1
|
Pan C, Wang X, Yang C, Fu K, Wang F, Fu L. The culture and application of circulating tumor cell-derived organoids. Trends Cell Biol 2025; 35:364-380. [PMID: 39523200 DOI: 10.1016/j.tcb.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Circulating tumor cells (CTCs), which have the heterogeneity and histological properties of the primary tumor and metastases, are shed from the primary tumor and/or metastatic lesions into the vasculature and initiate metastases at remote sites. In the clinic, CTCs are used extensively in liquid biopsies for early screening, diagnosis, treatment, and prognosis. Current research focuses on using CTC-derived models to study tumor heterogeneity and metastasis, with 3D organoids emerging as a promising tool in cancer research and precision oncology. However, isolating and enriching CTCs from blood remains challenging due to their scarcity, exacerbated by the lack of an optimized culture medium for CTC-derived organoids (CTCDOs). In this review, we summarize the origin, isolation, enrichment, culture, validation, and clinical application of CTCs and CTCDOs.
Collapse
Affiliation(s)
- Can Pan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Xueping Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Chuan Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Kai Fu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Fang Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| |
Collapse
|
2
|
Choudhury J, Richardson LS, Urrabaz-Garza R, Jacob J, Kammala AK, Menon R. Chorionic trophoblast cells demonstrate functionally different phenotypes from placental trophoblasts†. Biol Reprod 2025; 112:530-539. [PMID: 39756436 DOI: 10.1093/biolre/ioaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/09/2024] [Accepted: 01/03/2025] [Indexed: 01/07/2025] Open
Abstract
Chorionic trophoblast cells are one of the principal components of the fetal membrane and join with the decidua to form a feto-maternal interface. Recent success in isolating chorionic trophoblast cells dealt with two separate questions: (i) the necessity of highly enriched and defined media with inhibitors of oxidative stress and cell transition and their impact on growth and trophoblast phenotype, (ii) the functional differences between chorionic trophoblast cells and other placental trophoblast lineages of cells (placental cytotrophoblast cells, and extravillous trophoblast). Chorionic trophoblast cells were cultured either in defined media with various inhibitors or in media from which inhibitors were removed individually. Cellular morphology and growth (microscopy and crystal violet staining) and cellular and molecular biological features (immunofluorescence staining for GATA-binding protein 3, cytokeratin 7, and vimentin) were assessed. Syncytialization of cells (forskolin treatment) and invasive properties of chorionic trophoblast cells (cell invasion assay) were tested and compared with placental cytotrophoblast cells and extravillous trophoblasts (HTR8/SVneo), respectively. Removal of various growth-supporting agents from the media delayed cell growth and inclined towards cellular transition (increase in vimentin compared to cytokeratin 7 or GATA-binding protein 3) compared to chorionic trophoblast cells grown in complete and enriched media. The chorionic trophoblast cells failed to syncytialize, contrasting with the high levels of membrane fusion observed in placental cytotrophoblast cells. Although chorionic trophoblast cells express human leukocyte antigen G like extravillous trophoblasts, they do not invade. Chorionic trophoblast cells require several specific constituents for in vitro growth and phenotype maintenance. Chorionic trophoblast cells are trophoblast lineage cells that barricade immune cell-enriched decidua without invading them. These properties support their location and function, which are distinct from placental cytotrophoblast cells and extravillous trophoblasts.
