1
|
Lereim RR, Dunn C, Aamdal E, Chauhan SK, Straume O, Guren TK, Kyte JA. Plasma protein dynamics during ipilimumab treatment in metastatic melanoma: associations with tumor response, adverse events and survival. Oncoimmunology 2025; 14:2440967. [PMID: 39703053 DOI: 10.1080/2162402x.2024.2440967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 11/30/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024] Open
Abstract
The immune checkpoint inhibitor ipilimumab provides long term survival in some metastatic melanoma patients, but the majority has no benefit, and may experience serious side effects. Here, we investigated the dynamics of plasma cytokine concentrations and their potential utility for predicting treatment response, adverse events and overall survival (OS) in patients with metastatic melanoma undergoing ipilimumab monotherapy. A cohort of 148 patients was examined, with plasma samples collected prior to treatment initiation and at the end of the first and second treatment cycles. Concentrations of 48 plasma proteins were measured using a multiplex immunoassay. The results revealed a general increase in cytokine levels following the first ipilimumab dose, consistent with immune activation. Patients not responding to treatment exhibited significantly elevated baseline levels of G-CSF, IL-2RA, MIP-1a, and SCF, compared to tumor responders (p < 0.05). Furthermore, high levels of IL-2RA, IFNγ, PDGF-bb and MIG were linked to inferior OS, while high concentrations of MIF and RANTES were associated with improved OS (p < 0.05). A multivariate model containing CRP, LDH, ECOG, IL-2RA and PDGF-bb identified a subgroup of patients with poor OS. Patients who experienced severe immune-related adverse events within three months of treatment initiation had higher baseline concentrations of several cytokines, indicating a potential association between preexisting inflammation and adverse events. These findings indicate that the first dose of ipilimumab induces a systemic response with increased levels of circulating cytokines and suggest candidate biomarkers for clinical response, immune-mediated toxicity and survival. Further studies in independent patient cohorts are required to confirm the findings.
Collapse
Affiliation(s)
| | - Claire Dunn
- Department of Cancer Immunology, Oslo University Hospital, Oslo, Norway
| | - Elin Aamdal
- Department of Clinical Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | - Oddbjørn Straume
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Tormod Kyrre Guren
- Department of Clinical Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Jon Amund Kyte
- Department of Cancer Immunology, Oslo University Hospital, Oslo, Norway
- Department of Clinical Cancer Research, Oslo University Hospital, Oslo, Norway
- Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| |
Collapse
|
2
|
Xu L, Chen Y, Xiong L, Shen Y, Zhou Z, Wang S, Xu X. A review of immune checkpoint inhibitor-associated myocarditis: Epidemiology, pathogenesis, and biomarkers. Hum Vaccin Immunother 2025; 21:2512645. [PMID: 40505635 PMCID: PMC12164393 DOI: 10.1080/21645515.2025.2512645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 05/15/2025] [Accepted: 05/25/2025] [Indexed: 06/16/2025] Open
Abstract
Immune checkpoint inhibitor (ICI) have demonstrated efficacy in treating various cancers by modulating the immune system, but this can lead to immune-related adverse events (irAEs), including myocarditis. ICI-associated myocarditis is a rare but highly lethal irAE with a short mean time to onset, and difficult to diagnose early due to nonspecific symptoms and lack of biomarkers. This review highlights the need for improved recognition and management of ICI-associated myocarditis, summarizing recent advances in immunology, pathology, and biomarker research. We discuss the epidemiology, clinical features, immunological mechanisms, and roles of biomarkers in diagnosis and risk stratification. Traditional biomarkers like cTnI and hs-cTnT are sensitive but lack specificity, while emerging biomarkers like miR-155 show tissue specificity. Inflammatory markers such as NLR and CRP aid prognosis but have limited diagnostic value.
Collapse
Affiliation(s)
- Le Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yukai Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lin Xiong
- Pathology Department, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yang Shen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhuolin Zhou
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Siyu Wang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ximing Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Sun Y, Zhang Z, Jia K, Liu H, Zhang F. Autoimmune-related adverse events induced by immune checkpoint inhibitors. Curr Opin Immunol 2025; 94:102556. [PMID: 40220485 DOI: 10.1016/j.coi.2025.102556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/18/2025] [Accepted: 03/23/2025] [Indexed: 04/14/2025]
Abstract
Targeted immunotherapies, particularly immune checkpoint inhibitors (ICIs), have transformed cancer treatment by significantly improving patient response and survival rates. However, ICIs could disrupt self-tolerance, inducing the development of immune-related adverse events (irAEs). Most irAEs are classified as autoimmune conditions mediated by ICI-activated CD8+ cytotoxic T cells or activated B cells producing pathogenic autoantibodies. These irAEs phenotypically resemble spontaneous autoimmune disease and lead to considerable morbidity, health care costs, and compromised treatment efficacy. With the widespread use and new emergence of ICIs, the spectrum of ICI-induced irAEs has become increasingly extensive and complex. Concurrently, research in this field is advancing rapidly, a review summarizing the latest progress on irAEs is timely and essential. In this review, we highlight numerous recent research advances, covering the epidemiology, immune mechanisms, and diverse manifestations of irAEs, with a particular focus on organ-specific autoimmunity. We also discuss current strategies, challenges, and future directions for the prevention and therapeutic management of these adverse events.
Collapse
Affiliation(s)
- Yuanqiang Sun
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ziyang Zhang
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ke Jia
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Hong Liu
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Furen Zhang
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
4
|
Gill GS, Kharb S, Goyal G, Das P, Kurdia KC, Dhar R, Karmakar S. Immune Checkpoint Inhibitors and Immunosuppressive Tumor Microenvironment: Current Challenges and Strategies to Overcome Resistance. Immunopharmacol Immunotoxicol 2025:1-45. [PMID: 40376861 DOI: 10.1080/08923973.2025.2504906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 05/06/2025] [Indexed: 05/18/2025]
Abstract
Immune checkpoint inhibitors (ICIs) are shown to improve cancer treatment effectiveness by boosting the immune system of the patient. Nevertheless, the unique and highly suppressive TME poses a significant challenge, causing heterogeneity of response or resistance in a considerable number of patients. This review focuses on the evasive attributes of the TME. Immune evasion mechanism in TME include immunosuppressive cells, cytokine and chemokine signaling, metabolic alterations and overexpression of immune checkpoint molecules such as PD-1, CTLA-4, LAG-3, TIM-3, TIGIT, BTLA and their interactions within the TME. In addition, this review focuses on the overcoming resistance by targeting immunosuppressive cells, normalizing tumor blood vessels, blocking two or three checkpoints simultaneously, combining vaccines, oncolytic viruses and metabolic inhibitors with ICIs or other therapies. This review also focuses on the necessity of finding predictive markers for the stratification of patients and to check response of ICIs treatment. It remains to be made certain by new research and intelligent innovations how these discoveries of the TME and its interplay facilitate ICI treatment and change the face of cancer treatment.
Collapse
Affiliation(s)
- Gurpreet Singh Gill
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Simmi Kharb
- Department of Biochemistry, Pt. B.D. Sharma Postgraduate Institute of Medical Sciences, Rohtak, India
| | - Gitanjali Goyal
- Department of Biochemistry, All India Institute of Medical Sciences, Bathinda, India
| | - Prasenjit Das
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Kailash Chand Kurdia
- Department of GI Surgery & Liver Transplantation, All India Institute of Medical Sciences, New Delhi, India
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
5
|
Sánchez-Camacho A, Torres-Zurita A, Gallego-López L, Hernández-Pacheco R, Silva-Romeiro S, Álamo de la Gala MDC, Peral-Gutiérrez de Ceballos E, de la Cruz-Merino L. Management of immune-related myocarditis, myositis and myasthenia gravis (MMM) overlap syndrome: a single institution case series and literature review. Front Immunol 2025; 16:1597259. [PMID: 40406130 PMCID: PMC12095175 DOI: 10.3389/fimmu.2025.1597259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Accepted: 04/17/2025] [Indexed: 05/26/2025] Open
Abstract
Background Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of various malignancies, particularly melanoma. However, immune-related adverse events (irAEs) pose significant challenges, particularly in cases of severe toxicity syndromes. One such life-threatening irAE is the myocarditis, myositis, and myasthenia gravis (MMM) overlap syndrome, which occurs in less than 1% of patients but has in-hospital mortality rates ranging from 40 to 60%. Due to its rarity and complexity, early recognition and a multidisciplinary approach are critical to improving outcomes. Methods We present a single-institution case series of four patients diagnosed with MMM overlap syndrome following ICI therapy. Clinical presentation, laboratory findings, imaging, and electrophysiological tests were analyzed to confirm the diagnosis. Therapeutic interventions-including corticosteroids, intravenous immunoglobulins (IVIG), plasma exchange (PLEX), tocilizumab, and rituximab- were evaluated in terms of efficacy and clinical outcomes. Results The onset of MMM syndrome varied from 2 to 4 weeks after initiating ICI therapy. Patients presented with rapidly progressive symptoms, including ptosis, bulbar dysfunction, respiratory distress, myopathy, and cardiac conduction abnormalities. Immunosuppressive therapy with high-dose corticosteroids was initiated in all cases. Additional immunomodulatory treatments (IVIG, tocilizumab, PLEX, and rituximab) were administered based on clinical deterioration and autoimmune profile. Two patients achieved complete recovery, one remains on maintenance immunosuppression, and one died due to respiratory failure despite aggressive treatment. Conclusion MMM overlap syndrome is a severe and often fatal irAE associated with ICI therapy. Early identification, aggressive immunosuppressive treatment, and individualized therapeutic strategies are essential to optimize patient outcomes. Further research is needed to refine diagnostic criteria, identify predictive biomarkers, and establish standardized treatment protocols.
Collapse
Affiliation(s)
| | - Alberto Torres-Zurita
- Department of Medical Oncology, Hospital Universitario Virgen Macarena, Seville, Spain
| | - Laura Gallego-López
- Autoimmune Disease Unit, Department of Internal Medicine, Hospital Universitario Virgen Macarena, Seville, Spain
| | | | - Silvia Silva-Romeiro
- Department of Medical Oncology, Hospital Universitario Virgen Macarena, Seville, Spain
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen Macarena, CSIC, University of Seville, Seville, Spain
| | | | | | - Luis de la Cruz-Merino
- Department of Medical Oncology, Hospital Universitario Virgen Macarena, Seville, Spain
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen Macarena, CSIC, University of Seville, Seville, Spain
- Department of Medicine, University of Seville, Seville, Spain
| |
Collapse
|
6
|
Bracamonte-Baran W, Kim ST. The Current and Future of Biomarkers of Immune Related Adverse Events. Immunol Allergy Clin North Am 2025; 45:223-249. [PMID: 40287170 DOI: 10.1016/j.iac.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
With their groundbreaking clinical responses, immune checkpoint inhibitors (ICIs) have ushered in a new chapter in cancer therapeutics. However, they are often associated with life-threatening or organ-threatening autoimmune/autoinflammatory phenomena, collectively termed immune-related adverse events (irAEs). In this review, we will first describe the mechanisms of action of ICIs as well as irAEs. Next, we will review biomarkers for predicting the development of irAEs or stratifying risks.
Collapse
Affiliation(s)
- William Bracamonte-Baran
- Department of Rheumatology, Allergy & Immunology, Yale University, 300 Cedar Street, TAC S541, New Haven, CT 06520, USA
| | - Sang T Kim
- Department of Rheumatology, Allergy & Immunology, Yale University, 300 Cedar Street, TAC S541, New Haven, CT 06520, USA.
| |
Collapse
|
7
|
Song J, Zhu J, Jiang Y, Guo Y, Liu S, Qiao Y, Du Y, Li J. Advancements in immunotherapy for gastric cancer: Unveiling the potential of immune checkpoint inhibitors and emerging strategies. Biochim Biophys Acta Rev Cancer 2025; 1880:189277. [PMID: 39938663 DOI: 10.1016/j.bbcan.2025.189277] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 01/08/2025] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
Gastric cancer (GC) is linked to high morbidity and mortality rates. Approximately two-thirds of GC patients are diagnosed at an advanced or metastatic stage. Conventional treatments for GC, including surgery, radiotherapy, and chemotherapy, offer limited prognostic improvement. Recently, immunotherapy has gained attention for its promising therapeutic effects in various tumors. Immunotherapy functions by activating and regulating the patient's immune cells to target and eliminate tumor cells, thereby reducing the tumor burden in the body. Among immunotherapies, immune checkpoint inhibitors (ICIs) are the most advanced. ICIs disrupt the inhibitory protein-small molecule (PD-L1, CTLA4, VISTA, TIM-3 and LAG3) interactions produced by immune cells, reactivating these cells to recognize and attack tumor cells. However, adverse reactions and resistance to ICIs hinder their further clinical and experimental development. Therefore, a comprehensive understanding of the advancements in ICIs for GC is crucial. This article discusses the latest developments in clinical trials of ICIs for GC and examines combination therapies involving ICIs (targeted therapy, chemotherapy, radiotherapy), alongside ongoing clinical trials. Additionally, the review investigates the tumor immune microenvironment and its role in non-responsiveness to ICIs, highlighting the function of tumor immune cells in ICI efficacy. Finally, the article explores the prospects and limitations of new immunotherapy-related technologies, such as tumor vaccines, nanotechnologies, and emerging therapeutic strategies, aiming to advance research into personalized and optimized immunotherapy for patients with locally advanced gastric cancer.
