
| | - Patrick J C Dyer
- Brain Tumour Research Program, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia
| | - Hilary Hii
- Brain Tumour Research Program, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia
| | - Brooke Carline
- Brain Tumour Research Program, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia
| | - Mani Kuchibhotla
- Brain Tumour Research Program, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia
| | - Jacob Byrne
- Brain Tumour Research Program, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia
| | - Meegan Howlett
- Brain Tumour Research Program, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia.,Centre for Child Health Research, University of Western Australia, Perth, WA, Australia
| | - Jacqueline Whitehouse
- Brain Tumour Research Program, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia.,Centre for Child Health Research, University of Western Australia, Perth, WA, Australia
| | - Martin A Ebert
- School of Physics, Mathematics and Computing, University of Western Australia, Perth, WA, Australia.,Radiation Oncology, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | | | - Nicholas G Gottardo
- Brain Tumour Research Program, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia.,Department of Paediatric Oncology and Haematology, Perth Children's Hospital, Perth, WA, Australia
| | - Raelene Endersby
- Brain Tumour Research Program, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia.,Centre for Child Health Research, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
19
|
Baxter PA, Su JM, Onar-Thomas A, Billups CA, Li XN, Poussaint TY, Smith ER, Thompson P, Adesina A, Ansell P, Giranda V, Paulino A, Kilburn L, Quaddoumi I, Broniscer A, Blaney SM, Dunkel IJ, Fouladi M. A phase I/II study of veliparib (ABT-888) with radiation and temozolomide in newly diagnosed diffuse pontine glioma: a Pediatric Brain Tumor Consortium study. Neuro Oncol 2021; 22:875-885. [PMID: 32009149 DOI: 10.1093/neuonc/noaa016] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND A Pediatric Brain Tumor Consortium (PBTC) phase I/II trial of veliparib and radiation followed by veliparib and temozolomide (TMZ) was conducted in children with newly diagnosed diffuse intrinsic pontine glioma (DIPG). The objectives were to: (i) estimate the recommended phase II dose (RP2D) of veliparib with concurrent radiation; (ii) evaluate the pharmacokinetic parameters of veliparib during radiation; (iii) evaluate feasibility of intrapatient TMZ dose escalation; (iv) describe toxicities of protocol therapy; and (v) estimate the overall survival distribution compared with historical series. METHODS Veliparib was given Monday through Friday b.i.d. during radiation followed by a 4-week rest. Patients then received veliparib at 25 mg/m2 b.i.d. and TMZ 135 mg/m2 daily for 5 days every 28 days. Intrapatient dose escalation of TMZ was investigated for patients experiencing minimal toxicity. RESULTS Sixty-six patients (65 eligible) were enrolled. The RP2D of veliparib was 65 mg/m2 b.i.d. with radiation. Dose-limiting toxicities during radiation with veliparib therapy included: grade 2 intratumoral hemorrhage (n = 1), grade 3 maculopapular rash (n = 2), and grade 3 nervous system disorder (generalized neurologic deterioration) (n = 1). Intrapatient TMZ dose escalation during maintenance was not tolerated. Following a planned interim analysis, it was concluded that this treatment did not show a survival benefit compared with PBTC historical controls, and accrual was stopped for futility. The 1- and 2-year overall survival rates were 37.2% (SE 7%) and 5.3% (SE 3%), respectively. CONCLUSION Addition of veliparib to radiation followed by TMZ and veliparib was tolerated but did not improve survival for patients with newly diagnosed DIPG. TRIAL REGISTRATION NCT01514201.