Collapse
Affiliation(s)
- Jaganmoy Choudhury
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States of America
| | - Lauren S Richardson
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States of America
| | - Rheanna Urrabaz-Garza
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States of America
| | - Jeena Jacob
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States of America
| | - Ananth Kumar Kammala
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States of America
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States of America
| |
Collapse
|
3
|
Wen S, Zheng X, Yin W, Liu Y, Wang R, Zhao Y, Liu Z, Li C, Zeng J, Rong M. Dental stem cell dynamics in periodontal ligament regeneration: from mechanism to application. Stem Cell Res Ther 2024; 15:389. [PMID: 39482701 PMCID: PMC11526537 DOI: 10.1186/s13287-024-04003-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/17/2024] [Indexed: 11/03/2024] Open
Abstract
Periodontitis, a globally prevalent chronic inflammatory disease is characterized by the progressive degradation of tooth-supporting structures, particularly the periodontal ligament (PDL), which can eventually result in tooth loss. Despite the various clinical interventions available, most focus on symptomatic relief and lack substantial evidence of supporting the functional regeneration of the PDL. Dental stem cells (DSCs), with their homology and mesenchymal stem cell (MSC) properties, have gained significant attention as a potential avenue for PDL regeneration. Consequently, multiple therapeutic strategies have been developed to enhance the efficacy of DSC-based treatments and improve clinical outcomes. This review examines the mechanisms by which DSCs and their derivatives promote PDL regeneration, and explores the diverse applications of exogenous implantation and endogenous regenerative technology (ERT) aimed at amplifying the regenerative capacity of endogenous DSCs. Additionally, the persistent challenges and controversies surrounding DSC therapies are discussed, alongside an evaluation of the limitations in current research on the underlying mechanisms and innovative applications of DSCs in PDL regeneration with the aim of providing new insights for future development. Periodontitis, a chronic inflammatory disease, represents a major global public health concern, affecting a significant proportion of the population and standing as the leading cause tooth loss in adults. The functional periodontal ligament (PDL) plays an indispensable role in maintaining periodontal health, as its structural and biological integrity is crucial for the long-term prognosis of periodontal tissues. It is widely recognized as the cornerstone of periodontal regeneration Despite the availability of various treatments, ranging from nonsurgical interventions to guided tissue regeneration (GTR) techniques, these methods have shown limited success in achieving meaningful PDL regeneration. As a result, the inability to fully restore PDL function underscores the urgent need for innovative therapeutic strategies at reconstructing this essential structure. Stem cell therapy, known for its regenerative and immunomodulatory potential, offers a promising approach for periodontal tissue repair. Their application marks a significant paradigm shift in the treatment of periodontal diseases, opening new avenues for functional PDL regeneration. However, much of the current research has primarily focused on the regeneration of alveolar bone and gingiva, as these hard and soft tissues can be more easily evaluated through visual assessment. The complexity of PDL structure, coupled with the intricate interactions among cellular and molecular components, presents significant scientific and clinical hurdles in translating DSC research into practical therapeutic applications. This review provides a thorough exploration of DSC dynamics in periodontal regeneration, detailing their origins, properties, and derived products, while also examining their potential mechanisms and applications in PDL regeneration. It offers an in-depth analysis of the current research, landscape, acknowledging both the progress made and the challenges that remain in bridging the gap between laboratory findings and clinical implementation. Finally, the need for continued investigation into the intricate mechanisms governing DSC behavior and the optimization of their use in regenerative therapies for periodontal diseases is also emphasized.
Collapse
Affiliation(s)
- Shuyi Wen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Xiao Zheng
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Wuwei Yin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Yushan Liu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Ruijie Wang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Yaqi Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Ziyi Liu
- Department of Stomatology, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, Foshan, Guangdong, 528308, China
| | - Cong Li
- Dongguan Key Laboratory of Metabolic Immunology and Oral Diseases, Dongguan Maternal and Child Health Care Hospital, Dongguan, Guangdong, 523000, China
| | - Jincheng Zeng
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, 523808, China.
| | - Mingdeng Rong
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China.