Collapse
Affiliation(s)
- Jiawei Song
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China; Department of Experimental Surgery, Xijing Hospital, Xi'an 710038, China
| | - Jun Zhu
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China
| | - Yu Jiang
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China
| | - Yajie Guo
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China
| | - Shuai Liu
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China
| | - Yihuan Qiao
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China
| | - Yongtao Du
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China
| | - Jipeng Li
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China; Department of Experimental Surgery, Xijing Hospital, Xi'an 710038, China.
| |
Collapse
|
8
|
Manger I, Schmitt C, Berking C, French LE, Vera-Gonzalez J, Heinzerling L. Association of HLA-A*02:01 type with efficacy and toxicity of immune checkpoint inhibitor therapy in melanoma patients: a retrospective cohort study. BMC Cancer 2025; 25:565. [PMID: 40155873 PMCID: PMC11954185 DOI: 10.1186/s12885-025-13857-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 03/04/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICI) are highly effective but may induce severe or even fatal and unpredictable immune-related adverse events (irAEs). It is unclear whether human leukocyte antigen (HLA) genes contribute to the susceptibility of developing irAEs during ICI therapy. METHODS This multicentre retrospective study investigated the association of irAE and outcome with HLA-A*02:01 status in a cohort of 97 patients with metastatic melanoma undergoing ICI therapy. Organ-specific irAEs and therapy outcome as assessed by response rate, progression-free survival (PFS) and overall survival (OS) were analysed depending on HLA type HLA-A*02:01. For the outcome only patients with cutaneous melanoma were analysed. Chi square test, exact fisher test, Kruskal Wallis test and log rank test were employed for statistical analysis (p ≤ 0.05). RESULTS The cohort included 38 HLA-A*02:01 positive (39.2%) and 59 HLA-A*02:01 negative (60.8%) patients. Data showed no evidence of an association of HLA-A*02:01 with organ-specific irAEs except for a numerical difference in immune-related colitis. Furthermore, response rates of the subgroup of patients with metastatic cutaneous melanoma did not differ between the two cohorts. The median PFS was 5 months and 8 months in HLA-A*02:01 positive and negative patients with cutaneous melanoma, respectively. CONCLUSION HLA-A*02:01 was not associated with specific checkpoint inhibitor-induced organ toxicity in this cohort of HLA-A-typed melanoma patients. Interestingly, in the relatively small subgroup of patients with cutaneous melanoma an earlier progression in HLA-A*02:01 positive patients was observed, however not in the long term. These findings are exploratory due to the limited sample size and require validation in larger, prospective cohorts.
Collapse
Affiliation(s)
- Isabel Manger
- Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Uniklinikum Erlangen, CCC Erlangen-EMN, CCC WERA, Erlangen, Germany
- Bavarian Centre for Cancer Research (BZKF), Uniklinikum Erlangen and LMU Munich, Munich, Germany
| | - Christina Schmitt
- Department of Dermatology and Allergy, LMU University Hospital, LMU Munich, Munich, Germany
- Bavarian Centre for Cancer Research (BZKF), Uniklinikum Erlangen and LMU Munich, Munich, Germany
| | - Carola Berking
- Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Uniklinikum Erlangen, CCC Erlangen-EMN, CCC WERA, Erlangen, Germany
- Bavarian Centre for Cancer Research (BZKF), Uniklinikum Erlangen and LMU Munich, Munich, Germany
| | - Lars E French
- Department of Dermatology and Allergy, LMU University Hospital, LMU Munich, Munich, Germany
- Bavarian Centre for Cancer Research (BZKF), Uniklinikum Erlangen and LMU Munich, Munich, Germany
- Dr. Philip Frost, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Julio Vera-Gonzalez
- Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Uniklinikum Erlangen, CCC Erlangen-EMN, CCC WERA, Erlangen, Germany
- Bavarian Centre for Cancer Research (BZKF), Uniklinikum Erlangen and LMU Munich, Munich, Germany
| | - Lucie Heinzerling
- Department of Dermatology and Allergy, LMU University Hospital, LMU Munich, Munich, Germany.
- Bavarian Centre for Cancer Research (BZKF), Uniklinikum Erlangen and LMU Munich, Munich, Germany.
- Department of Dermatology, LMU University Hospital Munich, Frauenlobstr. 9-11, Munich, D-80337, Germany.
| |
Collapse
|
9
|
Canzian J, Conforti F, Jacobs F, Benvenuti C, Gaudio M, Gerosa R, De Sanctis R, Zambelli A. Sex-Related Differences in Immunotherapy Toxicities: Insights into Dimorphic Responses. Cancers (Basel) 2025; 17:1054. [PMID: 40227458 PMCID: PMC11987764 DOI: 10.3390/cancers17071054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/08/2025] [Accepted: 03/17/2025] [Indexed: 04/15/2025] Open
Abstract
Significant sex-based differences exist in the immune system and antitumor immune responses, potentially leading to variations in both the efficacy and toxicity of anticancer immunotherapies. Women generally mount stronger innate and adaptive immune responses than men, which can result in more severe immune-related adverse events (irAEs) during treatments with immune checkpoint inhibitors (ICIs). However, the importance of sex dimorphism in the safety of cancer immunotherapy remains underexplored in clinical oncology, despite its profound implications for treatment outcomes. Our review highlights the critical influence of biological sex on pharmacokinetics, pharmacodynamics, and immune responses, shaping ICI efficacy and the prevalence, type, and severity of irAEs. Integrating sex as a critical variable in cancer treatment and clinical trial design is essential for personalizing therapeutic strategies, bridging existing knowledge gaps, and enhancing survival rates and quality of life for patients across genders.
Collapse
Affiliation(s)
- Jacopo Canzian
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy; (J.C.); (C.B.); (M.G.); (R.G.)
- Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Fabio Conforti
- Division of Medical Oncology, Humanitas Gavazzeni, 24125 Bergamo, Italy;
| | - Flavia Jacobs
- Division of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy;
| | - Chiara Benvenuti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy; (J.C.); (C.B.); (M.G.); (R.G.)
- Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Mariangela Gaudio
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy; (J.C.); (C.B.); (M.G.); (R.G.)
- Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Riccardo Gerosa
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy; (J.C.); (C.B.); (M.G.); (R.G.)
- Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Rita De Sanctis
- Oncology Unit, ASST Papa Giovanni XXIII Hospital, 24127 Bergamo, Italy;
| | - Alberto Zambelli
- Oncology Unit, ASST Papa Giovanni XXIII Hospital, 24127 Bergamo, Italy;
- Department of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy
| |
Collapse
|
10
|
Almawash S. Revolutionary Cancer Therapy for Personalization and Improved Efficacy: Strategies to Overcome Resistance to Immune Checkpoint Inhibitor Therapy. Cancers (Basel) 2025; 17:880. [PMID: 40075727 PMCID: PMC11899125 DOI: 10.3390/cancers17050880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 03/14/2025] Open
Abstract
Cancer remains a significant public health issue worldwide, standing as a primary contributor to global mortality, accounting for approximately 10 million fatalities in 2020 [...].
Collapse
Affiliation(s)
- Saud Almawash
- Department of Pharmaceutics, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
| |
Collapse
|
11
|
Jayathilaka B, Mian F, Cockwill J, Franchini F, Au-Yeung G, IJzerman M. Analysis of risk factors for immune-related adverse events induced by immune checkpoint inhibitor treatment in cancer: A comprehensive systematic review. Crit Rev Oncol Hematol 2025; 207:104601. [PMID: 39706233 DOI: 10.1016/j.critrevonc.2024.104601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Immune-related adverse events (irAE) pose challenges to the use of immune checkpoint inhibitors (ICI). While risk factors for irAE are emerging, most studies are small, retrospective analyses that seldom report on diverse cancers or rare irAE. This paper reports a systematic review that summarises literature on irAE risk factors across cancers and proposes a categorisation approach. METHOD A systematic search was conducted in Medline OVID, Embase and Web of Science databases following PRISMA guidelines (CRD42022310127). Original research published in peer-reviewed journals between January 2017-Decmeber 2021 were selected. Eligible studies included patients with any cancer and evaluated any potential risk factor for any grade/type of irAE. Study design, sample size, and method for analysing association between irAE and risk factors were compared. RESULTS A total of 293 eligible studies containing 305,879 patients receiving ICI reported irAE in 58,291 patients (19.1 %). There were 221 retrospective, 55 prospective studies, and 17 systematic reviews/meta-analyses. Eighteen studies evaluated the predictive validity of models. Proposed risk factors were grouped based on common themes and underlying aetiology: 1) patient, 2) laboratory, 3) medical history, 4) cancer-related, 5) clinical score, 6) medications, and 7) imaging features. Opposing associations were reported between advancing age and irAE risk. CONCLUSION This systematic review provides a comprehensive overview of evidence on irAE risk factors across a large patient population. Studies were heterogeneous resulting from variations in design, sample size and analysis method, and lack generalisability due to statistically underpowered evidence. We propose an approach to categorise potential irAE risk factors to support ongoing collaborative research.
Collapse
Affiliation(s)
- Bishma Jayathilaka
- Pharmacy Department, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria, Australia; Cancer Health Services Research Unit, Centre for Cancer Research, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria, Australia.
| | - Farah Mian
- Pharmacy Department, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Jo Cockwill
- Consumer Advisory Committee, Victorian Comprehensive Cancer Centre Alliance Cancer, Melbourne, Victoria, Australia
| | - Fanny Franchini
- Cancer Health Services Research Unit, Centre for Cancer Research, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria, Australia
| | - George Au-Yeung
- Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria, Australia; Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Maarten IJzerman
- Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria, Australia; Cancer Health Services Research Unit, Centre for Cancer Research, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria, Australia; Erasmus School of Health Policy & Management, Erasmus University, Rotterdam, the Netherlands
| |
Collapse
|
12
|
Giesler S, Riemer R, Lowinus T, Zeiser R. Immune-mediated colitis after immune checkpoint inhibitor therapy. Trends Mol Med 2025; 31:265-280. [PMID: 39477757 DOI: 10.1016/j.molmed.2024.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 03/15/2025]
Abstract
Immune checkpoint inhibitors (ICIs) have led to improved outcome in patients with various types of cancer. Due to inhibition of physiological anti-inflammatory mechanisms, patients treated with ICIs may develop autoimmune inflammation of the colon, associated with morbidity, decreased quality of life (QoL), and mortality. In this review, we summarize clinical and pathophysiological aspects of immune-mediated colitis (ImC), highlighting novel treatment options. In the colon, ICIs trigger resident and circulating T cell activation and infiltration of myeloid cells. In addition, the gut microbiota critically contribute to intestinal immune dysregulation and loss of barrier function, thereby propagating local and systemic inflammation. Currently available therapies for ImC include corticosteroids, antitumor necrosis factor-α (TNF-α)- and anti-integrin α4β7 antibodies. Given that systemic immunosuppression might impair antitumor immune responses, novel therapeutic approaches are urgently needed.
Collapse
Affiliation(s)
- Sophie Giesler
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Roxane Riemer
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Theresa Lowinus
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
13
|
Shen J, Lin A, Jiang A, Xie Z, Cheng Q, Zhang J, Zhang J, Luo P. Dietary inflammatory index predicts cancer mortality in male patients but not female patients: Results from NHANES 1999 to 2014. Nutr Res 2025; 135:52-66. [PMID: 39946775 DOI: 10.1016/j.nutres.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/19/2025] [Accepted: 01/19/2025] [Indexed: 03/14/2025]
Abstract
This study explored sex differences between dietary inflammatory index (DII) and cancer prognosis and their mechanisms. We hypothesized that association between dietary inflammatory index and cancer prognosis differs by sex. The study included 2874 adults with cancer from the National Health and Nutrition Examination Survey covering 1999 to 2014. Mortality status was linked to National Death Index mortality data through 31 December 2019. Cox proportional hazards regression models were applied to calculate hazard risk and 95% confidence intervals (Cis) in male patients and female patients. Sex-specific cancer and nonsex-specific cancer subgroup analyses were performed, and the role of C-reactive protein in sex differences was analyzed. The Cancer Genome Atlas pan-cancer transcriptome data were combined to explore the biological mechanisms of the sex differences. Multivariate Cox regression showed higher DII in male patients correlated with increased all-cause mortality (hazard risk highest vs lowest quartile = 1.57 [95% confidence intervals 1.24-1.98]; P for trend <.01), but not in female patients (P = .44). For sex-specific cancers, higher DII potentially correlated with increased mortality in prostate cancer (unadjusted P for trend = .04), but not in breast (P = .83), ovarian (P = .49), or cervical cancers (P = .91). In melanoma and colon cancer, higher DII correlated with increased mortality in male patients but not female patients. Serum C-reactive protein, interleukin-1 binding, interleukin-35 pathway, and programmed cell death protein 1 pathway may contribute to these sex differences. In conclusion, sex differences exist between DII and mortality risk in cancer patients.
Collapse
Affiliation(s)
- Junyi Shen
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Aimin Jiang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Zhenyu Xie
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Zhang
- The Second Department of Infectious Disease, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Center of Community-Based Health Research, Fudan University, Shanghai, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
14
|
Wang B, Zhuang S, Lin S, Lin J, Zeng W, Du B, Yang J. Analysis of risk factors for immune checkpoint inhibitor-associated liver injury: a retrospective analysis based on clinical study and real-world data. Hepatol Int 2025:10.1007/s12072-025-10783-w. [PMID: 40019709 DOI: 10.1007/s12072-025-10783-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/10/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND Immune-mediated hepatotoxicity (IMH) induced by immune checkpoint inhibitors (ICIs) can lead to fatal outcomes. Exploring the risk factors associated with IMH is crucial for the early identification and management of immune-related adverse events (irAEs). METHODS Screening IMH-influencing factors by applying meta-analysis to clinical research data. Utilizing FAERS data, ICIs-related IMH prediction models were developed using two types of variables (full variables and optimal variables screened by univariate logistic regression) and nine machine learning algorithms (logistic regression, decision tree, random forest, gradient boosting decision tree, extreme gradient boosting, K-Nearest Neighbor, bootstrap aggregation, adaptive boosting, and extremely randomized trees). Comparing the nine machine learning algorithms and screening the optimal model while using SHAP (SHapley Additive exPlanations) analysis to interpret the results of the optimal machine learning model. RESULTS A total of 17 studies (10,135 patients) were included. The results showed that ICIs combination therapy (OR = 5.10, 95% CI: 1.68-15.48) and history of ICIs treatment (OR = 3.58, 95% CI: 2.08-6.14) were significantly associated with the risk of all-grade IMH. Patients aged 56-63 years (MD = - 5.09, 95% CI: - 9.52 to - 0.67) were significantly associated with the risk of ≥ grade 3 IMH. The liver adverse reaction prediction model included a total of 51,555 patients from the FAERS database, of which 4607 cases were liver adverse reactions. Univariate logistic regression analysis ultimately screened eight optimal variables, with females, report areas, cancer type, ICIs drug type, concomitant autoimmune disease, the concomitant use of anti-hypertension drugs, and the concomitant use of CTLA-4 inhibitors or targeted therapy drugs being significant influencing factors. The performance of the model after the variables were screened by univariate logistic regression was slightly worse than that of the model with full variables. Among the best-performing liver adverse reaction prediction models was GBDT (training set AUC = 0.82, test set AUC = 0.79). The top 3 key predictors in the GBDT model were report areas, disease type, and ICIs drug type. CONCLUSION In clinical studies, we found that age between 56 and 63 years, ICIs combination therapy, and history of ICIs treatment were significantly associated with an increased risk of IMH. In the FAERS database, we observed that females, report areas, cancer type, ICIs drug type, concomitant autoimmune disease, the concomitant use of anti-hypertension drugs, and the concomitant use of CTLA-4 inhibitors or targeted therapy drugs may be potential risk factors for ICIs-related hepatic irAEs. The predictive model for ICIs-related liver adverse reactions established in this study has good performance and potential clinical applications.