Collapse
Affiliation(s)
- Patricia A Baxter
- Texas Children's Hospital/Baylor College of Medicine, Houston, Texas
| | - Jack M Su
- Texas Children's Hospital/Baylor College of Medicine, Houston, Texas
| | | | | | - Xiao-Nan Li
- Texas Children's Hospital/Baylor College of Medicine, Houston, Texas
| | | | | | - Patrick Thompson
- University of North Carolina Children's Hospital, Chapel Hill, North Carolina
| | - Adekunle Adesina
- Texas Children's Hospital/Baylor College of Medicine, Houston, Texas
| | | | | | - Arnold Paulino
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | | | - Susan M Blaney
- Texas Children's Hospital/Baylor College of Medicine, Houston, Texas
| | - Ira J Dunkel
- Memorial Sloan Kettering Cancer Center, New York, New York
| | | |
Collapse
|
20
|
Chan CY, Tan KV, Cornelissen B. PARP Inhibitors in Cancer Diagnosis and Therapy. Clin Cancer Res 2021; 27:1585-1594. [PMID: 33082213 DOI: 10.1158/1078-0432.ccr-20-2766] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/07/2020] [Accepted: 10/14/2020] [Indexed: 11/16/2022]
Abstract
Targeting of PARP enzymes has emerged as an effective therapeutic strategy to selectively target cancer cells with deficiencies in homologous recombination signaling. Currently used to treat BRCA-mutated cancers, PARP inhibitors (PARPi) have demonstrated improved outcome in various cancer types as single agents. Ongoing efforts have seen the exploitation of PARPi combination therapies, boosting patient responses as a result of drug synergisms. Despite great successes using PARPi therapy, selecting those patients who will benefit from single agent or combination therapy remains one of the major challenges. Numerous reports have demonstrated that the presence of a BRCA mutation does not always result in synthetic lethality with PARPi therapy in treatment-naïve tumors. Cancer cells can also develop resistance to PARPi therapy. Hence, combination therapy may significantly affect the treatment outcomes. In this review, we discuss the development and utilization of PARPi in different cancer types from preclinical models to clinical trials, provide a current overview of the potential uses of PARP imaging agents in cancer therapy, and discuss the use of radiolabeled PARPi as radionuclide therapies.
Collapse
Affiliation(s)
- Chung Ying Chan
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Kel Vin Tan
- Department of Diagnostic Radiology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Bart Cornelissen
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
21
|
Li LY, Guan YD, Chen XS, Yang JM, Cheng Y. DNA Repair Pathways in Cancer Therapy and Resistance. Front Pharmacol 2021; 11:629266. [PMID: 33628188 PMCID: PMC7898236 DOI: 10.3389/fphar.2020.629266] [Citation(s) in RCA: 210] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 12/31/2020] [Indexed: 12/21/2022] Open
Abstract
DNA repair pathways are triggered to maintain genetic stability and integrity when mammalian cells are exposed to endogenous or exogenous DNA-damaging agents. The deregulation of DNA repair pathways is associated with the initiation and progression of cancer. As the primary anti-cancer therapies, ionizing radiation and chemotherapeutic agents induce cell death by directly or indirectly causing DNA damage, dysregulation of the DNA damage response may contribute to hypersensitivity or resistance of cancer cells to genotoxic agents and targeting DNA repair pathway can increase the tumor sensitivity to cancer therapies. Therefore, targeting DNA repair pathways may be a potential therapeutic approach for cancer treatment. A better understanding of the biology and the regulatory mechanisms of DNA repair pathways has the potential to facilitate the development of inhibitors of nuclear and mitochondria DNA repair pathways for enhancing anticancer effect of DNA damage-based therapy.
Collapse
Affiliation(s)
- Lan-Ya Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yi-di Guan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xi-Sha Chen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jin-Ming Yang
- Department of Cancer Biology and Toxicology, Department of Pharmacology, College of Medicine, Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Yan Cheng
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
22
|
Lal S, Snape TJ. A therapeutic update on PARP inhibitors: implications in the treatment of glioma. Drug Discov Today 2020; 26:532-541. [PMID: 33157194 DOI: 10.1016/j.drudis.2020.10.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/07/2020] [Accepted: 10/29/2020] [Indexed: 01/01/2023]
Abstract
Central nervous system (CNS) cancers are among the most aggressive and devastating. Further, due to unavailability of neuro-oncologists and neurosurgeons, the specialized treatment options of CNS cancers are still not completely available in most parts of the world. Among various strategies of inducing death in cancer cells, inhibition of poly(ADP-ribose) polymerase (PARP) has emerged as a beneficial therapy when combined with other anticancer agents. In this review, we provide a detailed therapeutic update of PARP inhibitors that have shown clinical activity against glioma.