| |
Collapse
|
4
|
Sun X, Meng X, Piao Y, Dong S, Dong Q. METTL3 promotes the osteogenic differentiation of human periodontal ligament cells by increasing YAP activity via IGF2BP1 and YTHDF1-mediated m 6A modification. J Periodontal Res 2024; 59:1017-1030. [PMID: 38838034 DOI: 10.1111/jre.13297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/30/2024] [Accepted: 05/12/2024] [Indexed: 06/07/2024]
Abstract
AIMS N6-Methyladenosine (m6A) has been confirmed to play a dynamic role in osteoporosis and bone metabolism. However, whether m6A is involved in the osteogenic differentiation of human periodontal ligament cells (hPDLCs) remains unclear. The present study aimed to verify the role of methyltransferase-like 3 (METTL3)-mediated m6A modification in the osteogenic differentiation of hPDLCs. METHODS The METTL3, Runx2, Osx, and YAP mRNA expression was determined by qPCR. METTL3, RUNX2, OSX, YTHDF1, YAP, IGF2BP1, and eIF3a protein expression was measured by Western blotting and immunofluorescence assays. The levels of m6A modification were evaluated by methylated RNA immunoprecipitation (MeRIP) and dot blot analyses. MeRIP-seq and RNA-seq were used to screen potential candidate genes. Nucleic acid and protein interactions were detected by immunoprecipitation. Alizarin red staining was used to evaluate the osteogenic differentiation of hPDLCs. Gene transcription and promoter activities were assessed by luciferase reporter assays (n ≥ 3). RESULTS The expression of METTL3 and m6A modifications increased synchronously with the osteogenic differentiation of hPDLCs (p = .0016). YAP was a candidate gene identified by MeRIP-seq and RNA-seq, and its mRNA and protein expression levels were simultaneously increased. METTL3 increased the m6A methylated IGF2BP1-mediated stability of YAP mRNA (p = .0037), which in turn promoted osteogenic differentiation (p = .0147). Furthermore, METTL3 increased the translation efficiency of YAP by recruiting YTHDF1 and eIF3a to the translation initiation complex (p = .0154), thereby promoting the osteogenic differentiation of hPDLCs (p = .0012). CONCLUSION Our study revealed that METTL3-initiated m6A mRNA methylation promotes osteogenic differentiation of hPDLCs by increasing IGF2BP1-mediated YAP mRNA stability and recruiting YTHDF1 and eIF3a to the translation initiation complex to increase YAP mRNA translation. Our findings reveal the mechanism of METTL3-mediated m6A modification during hPDLC osteogenesis, providing a potential therapeutic target for periodontitis and alveolar bone defects.
Collapse
Affiliation(s)
- Xuefei Sun
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Department of Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Xiujiao Meng
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Department of Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yu Piao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Department of Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Shaojie Dong
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Department of Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Qianqian Dong
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Department of Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
5
|
He H, Yang YH, Yang X, Huang Y. The growth factor multimodality on treating human dental mesenchymal stem cells: a systematic review. BMC Oral Health 2024; 24:290. [PMID: 38429689 PMCID: PMC10905837 DOI: 10.1186/s12903-024-04013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/12/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Ensuring the quantity, quality, and efficacy of human dental mesenchymal stem cells (MSCs) has become an urgent problem as their applications increase. Growth factors (GFs) have low toxicity, good biocompatibility, and regulate stem cell survival and differentiation. They bind to specific receptors on target cells, initiating signal transduction and triggering biological functions. So far, relatively few studies have been conducted to summarize the effect of different GFs on the application of dental MSCs. We have reviewed the literature from the past decade to examine the effectiveness and mechanism of applying one or multiple GFs to human dental MSCs. Our review is based on the premise that a single dental MSC cannot fulfill all applications and that different dental MSCs react differently to GFs. METHODS A search for published articles was carried out using the Web of Science core collection and PubMed. The study was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA 2020) guidelines. This review considered studies from 2014 to 2023 that examined the effects of GFs on human dental MSCs. The final selection of articles was made on the 15th of July 2023. RESULTS Three thousand eight hundred sixty-seven pieces of literature were gathered for this systematic review initially, only 56 of them were selected based on their focus on the effects of GFs during the application of human dental MSCs. Out of the 56, 32 literature pieces were focused on a single growth factor while 24 were focused on multiple growth factors. This study shows that GFs can regulate human dental MSCs through a multi-way processing manner. CONCLUSION Multimodal treatment of GFs can effectively regulate human dental MSCs, ensuring stem cell quality, quantity, and curative effects.