Collapse
Affiliation(s)
- Bitao Wang
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
- College of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Shaowei Zhuang
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
- College of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Shengnan Lin
- Department of Clinical Pharmacy, Sanming First Hospital, Affiliated Hospital of Fujian Medical University, Sanming, China
| | - Jierong Lin
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
- College of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Wanxian Zeng
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
- College of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Bin Du
- Department of Oncology, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Jing Yang
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China.
- College of Pharmacy, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
15
|
Yan T, Long M, Liu C, Zhang J, Wei X, Li F, Liao D. Immune-related adverse events with PD-1/PD-L1 inhibitors: insights from a real-world cohort of 2523 patients. Front Pharmacol 2025; 16:1519082. [PMID: 39959424 PMCID: PMC11825824 DOI: 10.3389/fphar.2025.1519082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/13/2025] [Indexed: 02/18/2025] Open
Abstract
Purpose Immune checkpoint inhibitors (ICIs) have significantly changed cancer therapy, improving patient survival rates and clinical outcomes. Nevertheless, the use of PD-1/PD-L1 inhibitors can result in immune-related adverse events (irAEs). This study aims to investigate the prevalence and associated risk factors of irAEs in a real-world setting, as well as to assess their effects on optimal therapeutic outcomes. Methods A retrospective analysis involved 2523 patients with cancer who received inpatient PD-1/PD-L1 inhibitors treatment between January 2018 and December 2022. We documented patients' demographic and clinical characteristics, PD-1 or PD-L1 inhibitors, treatment modalities, incidences, timing, and severity of irAEs, and efficacy outcomes by reviewing inpatient records. Patients were categorized into an irAEs group and a non-irAEs group, with the former further subdivided into a multiple irAEs group and a single irAE group. Chi-square tests were employed to evaluate differences in baseline characteristics and efficacy outcomes between the irAEs and non-irAEs groups, as well as between the multiple and single irAE groups. Additionally, logistic regression analysis was utilized to identify risk factors linked to irAEs. Results Among 2523 eligible patients, 1096 reported 1802 irAEs, with an incidence incidence of 43.4%. Among 1096 individuals, 92.1% were classified as grade 1-2, while 7.9% were grade 3 or higher. IrAEs affected various organ systems, with endocrine toxicity (17.7%), hepatic toxicity (17.2%), and hematologic toxicity (11.4%) being the most common. 20.5% patients experienced multi-system irAEs. The average time for patients to develop irAEs was within four treatment cycles. Significant differences in patient gender, age, Eastern Cooperative Oncology Group (ECOG) Performance Status (PS), comorbidities, PD-1 or PD-L1 inhibitors, and treatment modalities were observed between the irAEs and non-irAEs groups, but not between the multiple irAEs and single irAE groups. Compared to the non-irAEs group, the irAEs group exhibited a higher objective response rate (ORR) and disease control rate (DCR), and the multiple irAEs group also showed a higher ORR than the single irAE group. Conclusion This real-world study indicated that the occurrence of irAEs is related to patient gender, age, ECOG PS, comorbidities, PD-1/PD-L1 inhibitors, and treatment modalities. The occurrence of irAEs may be associated with better treatment benefits.
Collapse
Affiliation(s)
- Ting Yan
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Minghui Long
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Chaoyi Liu
- Department of Information, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jiwen Zhang
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- School of Pharmacy, University of South China, Hengyang, China
| | - Xingyu Wei
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- School of Pharmacy, University of South China, Hengyang, China
| | - Fei Li
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- School of Pharmacy, University of South China, Hengyang, China
| | - Dehua Liao
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
16
|
Pi JK, Chen XT, Zhang YJ, Chen XM, Wang YC, Xu JY, Zhou JH, Yu SS, Wu SS. Insight of immune checkpoint inhibitor related myocarditis. Int Immunopharmacol 2024; 143:113559. [PMID: 39536487 DOI: 10.1016/j.intimp.2024.113559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/20/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
As the understanding of immune-related mechanisms in the development and progression of cancer advances, immunotherapies, notably Immune Checkpoint Inhibitors (ICIs), have become integral in comprehensive cancer treatment strategies. ICIs reactivate T-cell cytotoxicity against tumors by blocking immune suppressive signals on T cells, such as Programmed Death-1 (PD-1) and Cytotoxic T-lymphocyte Antigen-4 (CTLA-4). Despite their beneficial effects, ICIs are associated with immune-related adverse events (irAEs), manifesting as autoimmune side effects across various organ systems. A particularly alarming irAE is life-threatening myocarditis. This rare but severe side effect of ICIs leads to significant long-term cardiac complications, including arrhythmias and heart failure, and has been observed to have a mortality rate of up to 50% in affected patients. This greatly limits the clinical application of ICI-based immunotherapy. In this review, we provide a comprehensive summary of the current knowledge regarding the diagnosis and management of ICI-related myocarditis. We also discuss the utility of preclinical mouse models in understanding and addressing this critical challenge.
Collapse
Affiliation(s)
- Jin-Kui Pi
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xiao-Ting Chen
- Animal Experimental Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yan-Jing Zhang
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xue-Mei Chen
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yin-Chan Wang
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jia-Yi Xu
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jin-Han Zhou
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Shuai-Shuai Yu
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Si-Si Wu
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
17
|
Li Y, Chen Y, Meng Y, Shen M, Yang F, Ren X. Osimertinib exacerbates immune checkpoint inhibitor-related severe adverse events by activating the IL-6/JAK/STAT3 pathway in macrophages. Cancer Biol Med 2024; 21:j.issn.2095-3941.2024.0269. [PMID: 39651787 PMCID: PMC11745090 DOI: 10.20892/j.issn.2095-3941.2024.0269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/25/2024] [Indexed: 12/11/2024] Open
Abstract
OBJECTIVE The combination of epithelial growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) and immune checkpoint inhibitors (ICIs) leads to an increased incidence of severe immune-related adverse events (irAEs). However, the mechanisms underlying macrophages in irAEs have not been elucidated. METHODS An osimertinib and ICI-induced irAE mouse model was constructed. Lung micro-CT scans were used to assess the degree of inflammatory infiltration. Hematoxylin-eosin staining was used to analyze the histopathologic inflammatory infiltration in mouse liver and lung tissues. Flow cytometry was used to detect the percentages of T cells, NK cells, and macrophages and the expression of EGFR. Enzyme-linked immunosorbent assay (ELISA) was used to detect the serum interleukin (IL)-6, alanine transaminase (ALT), ferritin, and tumor necrosis factor (TNF)-α levels. Total RNA extracted from mouse liver macrophages was analyzed by RNA-seq. Simple Western blot analysis was used to detect the IL-6/JAK/STAT3 pathway activation state. RESULTS Osimertinib combined with ICIs upregulated EGFR expression on macrophages with increased serum IL-6, ALT, and ferritin levels. RNA-seq and simple Western blot analysis of mouse liver macrophages confirmed that that the IL-6/JAK/STAT3 pathway was activated in the combination treatment group. Ruxolitinib blocked the IL-6/JAK/STAT3 pathway and significantly decreased the serum IL-6, ALT, and ferritin levels in the combination treatment group. CONCLUSIONS An osimertinib and ICI-induced irAE mouse model was constructed that showed osimertinib combined with ICIs inhibited EGFR phosphorylation and activated the IL-6/JAK/STAT3 signaling pathway in mouse liver macrophages, which led to the release of relevant cytokines.
Collapse
Affiliation(s)
- Yuan Li
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, China
| | - Yanping Chen
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, China
- Department of Gynecology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou 350001, China
| | - Yuan Meng
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, China
| | - Meng Shen
- Department of Biotherapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, China
| | - Fan Yang
- Department of Biotherapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, China
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, China
- Department of Biotherapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, China
- Haihe Laboratory of Cell Ecosystem, Tianjin 300060, China
| |
Collapse
|
18
|
Wang Q, Yu M, Zhang S. Peptic ulcer induced by immune checkpoint inhibitors successfully treated with glucocorticoids: A report of three cases and a literature review. Exp Ther Med 2024; 28:410. [PMID: 39258241 PMCID: PMC11384188 DOI: 10.3892/etm.2024.12699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/11/2024] [Indexed: 09/12/2024] Open
Abstract
In recent decades, immune checkpoint inhibitors (ICIs) have emerged as safer and less disruptive alternatives to conventional chemotherapy and radiotherapy for certain patients with tumours. ICIs serve a synergistic role alongside conventional therapies by manipulating the immune system to recognise and target tumour cells. However, excessive activation of the immune system can lead to immune-related adverse events including pneumonia, myocarditis and colitis, which pose serious and even fatal risks. In the present case series, three patients with a thoracic tumour with an ICI-induced peptic ulcer triggered by programmed cell death protein 1 antibodies (diagnosed by gastrointestinal endoscopy) are presented. These cases were successfully treated with corticosteroids. The diagnostic and treatment processes undertaken for these patients underscore the requirement to comprehensively understand the mechanism of ICI-induced peptic ulcer. Moreover, the relevant literature was also reviewed in the present study.
Collapse
Affiliation(s)
- Qingzhe Wang
- Department of Targeting Therapy and Immunology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Min Yu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shuang Zhang
- Department of Targeting Therapy and Immunology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
19
|
Cheng X, Lin J, Wang B, Huang S, Liu M, Yang J. Clinical characteristics and influencing factors of anti-PD-1/PD-L1-related severe cardiac adverse event: based on FAERS and TCGA databases. Sci Rep 2024; 14:22199. [PMID: 39333574 PMCID: PMC11436968 DOI: 10.1038/s41598-024-72864-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 09/11/2024] [Indexed: 09/29/2024] Open
Abstract
Combining the FDA Adverse Event Reporting System (FAERS) and the Cancer Genome Atlas (TCGA) databases, we aim to explore the factors that influence anti-programmed cell death protein-1 inhibitors/programmed death-ligand-1 (PD-1/PD-L1) related severe cardiac adverse events (cAEs). We obtained anti-PD-1/PD-L1 adverse event reports from January 2014 to December 2022 from the FAERS database. Disproportionality analysis was performed to find anti-PD-1/PD-L1-related cAEs using the proportional reporting ratio (PRR). We were exploring influencing factors based on multivariate logistic regression analysis. Finally, we utilized a strategy that combines FAERS and TCGA databases to explore the potential immune and genetic influencing factors associated with anti-PD-1/PD-L1-related severe cAEs. Reports of severe cAEs accounted for 7.10% of the overall anti-PD-1/PD-L1 adverse event reports in the FAERS database. Immune-mediated myocarditis (PRR = 77.01[59.77-99.23]) shows the strongest toxic signal. The elderly group (65-74: OR = 1.34[1.23-1.47], ≥ 75: OR = 1.64[1.49-1.81]), male (OR = 1.14[1.05-1.24]), anti-PD-L1 agents (OR = 1.17[1.03-1.33]), patients with other adverse events (OR = 2.38[2.17-2.60]), and the concomitant use of proton pump inhibitor (OR = 1.29[1.17-1.43]), nonsteroidal anti-inflammatory drugs (OR = 1.17[1.04-1.31]), or antibiotics (OR = 1.24[1.08-1.43]) may increase the risk of severe cAEs. In addition, PD-L1 mRNA (Rs = 0.71, FDR = 2.30 × 10- 3) and low-density lipoprotein receptor-related protein 3 (LRP3) (Rs = 0.82, FDR = 2.17 × 10- 2) may be immune and genetic influencing factors for severe cAEs. Severe cAEs may be related to antigen receptor-mediated signalling pathways. In this study, we found that age, gender, anti-PD-1/PD-L1 agents, concomitant other adverse events, concomitant medication, PD-L1 mRNA, and LRP3 may be influencing factors for anti-PD-1/PD-L1-related severe cAEs. However, our findings still require a large-scale prospective cohort validation.
Collapse
Affiliation(s)
- Xitong Cheng
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
- College of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Jierong Lin
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
- College of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Bitao Wang
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
- College of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Shunming Huang
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
- College of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Maobai Liu
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China.
- College of Pharmacy, Fujian Medical University, Fuzhou, China.
- Department of Pharmacy, Union Hospital Affiliated to Fujian Medical University, No.29, Xinquan Road, Gulou District, Fuzhou, 350001, China.
| | - Jing Yang
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China.
- College of Pharmacy, Fujian Medical University, Fuzhou, China.
- Department of Pharmacy, Union Hospital Affiliated to Fujian Medical University, No.29, Xinquan Road, Gulou District, Fuzhou, 350001, China.
| |
Collapse
|
20
|
Ortiz V, Loeuillard E. Rethinking Immune Check Point Inhibitors Use in Liver Transplantation: Implications and Resistance. Cell Mol Gastroenterol Hepatol 2024; 19:101407. [PMID: 39326581 PMCID: PMC11609388 DOI: 10.1016/j.jcmgh.2024.101407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized cancer therapy, including the two most common liver tumors, hepatocellular carcinoma and cholangiocarcinoma, but their use in the peri-transplantation period is controversial. ICI therapy aims to heighten cytotoxic T lymphocytes response against tumors. However, tumor recurrence is common owing to tumor immune response escape involving ablation of CTL response by interfering with antigen presentation, triggering CLT apoptosis and inducing epigenetic changes that promote ICI therapy resistance. ICI can also affect tissue resident memory T cell population, impact tolerance in the post-transplant period, and induce acute inflammation risking graft survival post-transplant. Their interaction with immunosuppression may be key in reducing tumor burden and may thus, require multimodal therapy to treat these tumors. This review summarizes ICI use in the liver transplantation period, their impact on tolerance and resistance, and new potential therapies for combination or sequential treatments for liver tumors.