Collapse
Affiliation(s)
- Samridhi Lal
- Amity Institute of Pharmacy, Amity University, Gurugram, 122413, Haryana, India.
| | - Timothy J Snape
- Leicester School of Pharmacy, De Montfort University, Leicester, LE1 9BH, UK
| |
Collapse
|
23
|
Ali MY, Oliva CR, Noman ASM, Allen BG, Goswami PC, Zakharia Y, Monga V, Spitz DR, Buatti JM, Griguer CE. Radioresistance in Glioblastoma and the Development of Radiosensitizers. Cancers (Basel) 2020; 12:E2511. [PMID: 32899427 PMCID: PMC7564557 DOI: 10.3390/cancers12092511] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
Ionizing radiation is a common and effective therapeutic option for the treatment of glioblastoma (GBM). Unfortunately, some GBMs are relatively radioresistant and patients have worse outcomes after radiation treatment. The mechanisms underlying intrinsic radioresistance in GBM has been rigorously investigated over the past several years, but the complex interaction of the cellular molecules and signaling pathways involved in radioresistance remains incompletely defined. A clinically effective radiosensitizer that overcomes radioresistance has yet to be identified. In this review, we discuss the current status of radiation treatment in GBM, including advances in imaging techniques that have facilitated more accurate diagnosis, and the identified mechanisms of GBM radioresistance. In addition, we provide a summary of the candidate GBM radiosensitizers being investigated, including an update of subjects enrolled in clinical trials. Overall, this review highlights the importance of understanding the mechanisms of GBM radioresistance to facilitate the development of effective radiosensitizers.
Collapse
Affiliation(s)
- Md Yousuf Ali
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA 52242, USA;
- Free Radical & Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA; (C.R.O.); (B.G.A.); (P.C.G.); (D.R.S.)
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA;
| | - Claudia R. Oliva
- Free Radical & Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA; (C.R.O.); (B.G.A.); (P.C.G.); (D.R.S.)
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA;
| | - Abu Shadat M. Noman
- Department of Biochemistry and Molecular Biology, The University of Chittagong, Chittagong 4331, Bangladesh;
- Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Bryan G. Allen
- Free Radical & Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA; (C.R.O.); (B.G.A.); (P.C.G.); (D.R.S.)
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA;
| | - Prabhat C. Goswami
- Free Radical & Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA; (C.R.O.); (B.G.A.); (P.C.G.); (D.R.S.)
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA;
| | - Yousef Zakharia
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA; (Y.Z.); (V.M.)
| | - Varun Monga
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA; (Y.Z.); (V.M.)
| | - Douglas R. Spitz
- Free Radical & Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA; (C.R.O.); (B.G.A.); (P.C.G.); (D.R.S.)
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA;
| | - John M. Buatti
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA;
| | - Corinne E. Griguer
- Free Radical & Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA; (C.R.O.); (B.G.A.); (P.C.G.); (D.R.S.)
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA;
| |
Collapse
|
24
|
Zhao Y, Chen S. Targeting DNA Double-Strand Break (DSB) Repair to Counteract Tumor Radio-resistance. Curr Drug Targets 2020; 20:891-902. [PMID: 30806313 DOI: 10.2174/1389450120666190222181857] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 01/23/2019] [Accepted: 02/13/2019] [Indexed: 02/07/2023]
Abstract
During the last decade, advances of radiotherapy (RT) have been made in the clinical practice of cancer treatment. RT exerts its anticancer effect mainly via leading to the DNA Double-Strand Break (DSB), which is one of the most toxic DNA damages. Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR) are two major DSB repair pathways in human cells. It is known that dysregulations of DSB repair elicit a predisposition to cancer and probably result in resistance to cancer therapies including RT. Therefore, targeting the DSB repair presents an attractive strategy to counteract radio-resistance. In this review, we describe the latest knowledge of the two DSB repair pathways, focusing on several key proteins contributing to the repair, such as DNA-PKcs, RAD51, MRN and PARP1. Most importantly, we discuss the possibility of overcoming radiation resistance by targeting these proteins for therapeutic inhibition. Recent tests of DSB repair inhibitors in the laboratory and their translations into clinical studies are also addressed.