Collapse
Affiliation(s)
- Huiying He
- School of Stomatology, Jinan University, Guangzhou, 510632, China
| | - Yun-Hsuan Yang
- School of Stomatology, Jinan University, Guangzhou, 510632, China
| | - Xuesong Yang
- Clinical Research Center, Clifford Hospital, Guangzhou, 511495, China.
| | - Yue Huang
- School of Stomatology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
6
|
Huo C, Zhang X, Gu Y, Wang D, Zhang S, Liu T, Li Y, He W. Organoids: Construction and Application in Gastric Cancer. Biomolecules 2023; 13:biom13050875. [PMID: 37238742 DOI: 10.3390/biom13050875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Gastric organoids are biological models constructed in vitro using stem cell culture and 3D cell culture techniques, which are the latest research hotspots. The proliferation of stem cells in vitro is the key to gastric organoid models, making the cell subsets within the models more similar to in vivo tissues. Meanwhile, the 3D culture technology also provides a more suitable microenvironment for the cells. Therefore, the gastric organoid models can largely restore the growth condition of cells in terms of morphology and function in vivo. As the most classic organoid models, patient-derived organoids use the patient's own tissues for in vitro culture. This kind of model is responsive to the 'disease information' of a specific patient and has great effect on evaluating the strategies of individualized treatment. Herein, we review the current literature on the establishment of organoid cultures, and also explore organoid translational applications.
Collapse
Affiliation(s)
- Chengdong Huo
- Department of the Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou 730030, China
- Department of Ophthalmology, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Xiaoxia Zhang
- Department of the Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou 730030, China
- Department of Ophthalmology, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Yanmei Gu
- Department of the Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
| | - Daijun Wang
- Department of the Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
| | - Shining Zhang
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou 730030, China
| | - Tao Liu
- Department of the Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou 730030, China
| | - Yumin Li
- Department of the Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou 730030, China
| | - Wenting He
- Department of the Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou 730030, China
| |
Collapse
|
7
|
Di Vito A, Bria J, Antonelli A, Mesuraca M, Barni T, Giudice A, Chiarella E. A Review of Novel Strategies for Human Periodontal Ligament Stem Cell Ex Vivo Expansion: Are They an Evidence-Based Promise for Regenerative Periodontal Therapy? Int J Mol Sci 2023; 24:ijms24097798. [PMID: 37175504 PMCID: PMC10178011 DOI: 10.3390/ijms24097798] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Periodontitis is a gingiva disease sustained by microbially associated and host-mediated inflammation that results in the loss of the connective periodontal tissues, including periodontal ligament and alveolar bone. Symptoms include swollen gingiva, tooth loss and, ultimately, ineffective mastication. Clinicians utilize regenerative techniques to rebuild and recover damaged periodontal tissues, especially in advanced periodontitis. Human periodontal ligament stem cells (hPDLSCs) are considered an appealing source of stem cells for regenerative therapy in periodontium. hPDLSCs manifest the main properties of mesenchymal stem cells, including the ability to self-renew and to differentiate in mesodermal cells. Significant progress has been made for clinical application of hPDLSCs; nevertheless, some problems remain, including the small number of cells isolated from each sample. In recent decades, hPDLSC ex vivo expansion and differentiation have been improved by modifying cell culture conditions, especially with the supplementation of cytokines' or growth factors' mix, chemicals, and natural compounds, or by using the decellularized extracellular matrix. Here, we analyzed the changes in stemness properties and differentiation potential of hPDLSCs when culturing in alternative media. In addition, we focused on the possibility of replacing FBS with human emoderivates to minimize the risks of xenoimmunization or zoonotic transmission when cells are expanded for therapeutic purposes.