Collapse
Affiliation(s)
- Vivian Ortiz
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, Missouri.
| | | |
Collapse
|
21
|
Kao CJ, Charmsaz S, Alden SL, Brancati M, Li HL, Balaji A, Munjal K, Howe K, Mitchell S, Leatherman J, Griffin E, Nakazawa M, Tsai HL, Danilova L, Thoburn C, Gizzi J, Gross NE, Hernandez A, Coyne EM, Shin SM, Babu JS, Apostol GW, Durham J, Christmas BJ, Konig MF, Lipson EJ, Naidoo J, Cappelli LC, Pabani A, Ged Y, Baretti M, Brahmer J, Hoffman-Censits J, Seiwert TY, Garonce-Hediger R, Guha A, Bansal S, Tang L, Jaffee EM, Chandler GS, Mohindra R, Ho WJ, Yarchoan M. Immune-related events in individuals with solid tumors on immunotherapy associate with Th17 and Th2 signatures. J Clin Invest 2024; 134:e176567. [PMID: 39403935 PMCID: PMC11473156 DOI: 10.1172/jci176567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 08/20/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUNDImmune-related adverse events (irAEs) and their associated morbidity/mortality are a key concern for patients receiving immune checkpoint inhibitors (ICIs). Prospective evaluation of the drivers of irAEs in a diverse pan-tumor cohort is needed to identify patients at greatest risk and to develop rational treatment and interception strategies.METHODSIn an observational study, we prospectively collected blood samples and performed regular clinical evaluations for irAEs in patients receiving ICI therapy as standard of care for solid tumors. We performed in-parallel analysis of cytokines by Luminex immunoassay and circulating immune cells by cytometry by time-of-flight (CyTOF) at baseline and on treatment to investigate mechanisms of irAEs.RESULTSWe enrolled 111 patients, of whom 40.5% developed a symptomatic irAE (grade ≥ 2). Development of a grade ≥ 2 irAE was positively associated with the use of combination ICI and a history of an autoimmune disorder. Early changes in T helper 17 (Th17) (IL-6, IL-17f), type 2 (IL-5, IL-13, IL-25), and type 1 (TNF-α) cytokine signatures and congruent on-treatment expansions of Th17 and Th2 effector memory (Th2EM) T cell populations in peripheral blood were positively associated with the development of grade ≥2 irAEs. IL-6 levels were also associated with inferior cancer-specific survival and overall survival.CONCLUSIONSIn a diverse, prospective pan-tumor cohort, Th17 and Th2 skewing during early ICI treatment was associated with the development of clinically relevant irAEs but not antitumor responses, providing possible targets for monitoring and therapeutic interventions.FUNDINGJohns Hopkins Bloomberg-Kimmel Institute for Cancer Immunotherapy, the NCI SPORE in Gastrointestinal Cancers (P50 CA062924), NCI grant (R50CA243627 to LD), the NIH Center Core Grant (P30 CA006973), Swim Across America (to MY), NIAMS (K23AR075872 to LC), and imCORE-Genentech grant 137515 (to Johns Hopkins Medicine on behalf of MY).
Collapse
Affiliation(s)
- Chester J. Kao
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - Soren Charmsaz
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | | | - Madelena Brancati
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - Howard L. Li
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aanika Balaji
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kabeer Munjal
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - Kathryn Howe
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - Sarah Mitchell
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - James Leatherman
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - Ervin Griffin
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - Mari Nakazawa
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - Hua-Ling Tsai
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ludmila Danilova
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Convergence Institute and
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland, USA
| | - Chris Thoburn
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jennifer Gizzi
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicole E. Gross
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - Alexei Hernandez
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - Erin M. Coyne
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - Sarah M. Shin
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - Jayalaxmi Suresh Babu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - George W. Apostol
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - Jennifer Durham
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - Brian J. Christmas
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - Maximilian F. Konig
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Evan J. Lipson
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jarushka Naidoo
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Beaumont Hospital, Dublin, Ireland
- RCSI University of Health Sciences, Dublin, Ireland
| | - Laura C. Cappelli
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aliyah Pabani
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yasser Ged
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Marina Baretti
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Julie Brahmer
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jean Hoffman-Censits
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tanguy Y. Seiwert
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Aditi Guha
- Genentech Inc., a member of the imCORE network, South San Francisco, California, USA
| | - Sanjay Bansal
- Genentech Inc., a member of the imCORE network, South San Francisco, California, USA
| | - Laura Tang
- Genentech Inc., a member of the imCORE network, South San Francisco, California, USA
| | - Elizabeth M. Jaffee
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Convergence Institute and
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland, USA
| | - G. Scott Chandler
- F. Hoffmann-La Roche Ltd., a member of the imCORE network, Basel, Switzerland
| | - Rajat Mohindra
- F. Hoffmann-La Roche Ltd., a member of the imCORE network, Basel, Switzerland
| | - Won Jin Ho
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Convergence Institute and
| | - Mark Yarchoan
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Convergence Institute and
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
22
|
Jain SS, Burton Sojo G, Sun H, Friedland BN, McNamara ME, Schmidt MO, Wellstein A. The Role of Aging and Senescence in Immune Checkpoint Inhibitor Response and Toxicity. Int J Mol Sci 2024; 25:7013. [PMID: 39000121 PMCID: PMC11241020 DOI: 10.3390/ijms25137013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
Cellular senescence accumulates with age and has been shown to impact numerous physiological and pathological processes, including immune function. The role of cellular senescence in cancer is multifaceted, but the impact on immune checkpoint inhibitor response and toxicity has not been fully evaluated. In this review, we evaluate the impact of cellular senescence in various biological compartments, including the tumor, the tumor microenvironment, and the immune system, on immune checkpoint inhibitor efficacy and toxicity. We provide an overview of the impact of cellular senescence in normal and pathological contexts and examine recent studies that have connected aging and cellular senescence to immune checkpoint inhibitor treatment in both the pre-clinical and clinical contexts. Overall, senescence plays a multi-faceted, context-specific role and has been shown to modulate immune-related adverse event incidence as well as immune checkpoint inhibitor response.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anton Wellstein
- Georgetown Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA; (S.S.J.)
| |
Collapse
|
23
|
Ali A, Caldwell R, Pina G, Beinart N, Jensen G, Yusuf SW, Koutroumpakis E, Hamzeh I, Khalaf S, Iliescu C, Deswal A, Palaskas NL. Elevated IL-6 and Tumor Necrosis Factor-α in Immune Checkpoint Inhibitor Myocarditis. Diseases 2024; 12:88. [PMID: 38785743 PMCID: PMC11120148 DOI: 10.3390/diseases12050088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
INTRODUCTION The impact of peripheral cytokine levels on the prognosis and treatment of immune checkpoint inhibitor (ICI) myocarditis has not been well studied. OBJECTIVES This study aimed to identify cytokines that can prognosticate and direct the treatment of ICI myocarditis. METHODS This was a single-center, retrospective cohort study of patients with ICI myocarditis who had available peripheral cytokine levels between January 2011 and May 2022. Major adverse cardiovascular events (MACEs) were defined as a composite of heart failure with/without cardiogenic shock, arterial thrombosis, life-threatening arrhythmias, pulmonary embolism, and sudden cardiac death. RESULTS In total, 65 patients with ICI myocarditis had cytokine data available. Patients were mostly males (70%), with a mean age of 67.8 ± 12.7 years. Interleukin (IL)-6 and tumor necrosis factor-α (TNF-α) were the most common cytokines to be elevated with 48/65 (74%) of patients having a peak IL-6 above normal limits (>5 pg/mL) and 44/65 (68%) of patients with peak TNF-α above normal limits (>22 pg/mL). Patients with elevated peak IL-6 had similar 90-day mortality and MACE outcomes compared to those without (10.4% vs. 11.8%, p = 0.878 and 8.8% vs. 17.7%, p = 0.366, respectively). Similarly, those with elevated peak TNF-α had similar 90-day mortality and MACEs compared to those without (29.6% vs. 14.3%, p = 0.182 and 13.6% vs. 4.8%, p = 0.413, respectively). Kaplan-Meier survival analysis also showed that there was not a significant difference between MACE-free survival when comparing elevated and normal IL-6 and TNF-α levels (p = 0.182 and p = 0.118, respectively). MACEs and overall survival outcomes were similar between those who received infliximab and those who did not among all patients and those with elevated TNF-α (p-value 0.70 and 0.83, respectively). CONCLUSION Peripheral blood levels of IL-6 and TNF-α are the most commonly elevated cytokines in patients with ICI myocarditis. However, their role in the prognostication and guidance of immunomodulatory treatment is currently limited.
Collapse
Affiliation(s)
- Abdelrahman Ali
- Department of Cardiology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1451, Houston, TX 77030, USA; (A.A.); (R.C.); (G.P.); (N.B.); (S.W.Y.); (E.K.); (I.H.); (S.K.); (C.I.); (A.D.)
| | - Rebecca Caldwell
- Department of Cardiology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1451, Houston, TX 77030, USA; (A.A.); (R.C.); (G.P.); (N.B.); (S.W.Y.); (E.K.); (I.H.); (S.K.); (C.I.); (A.D.)
| | - Gaspar Pina
- Department of Cardiology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1451, Houston, TX 77030, USA; (A.A.); (R.C.); (G.P.); (N.B.); (S.W.Y.); (E.K.); (I.H.); (S.K.); (C.I.); (A.D.)
| | - Noah Beinart
- Department of Cardiology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1451, Houston, TX 77030, USA; (A.A.); (R.C.); (G.P.); (N.B.); (S.W.Y.); (E.K.); (I.H.); (S.K.); (C.I.); (A.D.)
| | - Garrett Jensen
- Texas A&M College of Medicine, Center for Genomics and Precision Medicine, Houston, TX 77030, USA;
| | - Syed Wamique Yusuf
- Department of Cardiology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1451, Houston, TX 77030, USA; (A.A.); (R.C.); (G.P.); (N.B.); (S.W.Y.); (E.K.); (I.H.); (S.K.); (C.I.); (A.D.)
| | - Efstratios Koutroumpakis
- Department of Cardiology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1451, Houston, TX 77030, USA; (A.A.); (R.C.); (G.P.); (N.B.); (S.W.Y.); (E.K.); (I.H.); (S.K.); (C.I.); (A.D.)
| | - Ihab Hamzeh
- Department of Cardiology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1451, Houston, TX 77030, USA; (A.A.); (R.C.); (G.P.); (N.B.); (S.W.Y.); (E.K.); (I.H.); (S.K.); (C.I.); (A.D.)
| | - Shaden Khalaf
- Department of Cardiology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1451, Houston, TX 77030, USA; (A.A.); (R.C.); (G.P.); (N.B.); (S.W.Y.); (E.K.); (I.H.); (S.K.); (C.I.); (A.D.)
| | - Cezar Iliescu
- Department of Cardiology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1451, Houston, TX 77030, USA; (A.A.); (R.C.); (G.P.); (N.B.); (S.W.Y.); (E.K.); (I.H.); (S.K.); (C.I.); (A.D.)
| | - Anita Deswal
- Department of Cardiology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1451, Houston, TX 77030, USA; (A.A.); (R.C.); (G.P.); (N.B.); (S.W.Y.); (E.K.); (I.H.); (S.K.); (C.I.); (A.D.)
| | - Nicolas L. Palaskas
- Department of Cardiology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1451, Houston, TX 77030, USA; (A.A.); (R.C.); (G.P.); (N.B.); (S.W.Y.); (E.K.); (I.H.); (S.K.); (C.I.); (A.D.)
| |
Collapse
|
24
|
Alserawan L, Mulet M, Anguera G, Riudavets M, Zamora C, Osuna-Gómez R, Serra-López J, Barba Joaquín A, Sullivan I, Majem M, Vidal S. Kinetics of IFNγ-Induced Cytokines and Development of Immune-Related Adverse Events in Patients Receiving PD-(L)1 Inhibitors. Cancers (Basel) 2024; 16:1759. [PMID: 38730712 PMCID: PMC11083441 DOI: 10.3390/cancers16091759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
Immune checkpoint inhibitors (ICI) have the potential to trigger unpredictable immune-related adverse events (irAEs), which can be severe. The underlying mechanisms of these events are not fully understood. As PD-L1 is upregulated by IFN, the heightened immune activation resulting from PD-1/PD-L1 inhibition may enhance the IFN response, triggering the expression of IFN-inducible genes and contributing to irAE development and its severity. In this study, we investigated the interplay between irAEs and the expression of IFN-inducible chemokines and cytokines in 134 consecutive patients with solid tumours treated with PD-(L)1 inhibitors as monotherapy or in combination with chemotherapy or other immunotherapy agents. We compared the plasma levels of IFN-associated cytokines (CXCL9/10/11, IL-18, IL-10, IL-6 and TGFβ) at various time points (at baseline, at the onset of irAE and previous to irAE onset) in three patient groups categorized by irAE development and severity: patients with serious irAEs, mild irAEs and without irAEs after PD-(L)1 inhibitors. No differences were observed between groups at baseline. However, patients with serious irAEs exhibited significant increases in CXCL9/10/11, IL-18 and IL-10 levels at the onset of the irAE compared to baseline. A network analysis and correlation patterns highlighted a robust relationship among these chemokines and cytokines at serious-irAE onset. Combining all of the analysed proteins in a cluster analysis, we identified a subgroup of patients with a higher incidence of serious irAEs affecting different organs or systems. Finally, an ROC analysis and a decision tree model proposed IL-18 levels ≥ 807 pg/mL and TGFβ levels ≤ 114 pg/mL as predictors for serious irAEs in 90% of cases. In conclusion, our study elucidates the dynamic changes in cytokine profiles associated with serious irAE development during treatment with PD-(L)1 inhibitors. The study's findings offer valuable insights into the intricate IFN-induced immune responses associated with irAEs and propose potential predictive markers for their severity.
Collapse
Affiliation(s)
- Leticia Alserawan
- Immunology-Inflammatory Diseases, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025 Barcelona, Spain; (L.A.); (M.M.); (C.Z.); (R.O.-G.)
- Department of Immunology, Hospital Clínic Barcelona, 08036 Barcelona, Spain
| | - Maria Mulet
- Immunology-Inflammatory Diseases, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025 Barcelona, Spain; (L.A.); (M.M.); (C.Z.); (R.O.-G.)
| | - Geòrgia Anguera
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain; (G.A.); (M.R.); (J.S.-L.); (A.B.J.); (I.S.); (M.M.)
| | - Mariona Riudavets
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain; (G.A.); (M.R.); (J.S.-L.); (A.B.J.); (I.S.); (M.M.)