Collapse
Affiliation(s)
- Yucui Zhao
- Department of Oncology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Siyu Chen
- Department of Oncology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, China
| |
Collapse
|
25
|
Kirstein A, Schmid TE, Combs SE. The Role of miRNA for the Treatment of MGMT Unmethylated Glioblastoma Multiforme. Cancers (Basel) 2020; 12:cancers12051099. [PMID: 32354046 PMCID: PMC7281574 DOI: 10.3390/cancers12051099] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/23/2020] [Accepted: 04/26/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common high-grade intracranial tumor in adults. It is characterized by uncontrolled proliferation, diffuse infiltration due to high invasive and migratory capacities, as well as intense resistance to chemo- and radiotherapy. With a five-year survival of less than 3% and an average survival rate of 12 months after diagnosis, GBM has become a focus of current research to urgently develop new therapeutic approaches in order to prolong survival of GBM patients. The methylation status of the promoter region of the O6-methylguanine–DNA methyltransferase (MGMT) is nowadays routinely analyzed since a methylated promoter region is beneficial for an effective response to temozolomide-based chemotherapy. Furthermore, several miRNAs were identified regulating MGMT expression, apart from promoter methylation, by degrading MGMT mRNA before protein translation. These miRNAs could be a promising innovative treatment approach to enhance Temozolomide (TMZ) sensitivity in MGMT unmethylated patients and to increase progression-free survival as well as long-term survival. In this review, the relevant miRNAs are systematically reviewed.
Collapse
Affiliation(s)
- Anna Kirstein
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany
| | - Thomas E. Schmid
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany
| | - Stephanie E. Combs
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, 81675 Munich, Germany
- Correspondence: ; Tel.: +49-89-4140-4501
| |
Collapse
|
26
|
Sousa JFD, Serafim RB, Freitas LMD, Fontana CR, Valente V. DNA repair genes in astrocytoma tumorigenesis, progression and therapy resistance. Genet Mol Biol 2019; 43:e20190066. [PMID: 31930277 PMCID: PMC7198033 DOI: 10.1590/1678-4685-gmb-2019-0066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/21/2019] [Indexed: 12/26/2022] Open
Abstract
Glioblastoma (GBM) is the most common and malignant type of primary brain tumor,
showing rapid development and resistance to therapies. On average, patients
survive 14.6 months after diagnosis and less than 5% survive five years or more.
Several pieces of evidence have suggested that the DNA damage signaling and
repair activities are directly correlated with GBM phenotype and exhibit
opposite functions in cancer establishment and progression. The functions of
these pathways appear to present a dual role in tumorigenesis and cancer
progression. Activation and/or overexpression of ATRX, ATM and RAD51 genes were
extensively characterized as barriers for GBM initiation, but paradoxically the
exacerbated activity of these genes was further associated with cancer
progression to more aggressive stages. Excessive amounts of other DNA repair
proteins, namely HJURP, EXO1, NEIL3, BRCA2, and BRIP, have also been connected
to proliferative competence, resistance and poor prognosis. This scenario
suggests that these networks help tumor cells to manage replicative stress and
treatment-induced damage, diminishing genome instability and conferring therapy
resistance. Finally, in this review we address promising new drugs and
therapeutic approaches with potential to improve patient survival. However,
despite all technological advances, the prognosis is still dismal and further
research is needed to dissect such complex mechanisms.