- Department of Pneumologie, Hôpital Cochin—APHP Centre, 75014 Paris, France
| | - Carlos Zamora
- Immunology-Inflammatory Diseases, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025 Barcelona, Spain; (L.A.); (M.M.); (C.Z.); (R.O.-G.)
| | - Rubén Osuna-Gómez
- Immunology-Inflammatory Diseases, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025 Barcelona, Spain; (L.A.); (M.M.); (C.Z.); (R.O.-G.)
| | - Jorgina Serra-López
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain; (G.A.); (M.R.); (J.S.-L.); (A.B.J.); (I.S.); (M.M.)
| | - Andrés Barba Joaquín
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain; (G.A.); (M.R.); (J.S.-L.); (A.B.J.); (I.S.); (M.M.)
| | - Ivana Sullivan
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain; (G.A.); (M.R.); (J.S.-L.); (A.B.J.); (I.S.); (M.M.)
| | - Margarita Majem
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain; (G.A.); (M.R.); (J.S.-L.); (A.B.J.); (I.S.); (M.M.)
| | - Silvia Vidal
- Immunology-Inflammatory Diseases, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025 Barcelona, Spain; (L.A.); (M.M.); (C.Z.); (R.O.-G.)
| |
Collapse
|
25
|
Bracamonte-Baran W, Kim ST. The Current and Future of Biomarkers of Immune Related Adverse Events. Rheum Dis Clin North Am 2024; 50:201-227. [PMID: 38670721 PMCID: PMC11232920 DOI: 10.1016/j.rdc.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
With their groundbreaking clinical responses, immune checkpoint inhibitors (ICIs) have ushered in a new chapter in cancer therapeutics. However, they are often associated with life-threatening or organ-threatening autoimmune/autoinflammatory phenomena, collectively termed immune-related adverse events (irAEs). In this review, we will first describe the mechanisms of action of ICIs as well as irAEs. Next, we will review biomarkers for predicting the development of irAEs or stratifying risks.
Collapse
Affiliation(s)
- William Bracamonte-Baran
- Department of Rheumatology, Allergy & Immunology, Yale University, 300 Cedar Street, TAC S541, New Haven, CT 06520, USA
| | - Sang T Kim
- Department of Rheumatology, Allergy & Immunology, Yale University, 300 Cedar Street, TAC S541, New Haven, CT 06520, USA.
| |
Collapse
|
26
|
Casagrande S, Sopetto GB, Bertalot G, Bortolotti R, Racanelli V, Caffo O, Giometto B, Berti A, Veccia A. Immune-Related Adverse Events Due to Cancer Immunotherapy: Immune Mechanisms and Clinical Manifestations. Cancers (Basel) 2024; 16:1440. [PMID: 38611115 PMCID: PMC11011060 DOI: 10.3390/cancers16071440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
The landscape of cancer treatment has undergone a significant transformation with the introduction of Immune Checkpoint Inhibitors (ICIs). Patients undergoing these treatments often report prolonged clinical and radiological responses, albeit with a potential risk of developing immune-related adverse events (irAEs). Here, we reviewed and discussed the mechanisms of action of ICIs and their pivotal role in regulating the immune system to enhance the anti-tumor immune response. We scrutinized the intricate pathogenic mechanisms responsible for irAEs, arising from the evasion of self-tolerance checkpoints due to drug-induced immune modulation. We also summarized the main clinical manifestations due to irAEs categorized by organ types, detailing their incidence and associated risk factors. The occurrence of irAEs is more frequent when ICIs are combined; with neurological, cardiovascular, hematological, and rheumatic irAEs more commonly linked to PD1/PD-L1 inhibitors and cutaneous and gastrointestinal irAEs more prevalent with CTLA4 inhibitors. Due to the often-nonspecific signs and symptoms, the diagnosis of irAEs (especially for those rare ones) can be challenging. The differential with primary autoimmune disorders becomes sometimes intricate, given the clinical and pathophysiological similarities. In conclusion, considering the escalating use of ICIs, this area of research necessitates additional clinical studies and practical insights, especially the development of biomarkers for predicting immune toxicities. In addition, there is a need for heightened education for both clinicians and patients to enhance understanding and awareness.
Collapse
Affiliation(s)
- Silvia Casagrande
- Unit of Neurology, Rovereto Hospital, Azienda Provinciale per i Servizi Sanitari-APSS, 38122 Trento, Italy; (S.C.); (B.G.)
| | - Giulia Boscato Sopetto
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38122 Trento, Italy; (G.B.S.); (G.B.); (V.R.)
| | - Giovanni Bertalot
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38122 Trento, Italy; (G.B.S.); (G.B.); (V.R.)
- Center for Medical Sciences (CISMed), University of Trento, 38122 Trento, Italy
- Multizonal Unit of Pathology, APSS, 38122 Trento, Italy
| | - Roberto Bortolotti
- Unit of Rheumatology, Santa Chiara Regional Hospital, APSS, 38122 Trento, Italy;
| | - Vito Racanelli
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38122 Trento, Italy; (G.B.S.); (G.B.); (V.R.)
- Center for Medical Sciences (CISMed), University of Trento, 38122 Trento, Italy
- Unit of Internal Medicine, Santa Chiara Regional Hospital, APSS, 38122 Trento, Italy
| | - Orazio Caffo
- Unit of Oncology, Santa Chiara Regional Hospital, APSS, 38122 Trento, Italy; (O.C.); (A.V.)
| | - Bruno Giometto
- Unit of Neurology, Rovereto Hospital, Azienda Provinciale per i Servizi Sanitari-APSS, 38122 Trento, Italy; (S.C.); (B.G.)
- Center for Medical Sciences (CISMed), University of Trento, 38122 Trento, Italy
- Department of Psychology and Cognitive Sciences (DIPSCO), University of Trento, 38122 Trento, Italy
| | - Alvise Berti
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38122 Trento, Italy; (G.B.S.); (G.B.); (V.R.)
- Center for Medical Sciences (CISMed), University of Trento, 38122 Trento, Italy
- Unit of Rheumatology, Santa Chiara Regional Hospital, APSS, 38122 Trento, Italy;
| | - Antonello Veccia
- Unit of Oncology, Santa Chiara Regional Hospital, APSS, 38122 Trento, Italy; (O.C.); (A.V.)
| |
Collapse
|
27
|
Liang Y, Maeda O, Ando Y. Biomarkers for immune-related adverse events in cancer patients treated with immune checkpoint inhibitors. Jpn J Clin Oncol 2024; 54:365-375. [PMID: 38183211 PMCID: PMC11771318 DOI: 10.1093/jjco/hyad184] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/12/2023] [Indexed: 01/07/2024] Open
Abstract
Although immune checkpoint inhibitors have greatly improved cancer therapy, they also cause immune-related adverse events, including a wide range of inflammatory side effects resulting from excessive immune activation. Types of immune-related adverse events are diverse and can occur in almost any organ, with different frequencies and severities. Furthermore, immune-related adverse events may occur within the first few weeks after treatment or even several months after treatment discontinuation. Predictive biomarkers include blood cell counts and cell surface markers, serum proteins, autoantibodies, cytokines/chemokines, germline genetic variations and gene expression profiles, human leukocyte antigen genotype, microRNAs and the gut microbiome. Given the inconsistencies in research results and limited practical utility, there is to date no established biomarker that can be used in routine clinical practice, and additional investigations are essential to demonstrate efficacy and subsequently facilitate integration into routine clinical use.
Collapse
Affiliation(s)
- Yao Liang
- Department of Clinical Oncology and Chemotherapy, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Osamu Maeda
- Department of Clinical Oncology and Chemotherapy, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Yuichi Ando
- Department of Clinical Oncology and Chemotherapy, Nagoya University Hospital, Nagoya, Aichi, Japan
| |
Collapse
|
28
|
Jiang QY, Xue RY. Neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio: Markers predicting immune-checkpoint inhibitor efficacy and immune-related adverse events. World J Gastrointest Oncol 2024; 16:577-582. [PMID: 38577447 PMCID: PMC10989358 DOI: 10.4251/wjgo.v16.i3.577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/14/2023] [Accepted: 01/18/2024] [Indexed: 03/12/2024] Open
Abstract
We conducted a comprehensive review of existing prediction models pertaining to the efficacy of immune-checkpoint inhibitor (ICI) and the occurrence of immune-related adverse events (irAEs). The predictive potential of neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) in determining ICI effectiveness has been extensively investigated, while limited research has been conducted on predicting irAEs. Furthermore, the combined model incorporating NLR and PLR, either with each other or in conjunction with additional markers such as carcinoembryonic antigen, exhibits superior predictive capabilities compared to individual markers alone. NLR and PLR are promising markers for clinical applications. Forthcoming models ought to incorporate established efficacious models and newly identified ones, thereby constituting a multifactor composite model. Furthermore, efforts should be made to explore effective clinical application approaches that enhance the predictive accuracy and efficiency.
Collapse
Affiliation(s)
- Qiu-Yu Jiang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Shanghai Institute of Liver Disease, Fudan University, Shanghai 200032, China
| | - Ru-Yi Xue
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Shanghai Institute of Liver Disease, Fudan University, Shanghai 200032, China
- Department of Gastroenterology and Hepatology, Shanghai Baoshan District Wusong Central Hospital (Zhongshan Hospital Wusong Branch, Fudan University), Shanghai 200940, China
| |
Collapse
|
29
|
Elkrief A, Waters NR, Smith N, Dai A, Slingerland J, Aleynick N, Febles B, Gogia P, Socci ND, Lumish M, Giardina PA, Chaft JE, Eng J, Motzer RJ, Mendelsohn RB, Markey KA, Zhuang M, Li Y, Yang Z, Hollmann TJ, Rudin CM, van den Brink MR, Shia J, DeWolf S, Schoenfeld AJ, Hellmann MD, Babady NE, Faleck DM, Peled JU. Immune-Related Colitis Is Associated with Fecal Microbial Dysbiosis and Can Be Mitigated by Fecal Microbiota Transplantation. Cancer Immunol Res 2024; 12:308-321. [PMID: 38108398 PMCID: PMC10932930 DOI: 10.1158/2326-6066.cir-23-0498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/08/2023] [Accepted: 12/15/2023] [Indexed: 12/19/2023]
Abstract
Colitis induced by treatment with immune-checkpoint inhibitors (ICI), termed irColitis, is a substantial cause of morbidity complicating cancer treatment. We hypothesized that abnormal fecal microbiome features would be present at the time of irColitis onset and that restoring the microbiome with fecal transplant from a healthy donor would mitigate disease severity. Herein, we present fecal microbiota profiles from 18 patients with irColitis from a single center, 5 of whom were treated with healthy-donor fecal microbial transplantation (FMT). Although fecal samples collected at onset of irColitis had comparable α-diversity to that of comparator groups with gastrointestinal symptoms, irColitis was characterized by fecal microbial dysbiosis. Abundances of Proteobacteria were associated with irColitis in multivariable analyses. Five patients with irColitis refractory to steroids and biologic anti-inflammatory agents received healthy-donor FMT, with initial clinical improvement in irColitis symptoms observed in four of five patients. Two subsequently exhibited recurrence of irColitis symptoms following courses of antibiotics. Both received a second "salvage" FMT that was, again, followed by clinical improvement of irColitis. In summary, we observed distinct microbial community changes that were present at the time of irColitis onset. FMT was followed by clinical improvements in several cases of steroid- and biologic-agent-refractory irColitis. Strategies to restore or prevent microbiome dysbiosis in the context of immunotherapy toxicities should be further explored in prospective clinical trials.
Collapse
Affiliation(s)
- Arielle Elkrief
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nicholas R. Waters
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Natalie Smith
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Angel Dai
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - John Slingerland
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nathan Aleynick
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Binita Febles
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Pooja Gogia
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nicholas D. Socci
- Bioinformatics Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Melissa Lumish
- Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Paul A. Giardina
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jamie E. Chaft
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | - Juliana Eng
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | - Robert J. Motzer
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | - Robin B. Mendelsohn
- Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | - Kate A. Markey
- Fred Hutchinson Cancer Center, Seattle, Washington; Division of Medical Oncology, University of Washington, Seattle, Washington
| | - Mingqiang Zhuang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Yanyun Li
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Zhifan Yang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Travis J. Hollmann
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Bristol Myers Squibb, Princeton, NJ, USA
| | - Charles M. Rudin
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | - Marcel R.M. van den Brink
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jinru Shia
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Susan DeWolf
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Adam J. Schoenfeld
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | - Matthew D. Hellmann
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | - N. Esther Babady
- Clinical Microbiology Service, Department of Pathology and Laboratory Medicine and the Infectious Disease Service, Department of Medicine Memorial Sloan Kettering Cancer Center, New York, NY
| | - David M. Faleck
- Gastroenterology, Hepatology & Nutrition Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | - Jonathan U. Peled
- Weill Cornell Medical College, New York, NY
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
30
|
Yu J, Xiong F, Xu Y, Xu H, Zhang X, Gao H, Li Y. Lipidomics reveals immune-related adverse events in NSCLC patients receiving immune checkpoint inhibitor. Int Immunopharmacol 2024; 127:111412. [PMID: 38160567 DOI: 10.1016/j.intimp.2023.111412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
There is a lack of reliable biomarkers to predict and identify the risk of immune-related adverse events (irAEs) in non-small cell lung cancer (NSCLC) patients undergoing immune checkpoint inhibitor (ICI) treatment. This study aims to explore potential biomarkers using lipidomics to identify and predict the risk of irAEs in NSCLC patients receiving ICI treatment. This prospective study enrolled 94 NSCLC patients with IIIB/IV stage NSCLC who underwent first-line chemotherapy in combination with ICI treatment. The prediction cohort consisted of plasma samples collected from 60 patients before ICI treatment, and the occurrence of irAE was monitored within 6 months of initiating first-line ICI therapy. The validation cohort comprised 34 patients, with plasma samples obtained from 15 patients who did not develop irAE at 6 months of ICI treatment and plasma samples collected from 19 irAE patients at the onset of irAE. Through non-targeted lipidomics and semi-targeted lipid quantification analysis, we identify 11 differentially metabolized lipids and further screened these lipids with the area under the curve (AUC) > 0.7 to predict the occurrence of irAEs in NSCLC patients following ICI treatment. The results showed that the biomarker panel consisting of 9 lipids (LPC-18:2, PC-40:6, LPC-22:6, LPC-O-18:0, PS-38:0, PC-38:6, PC-37:6, PC-36:5,LPC-17:0) exhibited a good AUC of 0.859 in the prediction and 0.940 in the validation cohort phase of the receiver operating characteristic curve; The study utilizes plasma lipidomics to develop a rapid and effective prediction model for identifying irAEs in advanced NSCLC patients who treatment with first-line chemotherapy combined with immunotherapy.
Collapse
Affiliation(s)
- Jia Yu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Fen Xiong
- Oujiang Laboratory, Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yingruo Xu
- Oujiang Laboratory, Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Hanyan Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Xi Zhang
- Oujiang Laboratory, Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Hongchang Gao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; Oujiang Laboratory, Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Yuping Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
31
|
Poletto S, Paruzzo L, Nepote A, Caravelli D, Sangiolo D, Carnevale-Schianca F. Predictive Factors in Metastatic Melanoma Treated with Immune Checkpoint Inhibitors: From Clinical Practice to Future Perspective. Cancers (Basel) 2023; 16:101. [PMID: 38201531 PMCID: PMC10778365 DOI: 10.3390/cancers16010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
The introduction of immunotherapy revolutionized the treatment landscape in metastatic melanoma. Despite the impressive results associated with immune checkpoint inhibitors (ICIs), only a portion of patients obtain a response to this treatment. In this scenario, the research of predictive factors is fundamental to identify patients who may have a response and to exclude patients with a low possibility to respond. These factors can be host-associated, immune system activation-related, and tumor-related. Patient-related factors can vary from data obtained by medical history (performance status, age, sex, body mass index, concomitant medications, and comorbidities) to analysis of the gut microbiome from fecal samples. Tumor-related factors can reflect tumor burden (metastatic sites, lactate dehydrogenase, C-reactive protein, and circulating tumor DNA) or can derive from the analysis of tumor samples (driver mutations, tumor-infiltrating lymphocytes, and myeloid cells). Biomarkers evaluating the immune system activation, such as IFN-gamma gene expression profile and analysis of circulating immune cell subsets, have emerged in recent years as significantly correlated with response to ICIs. In this manuscript, we critically reviewed the most updated literature data on the landscape of predictive factors in metastatic melanoma treated with ICIs. We focus on the principal limits and potentiality of different methods, shedding light on the more promising biomarkers.
Collapse
Affiliation(s)
- Stefano Poletto
- Department of Oncology, University of Turin, AOU S. Luigi Gonzaga, 10043 Orbassano, Italy;
| | - Luca Paruzzo
- Department of Oncology, University of Turin, 10124 Turin, Italy; (L.P.); (D.S.)
- Division of Hematology and Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alessandro Nepote
- Department of Oncology, University of Turin, AOU S. Luigi Gonzaga, 10043 Orbassano, Italy;
| | - Daniela Caravelli
- Medical Oncology Division, Candiolo Cancer Institute, FPO-IRCCs, 10060 Candiolo, Italy; (D.C.); (F.C.-S.)
| | - Dario Sangiolo
- Department of Oncology, University of Turin, 10124 Turin, Italy; (L.P.); (D.S.)
| | | |
Collapse
|
32
|
Zhou Y, Ding S. Key Determinants of Immune-Mediated Adverse Reactions to Oncology Drugs. Cancers (Basel) 2023; 15:5622. [PMID: 38067327 PMCID: PMC10705334 DOI: 10.3390/cancers15235622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 06/16/2024] Open
Abstract
To overcome the epidemiological severity of cancer, developing effective treatments is urgently required. In response, immune checkpoint inhibitors (ICIs) have been revealed as a promising resolution for treatment-resistant cancers across the world. Yet, they have both advantages and disadvantages, bringing therapeutic benefits while simultaneously inducing toxicity, and in particular, immune-mediated adverse drug reactions (imADRs), to the human body. These imADRs can be pathogenic and sometimes lethal, hampering health prediction and monitoring following the provision of ICI treatment. Therefore, it is necessary to collectively identify the determinant factors that contribute to these imADRs induced by ICIs. This article evaluated treatment-, tumor-, and patient-related determinants, and indicated a research gap for future investigations on the pathogenic mechanism of imADRs and translational conversion of determinants into clinical biomarkers to aid pharmacovigilance and cancer therapies.
Collapse
Affiliation(s)
- Yihan Zhou
- Medical Sciences Division, Department of Oncology, University of Oxford, Old Road Campus Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Shan Ding
- Department of Life Science, Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK;
| |
Collapse
|
33
|
Soler MF, Abaurrea A, Azcoaga P, Araujo AM, Caffarel MM. New perspectives in cancer immunotherapy: targeting IL-6 cytokine family. J Immunother Cancer 2023; 11:e007530. [PMID: 37945321 PMCID: PMC10649711 DOI: 10.1136/jitc-2023-007530] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 11/12/2023] Open
Abstract
Chronic inflammation has been recognized as a canonical cancer hallmark. It is orchestrated by cytokines, which are master regulators of the tumor microenvironment (TME) as they represent the main communication bridge between cancer cells, the tumor stroma, and the immune system. Interleukin (IL)-6 represents a keystone cytokine in the link between inflammation and cancer. Many cytokines from the IL-6 family, which includes IL-6, oncostatin M, leukemia inhibitory factor, IL-11, IL-27, IL-31, ciliary neurotrophic factor, cardiotrophin 1, and cardiotrophin-like cytokine factor 1, have been shown to elicit tumor-promoting roles by modulating the TME, making them attractive therapeutic targets for cancer treatment.The development of immune checkpoint blockade (ICB) immunotherapies has radically changed the outcome of some cancers including melanoma, lung, and renal, although not without hurdles. However, ICB shows limited efficacy in other solid tumors. Recent reports support that chronic inflammation and IL-6 cytokine signaling are involved in resistance to immunotherapy. This review summarizes the available preclinical and clinical data regarding the implication of IL-6-related cytokines in regulating the immune TME and the response to ICB. Moreover, the potential clinical benefit of combining ICB with therapies targeting IL-6 cytokine members for cancer treatment is discussed.
Collapse
Affiliation(s)
- Maria Florencia Soler
- Biogipuzkoa (previously known as Biodonostia) Health Research Institute, Donostia-San Sebastian, Spain
| | - Andrea Abaurrea
- Biogipuzkoa (previously known as Biodonostia) Health Research Institute, Donostia-San Sebastian, Spain
| | - Peio Azcoaga
- Biogipuzkoa (previously known as Biodonostia) Health Research Institute, Donostia-San Sebastian, Spain
| | - Angela M Araujo
- Biogipuzkoa (previously known as Biodonostia) Health Research Institute, Donostia-San Sebastian, Spain
| | - Maria M Caffarel
- Biogipuzkoa (previously known as Biodonostia) Health Research Institute, Donostia-San Sebastian, Spain
- Ikerbasque Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
34
|
Zhao N, Jiang A, Shang X, Zhao F, Wang R, Fu X, Ruan Z, Liang X, Tian T, Yao Y, Li C. Construction and Evaluation of Clinical Prediction Model for Immunotherapy-related Adverse Events and Clinical Benefit in Cancer Patients Receiving Immune Checkpoint Inhibitors Based on Serum Cytokine Levels. J Immunother 2023; 46:310-322. [PMID: 37335173 PMCID: PMC10473032 DOI: 10.1097/cji.0000000000000478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/27/2023] [Indexed: 06/21/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the therapeutic landscape of cancer therapy. This study aimed to develop novel risk classifiers to predict the risk of immune-related adverse events (irAEs) and the probability of clinical benefits. Patients with cancer who received ICIs from the First Affiliated Hospital of Xi 'an Jiaotong University from November 2020 to October 2022 were recruited and followed up. Logistic regression analyses were performed to identify independent predictive factors for irAEs and clinical response. Two nomograms were developed to predict the irAEs and clinical responses of these individuals, with a receiver operating characteristic curve to assess their predictive ability. Decision curve analysis was performed to estimate the clinical utility of the nomogram. This study included 583 patients with cancer. Among them, 111 (19.0%) developed irAEs. Duration of treatment (DOT)>3 cycles, hepatic-metastases, IL2>2.225 pg/mL, and IL8>7.39 pg/mL were correlated with higher irAEs risk. A total of 347 patients were included in the final efficacy analysis, with an overall clinical benefit rate of 39.7%. DOT>3 cycles, nonhepatic-metastases, and irAEs and IL8>7.39 pg/mL were independent predictive factors of clinical benefit. Ultimately, 2 nomograms were successfully established to predict the probability of irAEs and their clinical benefits. Ultimately, 2 nomograms were successfully established to predict the probability of irAEs and clinical benefits. The receiver operating characteristic curves yielded acceptable nomogram performance. Calibration curves and decision curve analysis supported the hypothesis that nomograms could provide more significant net clinical benefits to these patients. Specific baseline plasma cytokines were closely correlated with irAEs and clinical responses in these individuals.
Collapse
|
35
|
Shirwaikar Thomas A, Chari ST. Immune Checkpoint Inhibitor-Induced (Type 3) Autoimmune Pancreatitis. Curr Gastroenterol Rep 2023; 25:255-259. [PMID: 37845557 DOI: 10.1007/s11894-023-00885-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2023] [Indexed: 10/18/2023]
Abstract
PURPOSE OF REVIEW Immune checkpoint inhibitors (ICI) have revolutionized cancer care and work primarily by blocking CTLA-4 (cytotoxic T-lymphocyte-associated protein 4), and/or PD-1 (programmed cell death protein 1), and/or PD-L1 (programmed death-ligand 1), thereby providing highly efficacious anti-tumor activity. However, this unmitigated immune response can also trigger immune related adverse events (irAEs) in multiple organs, with pancreatic irAEs (now referred to as type 3 Autoimmune pancreatitis (AIP) being infrequent. RECENT FINDINGS Type 3 AIP is a drug-induced, immune mediated progressive inflammatory disease of the pancreas that may have variable clinical presentations viz., an asymptomatic pancreatic enzyme elevation, incidental imaging evidence of pancreatitis, painful pancreatitis, or any combination of these subtypes. Management is largely supportive with intravenous fluid hydration, pain control and holding the inciting medication. Steroids have not been shown to demonstrate a clear benefit in acute management. A rapid development pancreatic atrophy is observed on imaging as early as 1 year post initial injury. Type 3 AIP is a chronic inflammatory disease of the pancreas that though predominantly asymptomatic and mild in severity can lead to rapid organ volume loss regardless of type of clinical presentation and despite steroid therapy.
Collapse
Affiliation(s)
| | - Suresh T Chari
- University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Internal Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| |
Collapse
|
36
|
Sauer N, Szlasa W, Szewczyk A, Novickij V, Saczko J, Baczyńska D, Daczewska M, Kulbacka J. Effects of Nanosecond Pulsed Electric Field on Immune Checkpoint Receptors in Melanoma Cells. Pharmaceuticals (Basel) 2023; 16:1362. [PMID: 37895833 PMCID: PMC10610193 DOI: 10.3390/ph16101362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/11/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Checkpoint molecules such as PD-1, LAG-3, and TIM-3 are currently under extensive investigation for their roles in the attenuation of the immune response in cancer. Various methods have been applied to overcome the challenges in this field. This study investigated the effects of nanosecond pulsed electric field (nsPEF) treatment on the expression of immune checkpoint molecules in A375 and C32 melanoma cells. The researchers found that the nsPEF treatment was able to enhance membrane permeabilization and morphological changes in the cell membrane without being cytotoxic. We found that the effects of nsPEFs on melanoma included (1) the transport of vesicles from the inside to the outside of the cells, (2) cell contraction, and (3) the migration of lipids from inside the cells to their peripheries. The treatment increased the expression of PD-1 checkpoint receptors. Furthermore, we also observed potential co-localization or clustering of MHC class II and PD-1 molecules on the cell surface and the secretion of cytokines such as TNF-α and IL-6. These findings suggest that nsPEF treatment could be a viable approach to enhance the delivery of therapeutic agents to cancer cells and to modulate the tumor microenvironment to promote an antitumor immune response. Further studies are needed to explore the mechanisms underlying these effects and their impacts on the antitumor immune response, and to investigate the potential of nsPEF treatment in combination with immune checkpoint inhibitors to improve clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Natalia Sauer
- Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Wojciech Szlasa
- Faculty of Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Anna Szewczyk
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 51-618 Wroclaw, Poland; (A.S.); (D.B.)
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wroclaw, Sienkiewicza 21, 50-335 Wroclaw, Poland;
| | - Vitalij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, 08217 Vilnius, Lithuania;
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių 5, 08410 Vilnius, Lithuania
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 51-618 Wroclaw, Poland; (A.S.); (D.B.)
| | - Dagmara Baczyńska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 51-618 Wroclaw, Poland; (A.S.); (D.B.)
| | - Małgorzata Daczewska
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wroclaw, Sienkiewicza 21, 50-335 Wroclaw, Poland;
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 51-618 Wroclaw, Poland; (A.S.); (D.B.)
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių 5, 08410 Vilnius, Lithuania
| |
Collapse
|
37
|
Goodman RS, Jung S, Balko JM, Johnson DB. Biomarkers of immune checkpoint inhibitor response and toxicity: Challenges and opportunities. Immunol Rev 2023; 318:157-166. [PMID: 37470280 PMCID: PMC10528475 DOI: 10.1111/imr.13249] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/28/2023] [Indexed: 07/21/2023]
Abstract
Immune checkpoint inhibitors have transformed cancer therapy, but their optimal use is still constrained by lack of response and toxicity. Biomarkers of response may facilitate drug development by allowing appropriate therapy selection and focusing clinical trial enrollment. However, aside from PD-L1 staining in a subset of tumors and rarely mismatch repair deficiency, no biomarkers are routinely used in the clinic. In addition, severe toxicities may cause severe morbidity, therapy discontinuation, and even death. Here, we review the state of the field with a focus on our research in therapeutic biomarkers and toxicities from immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | - Seungyeon Jung
- Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Justin M. Balko
- Department of Medicine, Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Douglas B. Johnson
- Department of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
38
|
Yakobson A, Rouvinov K, Cohen AY, Goldstein I, Abu Saleh O, Solomon A, Dudnik Y, Shalata W. Carpal Tunnel Syndrome Associated with Immune Checkpoint Inhibitors. J Pers Med 2023; 13:1340. [PMID: 37763109 PMCID: PMC10532569 DOI: 10.3390/jpm13091340] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have transformed the therapeutic approach to diverse malignancies, leading to substantial enhancements in patient prognosis. However, along with their benefits, ICIs also increase the incidence of immune-related adverse events (irAEs). In the present paper, we highlight four cases of carpal tunnel syndrome (CTS) as an uncommon manifestation of toxicity induced by ICIs. Although diagnosed with different malignancies, the patients were undergoing ICI therapy when they developed CTS-consistent side effects accompanied by severe neuropathy. Prompt treatment with corticosteroids, intravenous immunoglobulins, or methotrexate resulted in complete symptomatic relief for all patients. This article therefore emphasizes the importance of recognizing and managing rare adverse events associated with ICI use to ensure optimal patient care.