Collapse
Affiliation(s)
- Juliana Ferreira de Sousa
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Rodolfo Bortolozo Serafim
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Laura Marise de Freitas
- Universidade de São Paulo, Instituto de Química, Departamento de Bioquímica, São Paulo, SP, Brazil
| | - Carla Raquel Fontana
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Araraquara, SP, Brazil
| | - Valeria Valente
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.,Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Araraquara, SP, Brazil.,Centro de Terapia Celular (CEPID-FAPESP), Ribeirão Preto, SP, Brazil
| |
Collapse
|
27
|
Glioma through the looking GLASS: molecular evolution of diffuse gliomas and the Glioma Longitudinal Analysis Consortium. Neuro Oncol 2019; 20:873-884. [PMID: 29432615 PMCID: PMC6280138 DOI: 10.1093/neuonc/noy020] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Adult diffuse gliomas are a diverse group of brain neoplasms that inflict a high emotional toll on patients and their families. The Cancer Genome Atlas and similar projects have provided a comprehensive understanding of the somatic alterations and molecular subtypes of glioma at diagnosis. However, gliomas undergo significant cellular and molecular evolution during disease progression. We review the current knowledge on the genomic and epigenetic abnormalities in primary tumors and after disease recurrence, highlight the gaps in the literature, and elaborate on the need for a new multi-institutional effort to bridge these knowledge gaps and how the Glioma Longitudinal Analysis Consortium (GLASS) aims to systemically catalog the longitudinal changes in gliomas. The GLASS initiative will provide essential insights into the evolution of glioma toward a lethal phenotype, with the potential to reveal targetable vulnerabilities and, ultimately, improved outcomes for a patient population in need.
Collapse
|
28
|
Lowe S, Bhat KP, Olar A. Current clinical management of patients with glioblastoma. Cancer Rep (Hoboken) 2019; 2:e1216. [PMID: 32721125 DOI: 10.1002/cnr2.1216] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/11/2019] [Accepted: 04/29/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Glioblastoma (GB) is the most aggressive primary brain tumor, historically resistant to treatment, and with overall fatal outcome. RECENT FINDINGS Recently, several molecular subgroups and rare genetic alterations have been described in GB. In this review article, we will describe the current clinical management of patients with GB in the United States, discuss selected next-generation molecular-targeted therapies in GB, and present ongoing clinical trials for patients with GB. This review is intended for clinical and preclinical researchers who conduct work on GB and would like to understand more about the current standard of treatment of GB patients, historical perspectives, current challenges, and ongoing and upcoming clinical trials. CONCLUSIONS GB is an extremely complex disease, and despite recent progress and advanced therapeutic strategies, the overall patient's prognosis remains dismal. Innovative strategies and integrative ways of approach to disease are urgently needed.
Collapse
Affiliation(s)
- Stephen Lowe
- Department of Neurosurgery, Medical University of South Carolina, Charleston, South Carolina
| | - Krishna P Bhat
- Deparment of Translational Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Adriana Olar
- Department of Neurosurgery, Medical University of South Carolina, Charleston, South Carolina.,Departments of Pathology and Laboratory Medicine, Medical University of South Carolina & Hollings Cancer Center, Charleston, South Carolina
| |
Collapse
|
29
|
Ibudilast sensitizes glioblastoma to temozolomide by targeting Macrophage Migration Inhibitory Factor (MIF). Sci Rep 2019; 9:2905. [PMID: 30814573 PMCID: PMC6393433 DOI: 10.1038/s41598-019-39427-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/04/2018] [Indexed: 02/06/2023] Open
Abstract
Recurrence in patients with glioblastoma (GBM) is inevitable resulting in short survival times, even in patients with O-6-Methylguanine-DNA Methyltransferase (MGMT) methylation. Other pathways must be activated to escape from temozolomide (TMZ) treatment, however acquired resistance mechanisms to TMZ are not well understood. Herein, frozen tumors from 36 MGMT methylated patients grouped according to overall survival were extracted and proteins were profiled using surface-enhanced laser desorption/ionization (SELDI) with time-of flight (TOF) proteomics to identify low molecular weight proteins that associated with poor survival outcomes. Overexpression of macrophage migration inhibitory factor (MIF) was identified in human GBM specimens that were MGMT methylated but showed poor survival. This correlation was confirmed in an independent cohort of human GBM. MIF overexpression has been reported in several cancer types, including GBM. We repurposed ibudilast, a specific MIF inhibitor, and treated patient derived cell lines. Ibudilast showed modest anti-proliferative activity however, when combined with TMZ, significant synergism was observed, resulting in cell cycle arrest and apoptosis. In vivo, combined ibudilast and TMZ treatment of a patient derived xenograft (PDX) model resulted in significantly longer overall survival. Our findings have significant clinical implications for people with GBM. Since clinical trials involving ibudilast have shown no adverse side effects and the drug readily penetrates the blood brain barrier, treatment of GBM with this combination is clinically achievable.