Collapse
Affiliation(s)
- Alexander Yakobson
- The Legacy Heritage Cancer Center & Larry Norton Institute, Soroka Medical Center, Beer Sheva 84105, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Keren Rouvinov
- The Legacy Heritage Cancer Center & Larry Norton Institute, Soroka Medical Center, Beer Sheva 84105, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Aharon Y. Cohen
- The Legacy Heritage Cancer Center & Larry Norton Institute, Soroka Medical Center, Beer Sheva 84105, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Iris Goldstein
- Department of Neurology, Soroka University Medical Center, Faculty of Health Sciences, Ben Gurion University, Beer Sheva 84105, Israel
- Department of Dermatology and Venereology, The Emek Medical Centre, Afula 18341, Israel
| | - Omar Abu Saleh
- Department of Neurology, Soroka University Medical Center, Faculty of Health Sciences, Ben Gurion University, Beer Sheva 84105, Israel
- Department of Dermatology and Venereology, The Emek Medical Centre, Afula 18341, Israel
| | - Adam Solomon
- Medical School for International Health and Sciences, Ben-Gurion University, Beer-Sheva 84105, Israel
| | - Yulia Dudnik
- The Legacy Heritage Cancer Center & Larry Norton Institute, Soroka Medical Center, Beer Sheva 84105, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Walid Shalata
- The Legacy Heritage Cancer Center & Larry Norton Institute, Soroka Medical Center, Beer Sheva 84105, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
39
|
Stephen B, Hajjar J, Sarda S, Duose DY, Conroy JM, Morrison C, Alshawa A, Xu M, Zarifa A, Patel SP, Yuan Y, Kwiatkowski E, Wang L, Rodon Ahnert J, Fu S, Meric-Bernstam F, Lowman GM, Looney T, Naing A. T-cell receptor beta variable gene polymorphism predicts immune-related adverse events during checkpoint blockade immunotherapy. J Immunother Cancer 2023; 11:e007236. [PMID: 37604642 PMCID: PMC10445351 DOI: 10.1136/jitc-2023-007236] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitors have revolutionized cancer treatment. However, they are associated with a unique spectrum of side effects, called immune-related adverse events (irAEs), which can cause significant morbidity and quickly progress to severe or life-threatening events if not treated promptly. Identifying predictive biomarkers for irAEs before immunotherapy initiation is therefore a critical area of research. Polymorphisms within the T-cell receptor beta (TCRB) variable (TRBV) gene have been implicated in autoimmune disease and may be mechanistically linked to irAEs. However, the repetitive nature of the TCRB locus and incomplete genome assembly has hampered the evaluation of TRBV polymorphisms in the past. PATIENTS AND METHODS We used a novel method for long-amplicon next generation sequencing of rearranged TCRB chains from peripheral blood total RNA to evaluate the link between TRBV polymorphisms and irAEs in patients treated with immunotherapy for cancer. We employed multiplex PCR to create amplicons spanning the three beta chain complementarity-determining regions (CDR) regions to enable detection of polymorphism within the germline-encoded framework and CDR1 and CDR2 regions in addition to CDR3 profiling. Resultant amplicons were sequenced via the Ion Torrent and TRBV allele profiles constructed for each individual was correlated with irAE annotations to identify haplotypes associated with severe irAEs (≥ grade 3). RESULTS Our study included 81 patients who had irAEs when treated with immunotherapy for cancer. By using principal component analysis of the 81 TRBV allele profiles followed by k-means clustering, we identified six major TRBV haplotypes. Strikingly, we found that one-third of this cohort possessed a TRBV allele haplotype that appeared to be protective against severe irAEs. CONCLUSION The data suggest that long-amplicon TCRB repertoire sequencing can potentially identify TRBV haplotype groups that correlate with the risk of severe irAEs. Germline-encoded TRBV polymorphisms may serve as a predictive biomarker of severe irAEs.
Collapse
Affiliation(s)
- Bettzy Stephen
- Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Joud Hajjar
- Adult Allergy and Immunology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | | | - Dzifa Yawa Duose
- Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Carl Morrison
- Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Anas Alshawa
- Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mingxuan Xu
- Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Abdulrazzak Zarifa
- Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sapna P Patel
- Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ying Yuan
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Evan Kwiatkowski
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Linghua Wang
- Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jordi Rodon Ahnert
- Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Siqing Fu
- Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Funda Meric-Bernstam
- Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Timothy Looney
- Thermo Fisher Scientific, Clinical Next-Generation Sequencing, Austin, Texas, USA
| | - Aung Naing
- Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
40
|
Liu D, Hu L, Shao H. Therapeutic drug monitoring of immune checkpoint inhibitors: based on their pharmacokinetic properties and biomarkers. Cancer Chemother Pharmacol 2023:10.1007/s00280-023-04541-8. [PMID: 37410155 DOI: 10.1007/s00280-023-04541-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/03/2023] [Indexed: 07/07/2023]
Abstract
As a new means of oncology treatment, immune checkpoint inhibitors (ICIs) can improve survival rates in patients with resistant or refractory tumors. However, there are obvious inter-individual differences in the unsatisfactory response rate, drug resistance rate and the occurrence of immune-related adverse events (irAE). These questions have sparked interest in researchers looking for a way to screen sensitive populations and predict efficacy and safety. Therapeutic drug monitoring (TDM) is a way to ensure the safety and effectiveness of medication by measuring the concentration of drugs in body fluids and adjusting the medication regimen. It has the potential to be an adjunctive means of predicting the safety and efficacy of ICIs treatment. In this review, the author outlined the pharmacokinetic (PK) characteristics of ICIs in patients. The feasibility and limitations of TDM of ICIs were discussed by summarizing the relationships between the pharmacokinetic parameters and the efficacy, toxicity and biomarkers.
Collapse
Affiliation(s)
- Dongxue Liu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Linlin Hu
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Office of Medication Clinical Institution, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Hua Shao
- Office of Medication Clinical Institution, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.
| |
Collapse
|
41
|
Curkovic NB, Johnson DB. Updates in toxicities associated with immune checkpoint inhibitors. Expert Rev Clin Immunol 2023; 19:1117-1129. [PMID: 37276071 PMCID: PMC10527235 DOI: 10.1080/1744666x.2023.2221434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/31/2023] [Indexed: 06/07/2023]
Abstract
INTRODUCTION Immune checkpoint inhibitors (ICIs) have become a pillar of treatment for numerous cancers with increasing use in combination with other ICIs and in earlier stages of disease treatment. Although effective, ICI use is accompanied by a milieu of potentially bothersome or even life-threatening toxicities known as immune-related adverse events (irAEs), necessitating careful monitoring and early intervention. AREAS COVERED In this review, we provide an overview of recent advances surrounding toxicity pathophysiology and treatment in the context of relevant organ systems. An emphasis on current treatments by toxicity, as well as updates on steroid-refractory toxicities, chronic toxicities, and biomarkers will be a focus of this update on the current understanding of irAEs. EXPERT OPINION ICI toxicities are a major limitation on the deployment of multi-agent ICI regimens and are thus a major priority to understand, treat, and prevent. Recent developments have led to greater understanding of the pathophysiology of these events, which may lead to improved prevention or mitigation strategies. Further, early studies have also suggested steroid-sparing approaches that may be useful. Ultimately, preventing and managing irAEs will be a key goal toward successful ICI treatment across a broader range of patients with cancer.
Collapse
Affiliation(s)
| | - Douglas B. Johnson
- Department of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
42
|
Difoum F, Schernberg A, Vanquaethem H, Picchi H, Roy AL, Vuagnat P, Helissey C. Prognostic factors of toxicity of immune checkpoint inhibitors in nonsmall cell lung cancer and small cell lung cancer patients: The ToxImmune study. Cancer Rep (Hoboken) 2023; 6:e1760. [PMID: 36494190 PMCID: PMC10363797 DOI: 10.1002/cnr2.1760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/07/2022] [Accepted: 11/27/2022] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND Immunotherapy alone or in combination has clearly improved the survival of patients with lung cancer. However, it may also be responsible for adverse events impacting these patients' quality of life. The ToxImmune study aims to identify prognostic factors that can help to predict immune-related adverse events. METHODS We included all patients aged 18 years and older who had received at least one dose of immune checkpoint inhibitors, with or without other therapy, between June 2015 and December 2020 and were diagnosed with nonsmall cell lung cancer or small-cell lung cancer. Patients' baseline demographic characteristics, biological blood markers, and imaging by PET-scanner were collected from electronic medical records. All adverse events (AEs) and immune-related AEs (irAEs) were recorded (Common Terminology Criteria For Adverse Events V.5.0). RESULTS Sixty-four patients were included, of whom 60 (94%) presented at least one irAE. The incidence of Common Terminology Criteria for Adverse Events (CTCAE) grade 2 and grade 3-4 was 34% and 8% respectively. Female sex, Primitive Tumor Standardized Uptake Value Max (SUVmax) <5, number of metastases ≥3 and immunotherapy received after the first line were found to be significant risk factors for immune-related adverse events. Based on the number of risk factors, the ToxImmune score predicts the risk of having a grade ≥2 adverse event (primitive tumor SUV ≥ 5 = 0 vs. primitive tumor SUV <5 = 1, number of metastases <3 = 0 vs. number of metastases ≥3 = 1 and L1 = 0 vs. L1 ≥ 1). The incidence of grade ≥2 adverse events was 20%, 55% and 90% with ToxImmune scores 0, 1 and = 2 respectively (p = .003). Median progression-free survival (PFS) times were 19.2 months, 6.64 months and 2.63 months for ToxImmune scores 0, 1 and = 2 respectively, p = .13. Median overall survival times were 22.6 months, 16.4 months and 9.8 months for ToxImmune scores 0, 1 and ≥2 respectively, p = .24. The disease control rate (DRR) was 78% in ToxIummune score 0 group, and 50% in ToxImmune score 1 and ≥2 groups (p = .363). CONCLUSION The ToxImmune score, which is grounded on objective clinical parameters, indicates that cases with a high score had an advanced threat of severe adverse events. The ToxImmune score could therefore be used in clinical practice to identify patients treated for lung cancer with immunotherapy and at risk of severe AE.
Collapse
Affiliation(s)
- Francoise Difoum
- Clinical Research unit, Military Hospital Begin, Saint-Mandé, France
| | | | - Hélène Vanquaethem
- Department of Internal Medicine, Military Hospital Begin, Saint-Mandé, France
| | - Hugo Picchi
- Department of Medical oncology, Military Hospital Begin, Saint-Mandé, France
| | - Audrey Le Roy
- Department of Medical oncology, Military Hospital Begin, Saint-Mandé, France
| | - Perrine Vuagnat
- Clinical Research unit, Military Hospital Begin, Saint-Mandé, France
| | - Carole Helissey
- Clinical Research unit, Military Hospital Begin, Saint-Mandé, France
- Department of Medical oncology, Military Hospital Begin, Saint-Mandé, France
| |
Collapse
|
43
|
Cheng Y, Ling F, Li J, Chen Y, Xu M, Li S, Zhu L. An updated review of gastrointestinal toxicity induced by PD-1 inhibitors: from mechanisms to management. Front Immunol 2023; 14:1190850. [PMID: 37404814 PMCID: PMC10315615 DOI: 10.3389/fimmu.2023.1190850] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/05/2023] [Indexed: 07/06/2023] Open
Abstract
PD-1 inhibitors, as one of commonly used immune checkpoint inhibitors, enable T-cell activation and prevent immune escape by blocking the PD-1/PD-L1 signaling pathway. They have transformed the treatment landscape for cancer in recent years, due to the advantages of significantly prolonging patients' survival and improving their life quality. However, the ensuing unpredictable immune-related adverse effects (irAEs) plague clinicians, such as colitis and even potentially fatal events like intestinal perforation and obstruction. Therefore, understanding the clinical manifestations and grading criteria, underlying mechanisms, available diverse therapies, accessible biomarkers, and basis for risk stratification is of great importance for the management. Current evidence suggests that irAEs may be a marker of clinical benefit to immunotherapy in patients, so whether to discontinue PD-1 inhibitors after the onset of irAEs and rechallenge after remission of irAEs requires further evaluation of potential risk-reward ratios as well as more data from large-scale prospective studies to fully validate. At the end, the rare gastrointestinal toxicity events caused by PD-1 inhibitors are also sorted out. This review provides a summary of available data on the gastrointestinal toxicity profile caused by PD-1 inhibitors, with the aim of raising clinicians' awareness in daily practice, so that patients can safely benefit from therapy.
Collapse
|
44
|
Ibis B, Aliazis K, Cao C, Yenyuwadee S, Boussiotis VA. Immune-related adverse effects of checkpoint immunotherapy and implications for the treatment of patients with cancer and autoimmune diseases. Front Immunol 2023; 14:1197364. [PMID: 37342323 PMCID: PMC10277501 DOI: 10.3389/fimmu.2023.1197364] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/15/2023] [Indexed: 06/22/2023] Open
Abstract
During the past decade, there has been a revolution in cancer therapeutics by the emergence of antibody-based immunotherapies that modulate immune responses against tumors. These therapies have offered treatment options to patients who are no longer responding to classic anti-cancer therapies. By blocking inhibitory signals mediated by surface receptors that are naturally upregulated during activation of antigen-presenting cells (APC) and T cells, predominantly PD-1 and its ligand PD-L1, as well as CTLA-4, such blocking agents have revolutionized cancer treatment. However, breaking these inhibitory signals cannot be selectively targeted to the tumor microenvironment (TME). Since the physiologic role of these inhibitory receptors, known as immune checkpoints (IC) is to maintain peripheral tolerance by preventing the activation of autoreactive immune cells, IC inhibitors (ICI) induce multiple types of immune-related adverse effects (irAEs). These irAEs, together with the natural properties of ICs as gatekeepers of self-tolerance, have precluded the use of ICI in patients with pre-existing autoimmune diseases (ADs). However, currently accumulating data indicates that ICI might be safely administered to such patients. In this review, we discuss mechanisms of well established and newly recognized irAEs and evolving knowledge from the application of ICI therapies in patients with cancer and pre-existing ADs.
Collapse
Affiliation(s)
- Betul Ibis
- Division of Hematology-Oncology Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Konstantinos Aliazis
- Division of Hematology-Oncology Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Carol Cao
- Division of Hematology-Oncology Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Harvard College, Cambridge, MA, United States
| | - Sasitorn Yenyuwadee
- Division of Hematology-Oncology Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Vassiliki A. Boussiotis
- Division of Hematology-Oncology Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
45
|
Rao Ullur A, Côté G, Pelletier K, Kitchlu A. Immunotherapy in oncology and the kidneys: a clinical review of the evaluation and management of kidney immune-related adverse events. Clin Kidney J 2023; 16:939-951. [PMID: 37261008 PMCID: PMC10229281 DOI: 10.1093/ckj/sfad014] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Indexed: 11/07/2023] Open
Abstract
Immune checkpoint inhibitors (ICI) are now widely used in the treatment of many cancers, and currently represent the standard of care for multiple malignancies. These agents enhance the T cell immune response to target cancer tissues, and have demonstrated considerable benefits for cancer outcomes. However, despite these improved outcomes, there are important kidney immune-related adverse events (iRAEs) associated with ICI. Acute tubulo-interstitial nephritis remains the most frequent kidney iRAE, however glomerular lesions and electrolytes disturbances are increasingly being recognized and reported. In this review, we summarize clinical features and identify risk factors for kidney iRAEs, and discuss the current understanding of pathophysiologic mechanisms. We highlight the evidence basis for guideline-recommended management of ICI-related kidney injury as well as gaps in current knowledge. We advocate for judicious use of kidney biopsy to identify ICI-associated kidney injury, and early use of corticosteroid treatment where appropriate. Selected patients may also be candidates for re-challenge with ICI therapy after a kidney iRAE, in view of current data on recurrent rates of kidney injury. Risk of benefits of re-challenge must be considered on an individual considering patient preferences and prognosis. Lastly, we review current knowledge of ICI use in the setting of patients with end-stage kidney disease, including kidney transplant recipients and those receiving dialysis, which suggest that these patients should not be summarily excluded from the potential benefits of these cancer therapies.
Collapse
Affiliation(s)
- Avinash Rao Ullur
- Division of Nephrology, Department of Medicine, University Health Network, University of Toronto, Toronto, Canada
| | - Gabrielle Côté
- Division of Nephrology, Department of Medicine, CHU de Québec, Université Laval, Quebec City, Canada
| | - Karyne Pelletier
- Department of Medicine, Hôpital du Sacré-Coeur de Montréal, Faculty of Medicine, Université de Montréal, Montréal, Canada
| | - Abhijat Kitchlu
- Division of Nephrology, Department of Medicine, University Health Network, University of Toronto, Toronto, Canada
| |
Collapse
|
46
|
Fa'ak F, Buni M, Falohun A, Lu H, Song J, Johnson DH, Zobniw CM, Trinh VA, Awiwi MO, Tahon NH, Elsayes KM, Ludford K, Montazari EJ, Chernis J, Dimitrova M, Sandigursky S, Sparks JA, Abu-Shawer O, Rahma O, Thanarajasingam U, Zeman AM, Talukder R, Singh N, Chung SH, Grivas P, Daher M, Abudayyeh A, Osman I, Weber J, Tayar JH, Suarez-Almazor ME, Abdel-Wahab N, Diab A. Selective immune suppression using interleukin-6 receptor inhibitors for management of immune-related adverse events. J Immunother Cancer 2023; 11:e006814. [PMID: 37328287 PMCID: PMC10277540 DOI: 10.1136/jitc-2023-006814] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND Management of immune-related adverse events (irAEs) is important as they cause treatment interruption or discontinuation, more often seen with combination immune checkpoint inhibitor (ICI) therapy. Here, we retrospectively evaluated the safety and effectiveness of anti-interleukin-6 receptor (anti-IL-6R) as therapy for irAEs. METHODS We performed a retrospective multicenter study evaluating patients diagnosed with de novo irAEs or flare of pre-existing autoimmune disease following ICI and were treated with anti-IL-6R. Our objectives were to assess the improvement of irAEs as well as the overall tumor response rate (ORR) before and after anti-IL-6R treatment. RESULTS We identified a total of 92 patients who received therapeutic anti-IL-6R antibodies (tocilizumab or sarilumab). Median age was 61 years, 63% were men, 69% received anti-programmed cell death protein-1 (PD-1) antibodies alone, and 26% patients were treated with the combination of anti-cytotoxic T lymphocyte antigen-4 and anti-PD-1 antibodies. Cancer types were primarily melanoma (46%), genitourinary cancer (35%), and lung cancer (8%). Indications for using anti-IL-6R antibodies included inflammatory arthritis (73%), hepatitis/cholangitis (7%), myositis/myocarditis/myasthenia gravis (5%), polymyalgia rheumatica (4%), and one patient each with autoimmune scleroderma, nephritis, colitis, pneumonitis and central nervous system vasculitis. Notably, 88% of patients had received corticosteroids, and 36% received other disease-modifying antirheumatic drugs (DMARDs) as first-line therapies, but without adequate improvement. After initiation of anti-IL-6R (as first-line or post-corticosteroids and DMARDs), 73% of patients showed resolution or change to ≤grade 1 of irAEs after a median of 2.0 months from initiation of anti-IL-6R therapy. Six patients (7%) stopped anti-IL-6R due to adverse events. Of 70 evaluable patients by RECIST (Response Evaluation Criteria in Solid Tumors) V.1.1 criteria; the ORR was 66% prior versus 66% after anti-IL-6R (95% CI, 54% to 77%), with 8% higher complete response rate. Of 34 evaluable patients with melanoma, the ORR was 56% prior and increased to 68% after anti-IL-6R (p=0.04). CONCLUSION Targeting IL-6R could be an effective approach to treat several irAE types without hindering antitumor immunity. This study supports ongoing clinical trials evaluating the safety and efficacy of tocilizumab (anti-IL-6R antibody) in combination with ICIs (NCT04940299, NCT03999749).
Collapse
Affiliation(s)
- Faisal Fa'ak
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Maryam Buni
- University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Adewunmi Falohun
- University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Huifang Lu
- University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Juhee Song
- University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | - Van A Trinh
- University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | - Khaled M Elsayes
- University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kaysia Ludford
- University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Emma J Montazari
- University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Julia Chernis
- University of Texas Health Science Center at Houston John P and Katherine G McGovern Medical School, Houston, Texas, USA
| | - Maya Dimitrova
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Sabina Sandigursky
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Jeffrey A Sparks
- Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Osama Abu-Shawer
- Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Osama Rahma
- Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Rafee Talukder
- Fred Hutchinson Cancer Center, University of Washington School of Medicine, Seattle, Washington, USA
| | - Namrata Singh
- Fred Hutchinson Cancer Center, University of Washington School of Medicine, Seattle, Washington, USA
| | - Sarah H Chung
- Fred Hutchinson Cancer Center, University of Washington School of Medicine, Seattle, Washington, USA
| | - Petros Grivas
- Fred Hutchinson Cancer Center, University of Washington School of Medicine, Seattle, Washington, USA
| | - May Daher
- University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ala Abudayyeh
- University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Iman Osman
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Jeffrey Weber
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Jean H Tayar
- University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Noha Abdel-Wahab
- University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Assiut University Faculty of Medicine, Assiut University Hospitals, Assiut, Egypt
| | - Adi Diab
- University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
47
|
Yin Q, Wu L, Han L, Zheng X, Tong R, Li L, Bai L, Bian Y. Immune-related adverse events of immune checkpoint inhibitors: a review. Front Immunol 2023; 14:1167975. [PMID: 37304306 PMCID: PMC10247998 DOI: 10.3389/fimmu.2023.1167975] [Citation(s) in RCA: 136] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/15/2023] [Indexed: 06/13/2023] Open
Abstract
Since the first Immune Checkpoint Inhibitor was developed, tumor immunotherapy has entered a new era, and the response rate and survival rate of many cancers have also been improved. Despite the success of immune checkpoint inhibitors, resistance limits the number of patients who can achieve a lasting response, and immune-related adverse events complicate treatment. The mechanism of immune-related adverse events (irAEs) is unclear. We summarize and discuss the mechanisms of action of immune checkpoint inhibitors, the different types of immune-related adverse events and their possible mechanisms, and describe possible strategies and targets for prevention and therapeutic interventions to mitigate them.
Collapse
Affiliation(s)
- Qinan Yin
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Liuyun Wu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lizhu Han
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xingyue Zheng
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Rongsheng Tong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lian Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lan Bai
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuan Bian
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
48
|
Losurdo G, Angelillo D, Favia N, Sergi MC, Di Leo A, Triggiano G, Tucci M. Checkpoint Inhibitor-Induced Colitis: An Update. Biomedicines 2023; 11:biomedicines11051496. [PMID: 37239166 DOI: 10.3390/biomedicines11051496] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Immunotherapy with immune checkpoint inhibitors (ICIs) nowadays has indications for several solid tumors. The current targets for ICIs are CTLA-4, PD-1, and PD-L1 receptors. Despite the clinical advantages derived from ICIs, a variety of side effects are linked to overstimulation of the immune system. Among these, ICI-related colitis is one of the most common, with a disabling impact on the patient. Diarrhea, abdominal pain, abdominal distension, cramping, and hematochezia are the most common ICI enterocolitis presenting symptoms. The most frequently used grading system for assessment of the severity of ICI enterocolitis is called the Common Terminology Criteria for Adverse Events (CTCAE) grading. With regard to the histological picture, there is no specific feature; however, microscopic damage can be classified into five types: (1) acute active colitis, (2) chronic active colitis, (3) microscopic colitis-like, (4) graft-versus-host disease-like, and (5) other types. Supportive therapy (oral hydration, a bland diet without lactose or caffeine, and anti-diarrheal agents) is indicated in mild colitis. Symptomatic treatment alone or with loperamide, a low-fiber diet, and spasmolytics are recommended for low-grade diarrhea. In more severe cases, corticosteroid treatment is mandatory. In refractory cases, off-label use of biological therapies (infliximab or vedolizumab) was proposed.
Collapse
Affiliation(s)
- Giuseppe Losurdo
- Section of Gastroenterology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Daniele Angelillo
- Section of Gastroenterology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Nicolas Favia
- Section of Gastroenterology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Maria Chiara Sergi
- Medical Oncology Unit, Azienda Ospedaliero Universitaria Policlinico di Bari, 70124 Bari, Italy
| | - Alfredo Di Leo
- Section of Gastroenterology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Giacomo Triggiano
- Medical Oncology Unit, Azienda Ospedaliero Universitaria Policlinico di Bari, 70124 Bari, Italy
| | - Marco Tucci
- Medical Oncology Unit, Azienda Ospedaliero Universitaria Policlinico di Bari, 70124 Bari, Italy
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| |
Collapse
|
49
|
Luo L, Liu Y, Lu J, Zhang Y, Fan G, Tang X, Guo W. Risk factors for cardiovascular adverse events from immune checkpoint inhibitors. Front Oncol 2023; 13:1104888. [PMID: 37188194 PMCID: PMC10175812 DOI: 10.3389/fonc.2023.1104888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/07/2023] [Indexed: 05/17/2023] Open
Abstract
Immune-related adverse events (irAEs), including skin injury, liver and kidney injury, colitis, as well as cardiovascular adverse events, are a series of complications arising during the treatment of immune checkpoint inhibitors (ICIs). Cardiovascular events are the most urgent and the most critical, as they can end life in a short period of time. With the widespread use of ICIs, the number of immune-related cardiovascular adverse events (irACEs) induced by ICIs has increased. More attention has been paid to irACEs, especially regarding cardiotoxicity, the pathogenic mechanism, diagnosis and treatment. This review aims to assess the risk factors for irACEs, to raise awareness and help with the risk assessment of irACEs at an early stage.
Collapse
Affiliation(s)
- Lingli Luo
- Medical College, Hunan Polytechnic of Environment and Biology, Hengyang, China
| | - Yuxin Liu
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jingfen Lu
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yifei Zhang
- The First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Gang Fan
- Urology Department, Huazhong University of Science and Technology Union Shenzhen Hospital, the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Xiaojun Tang
- Department of Spinal Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Weiming Guo
- Sports Medicine Department, Huazhong University of Science and Technology Union Shenzhen Hospital, the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
50
|
Ao YQ, Gao J, Wang S, Jiang JH, Deng J, Wang HK, Xu B, Ding JY. Immunotherapy of thymic epithelial tumors: molecular understandings and clinical perspectives. Mol Cancer 2023; 22:70. [PMID: 37055838 PMCID: PMC10099901 DOI: 10.1186/s12943-023-01772-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/03/2023] [Indexed: 04/15/2023] Open
Abstract
Immunotherapy has emerged to play a rapidly expanding role in the treatment of cancers. Currently, many clinical trials of therapeutic agents are on ongoing with majority of immune checkpoint inhibitors (ICIs) especially programmed death receptor 1 (PD-1) and its ligand 1 (PD-L1) inhibitors. PD-1 and PD-L1, two main immune checkpoints, are expressed at high levels in thymic epithelial tumors (TETs) and could be predictors of the progression and immunotherapeutic efficacy of TETs. However, despite inspiring efficacy reported in clinical trials and clinical practice, significantly higher incidence of immune-related adverse events (irAEs) than other tumors bring challenges to the administration of ICIs in TETs. To develop safe and effective immunotherapeutic patterns in TETs, understanding the clinical properties of patients, the cellular and molecular mechanisms of immunotherapy and irAEs occurrence are crucial. In this review, the progress of both basic and clinical research on immune checkpoints in TETs, the evidence of therapeutic efficacy and irAEs based on PD-1 /PD-L1 inhibitors in TETs treatment are discussed. Additionally, we highlighted the possible mechanisms underlying irAEs, prevention and management strategies, the insufficiency of current research and some worthy research insights. High PD-1/PD-L1 expression in TETs provides a rationale for ICI use. Completed clinical trials have shown an encouraging efficacy of ICIs, despite the high rate of irAEs. A deeper mechanism understanding at molecular level how ICIs function in TETs and why irAEs occur will help maximize the immunotherapeutic efficacy while minimizing irAEs risks in TET treatment to improve patient prognosis.
Collapse
Affiliation(s)
- Yong-Qiang Ao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Gao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shuai Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jia-Hao Jiang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Deng
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai, China
| | - Hai-Kun Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Bei Xu
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Jian-Yong Ding
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, China.
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|