Collapse
|
30
|
Optimising Outcomes for Glioblastoma through Subspecialisation in a Regional Cancer Centre. Brain Sci 2018; 8:brainsci8100186. [PMID: 30326653 PMCID: PMC6210056 DOI: 10.3390/brainsci8100186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 12/25/2022] Open
Abstract
Delivery of highly sophisticated, and subspecialised, management protocols for glioblastoma in low volume rural and regional areas creates potential issues for equivalent quality of care. This study aims to demonstrate the impact on clinical quality indicators through the development of a novel model of care delivering an outsourced subspecialised neuro-oncology service in a regional centre compared with the large volume metropolitan centre. Three hundred and fifty-two patients with glioblastoma were managed under the European Organisation for Research and Treatment of Cancer and National Cancer Institute of Canada Clinical Trials Group (EORTC-NCIC) Protocol, and survival outcome was assessed in relation to potential prognostic factors and the geographical site of treatment, before and after opening of a regional cancer centre. The median overall survival was 17 months (95% CI: 15.5–18.5), with more favourable outcome with age less than 50 years (p < 0.001), near-total resection (p < 0.001), Eastern Cooperative Oncology Group (ECOG) Performance status 0, 1 (p < 0.001), and presence of O-6 methylguanine DNA methyltransferase (MGMT) methylation (p = 0.001). There was no difference in survival outcome for patients managed at the regional centre, compared with metropolitan centre (p = 0.35). Similarly, no difference was seen with clinical quality process indicators of clinical trial involvement, rates of repeat craniotomy, use of bevacizumab and re-irradiation. This model of neuro-oncology subspecialisation allowed equivalent outcomes to be achieved within a regional cancer centre compared to large volume metropolitan centre.
Collapse
|
31
|
Xu R, Ji J, Zhang X, Han M, Zhang C, Xu Y, Wei Y, Wang S, Huang B, Chen A, Zhang D, Zhang Q, Li W, Jiang Z, Wang J, Li X. PDGFA/PDGFRα-regulated GOLM1 promotes human glioma progression through activation of AKT. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:193. [PMID: 29282077 PMCID: PMC5745991 DOI: 10.1186/s13046-017-0665-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/14/2017] [Indexed: 01/25/2023]
Abstract
BACKGROUND Golgi Membrane Protein 1 (GOLM1), a protein involved in the trafficking of proteins through the Golgi apparatus, has been shown to be oncogenic in a variety of human cancers. Here, we examined the role of GOLM1 in the development of human glioma. METHODS qRT-PCR, immunohistochemistry, and western blot analysis were performed to evaluate GOLM1 levels in cell lines and a cohort of primary human glioma and non-neoplastic brain tissue samples. Glioma cell lines were modified with lentiviral constructs expressing short hairpin RNAs targeting GOLM1 or overexpressing the protein to assess function in proliferation, viability, and migration and invasion in vitro using EdU, CCK8, clone-forming, Transwell assays, 3D tumor spheroid invasion assay and in vivo in orthotopic implantations. Protein lysates were used to screen a membrane-based antibody array to identify kinases mediated by GOLM1. Specific inhibitors of PDGFRα (AG1296) and AKT (MK-2206) were used to examine the regulation of PDGFA/PDGFRα on GOLM1 and the underlying pathway respectively. RESULTS qRT-PCR, immunohistochemistry and western blot analysis revealed GOLM1 expression to be elevated in glioma tissues and cell lines. Silencing of GOLM1 attenuated proliferation, migration, and invasion of U251, A172 and P3#GBM (primary glioma) cells, while overexpression of GOLM1 enhanced malignant behavior of U87MG cells. We further demonstrated that activation of AKT is the driving force of GOLM1-promoted glioma progression. The last finding of this research belongs to the regulation of PDGFA/PDGFRα on GOLM1, while GOLM1 was also a key element of PDGFA/PDGFRα-mediated activation of AKT, as well as the progression of glioma cells. CONCLUSIONS PDGFA/PDGFRα-regulated GOLM1 promotes glioma progression possibly through activation of a key signaling kinase, AKT. GOLM1 interference may therefore provide a novel therapeutic target and improve the efficacy of glioma treatment, particularly in the case of the proneural molecular subtype of human glioma.
Collapse
Affiliation(s)
- Ran Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Jianxiong Ji
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Xin Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Mingzhi Han
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Chao Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Yangyang Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Yuzhen Wei
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China.,Department of Neurosurgery, Jining No.1 People's Hospital, Jiankang Road, Jining, 272011, China
| | - Shuai Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Anjing Chen
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Di Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Qing Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Wenjie Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Zheng Jiang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China. .,Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway.
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China.
| |
Collapse
|
32
|
Lesueur P, Chevalier F, Austry JB, Waissi W, Burckel H, Noël G, Habrand JL, Saintigny Y, Joly F. Poly-(ADP-ribose)-polymerase inhibitors as radiosensitizers: a systematic review of pre-clinical and clinical human studies. Oncotarget 2017; 8:69105-69124. [PMID: 28978184 PMCID: PMC5620324 DOI: 10.18632/oncotarget.19079] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 06/19/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Poly-(ADP-Ribose)-Polymerase (PARP) inhibitors are becoming important actors of anti-neoplasic agents landscape, with recent but narrow FDA's approvals for ovarian BRCA mutated cancers and prostatic cancer. Nevertheless, PARP inhibitors are also promising drugs for combined treatments particularly with radiotherapy. More than seven PARP inhibitors have been currently developed. Central Role of PARP in DNA repair, makes consider PARP inhibitor as potential radiosensitizers, especially for tumors with DNA repair defects, such as BRCA mutation, because of synthetic lethality. Furthermore the replication-dependent activity of PARP inhibitor helps to maintain the differential effect between tumoral and healthy tissues. Inhibition of chromatin remodeling, G2/M arrest, vasodilatory effect induced by PARP inhibitor, also participate to their radio-sensitization effect. MATERIALS AND METHODS Here, after highlighting mechanisms of PARP inhibitors radiosensitization we methodically searched PubMed, Google Scholar, Cochrane Databases and meeting proceedings for human pre-clinical and clinical studies that evaluated PARP inhibitor radiosensitizing effect. Enhancement ratio, when available, was systematically reported. RESULTS Sixty four studies finally met our selection criteria and were included in the analysis. Only three pre-clinical studies didn't find any radiosensitizing effect. Median enhancement ratio vary from 1,3 for prostate tumors to 1,5 for lung cancers. Nine phase I or II trials assessed safety data. CONCLUSION PARP inhibitors are promising radiosensitizers, but need more clinical investigation. The next ten years will be determining for judging their real potential.
Collapse
Affiliation(s)
- Paul Lesueur
- Laboratoire d'Accueil et de Recherche avec les Ions Accélérés, CEA, CIMAP-GANIL, 14000 Caen, France.,Centre Francois Baclesse Centre de Lutte Contre le Cancer, Radiotherapy Unit, 14000 Caen, France
| | - François Chevalier
- Laboratoire d'Accueil et de Recherche avec les Ions Accélérés, CEA, CIMAP-GANIL, 14000 Caen, France
| | - Jean-Baptiste Austry
- Laboratoire d'Accueil et de Recherche avec les Ions Accélérés, CEA, CIMAP-GANIL, 14000 Caen, France
| | - Waisse Waissi
- EA 3430, Laboratoire de Radiobiologie, Centre Paul Strauss, 67000 Strasbourg, France
| | - Hélène Burckel
- EA 3430, Laboratoire de Radiobiologie, Centre Paul Strauss, 67000 Strasbourg, France
| | - Georges Noël
- EA 3430, Laboratoire de Radiobiologie, Centre Paul Strauss, 67000 Strasbourg, France
| | - Jean-Louis Habrand
- Centre Francois Baclesse Centre de Lutte Contre le Cancer, Radiotherapy Unit, 14000 Caen, France
| | - Yannick Saintigny
- Laboratoire d'Accueil et de Recherche avec les Ions Accélérés, CEA, CIMAP-GANIL, 14000 Caen, France
| | - Florence Joly
- Centre Francois Baclesse Centre de Lutte Contre le Cancer, Clinical Research Unit, 14000 Caen, France
| |
Collapse
|