Collapse
Affiliation(s)
- Anna Di Vito
- Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Jessica Bria
- Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Alessandro Antonelli
- Department of Health Science, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Maria Mesuraca
- Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Tullio Barni
- Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Amerigo Giudice
- Department of Health Science, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Emanuela Chiarella
- Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
8
|
Yuan P, Qin HY, Wei JY, Chen G, Li X. Proteomics reveals the potential mechanism of Tanshinone IIA in promoting the Ex Vivo expansion of human bone marrow mesenchymal stem cells. Regen Ther 2022; 21:560-573. [DOI: 10.1016/j.reth.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
|
9
|
Li H, Liu H, Chen K. Living biobank-based cancer organoids: prospects and challenges in cancer research. Cancer Biol Med 2022; 19:j.issn.2095-3941.2021.0621. [PMID: 35856555 PMCID: PMC9334762 DOI: 10.20892/j.issn.2095-3941.2021.0621] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/28/2022] [Indexed: 11/24/2022] Open
Abstract
Biobanks bridge the gap between basic and translational research. Traditional cancer biobanks typically contain normal and tumor tissues, and matched blood. However, biospecimens in traditional biobanks are usually nonrenewable. In recent years, increased interest has focused on establishing living biobanks, including organoid biobanks, for the collection and storage of viable and functional tissues for long periods of time. The organoid model is based on a 3D in vitro cell culture system, is highly similar to primary tissues and organs in vivo, and can recapitulate the phenotypic and genetic characteristics of target organs. Publications on cancer organoids have recently increased, and many types of cancer organoids have been used for modeling cancer processes, as well as for drug discovery and screening. On the basis of the current research status, more exploration of cancer organoids through technical advancements is required to improve reproducibility and scalability. Moreover, given the natural characteristics of organoids, greater attention must be paid to ethical considerations. Here, we summarize recent advances in cancer organoid biobanking research, encompassing rectal, gastric, pancreatic, breast, and glioblastoma cancers. Living cancer biobanks that contain cancerous tissues and matched organoids with different genetic backgrounds, subtypes, and individualized characteristics will eventually contribute to the understanding of cancer and ultimately facilitate the development of innovative treatments.
Collapse
Affiliation(s)
- Haixin Li
- Cancer Biobank, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Tianjin 300060, China
| | - Hongkun Liu
- Cancer Biobank, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Tianjin 300060, China
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Tianjin 300060, China
| |
Collapse
|
10
|
Li L, Shang L, Kang W, Lingqian D, Ge S. Neuregulin‐1 promotes the proliferation, migration and angiogenesis of human periodontal ligament stem cells
in vitro. Cell Biol Int 2022; 46:792-805. [PMID: 35077607 DOI: 10.1002/cbin.11770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/04/2022] [Accepted: 01/18/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Ling Li
- Department of PeriodontologySchool and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration
- Department of StomatologyLinyi People's HospitalLinyiShandong ProvinceChina
| | - Lingling Shang
- Department of PeriodontologySchool and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration
| | - Wenyan Kang
- Department of PeriodontologySchool and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration
| | - Du Lingqian
- Department of StomatologyThe Second Hospital, Cheeloo College of Medicine, Shandong UniversityJinanShandong ProvinceChina
| | - Shaohua Ge
- Department of PeriodontologySchool and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration
| |
Collapse
|
11
|
Potential of Bone-Marrow-Derived Mesenchymal Stem Cells for Maxillofacial and Periodontal Regeneration: A Narrative Review. Int J Dent 2021; 2021:4759492. [PMID: 34795761 PMCID: PMC8594991 DOI: 10.1155/2021/4759492] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/19/2021] [Accepted: 10/25/2021] [Indexed: 12/11/2022] Open
Abstract
Bone-marrow-derived mesenchymal stem cells (BM-MSCs) are one of the most widely studied postnatal stem cell populations and are considered to utilize more frequently in cell-based therapy and cancer. These types of stem cells can undergo multilineage differentiation including blood cells, cardiac cells, and osteogenic cells differentiation, thus providing an alternative source of mesenchymal stem cells (MSCs) for tissue engineering and personalized medicine. Despite the ability to reprogram human adult somatic cells to induced pluripotent stem cells (iPSCs) in culture which provided a great opportunity and opened the new door for establishing the in vitro disease modeling and generating an unlimited source for cell base therapy, using MSCs for regeneration purposes still have a great chance to cure diseases. In this review, we discuss the important issues in MSCs biology including the origin and functions of MSCs and their application for craniofacial and periodontal tissue regeneration, discuss the potential and clinical applications of this type of stem cells in differentiation to maxillofacial bone and cartilage in vitro, and address important future hopes and challenges in this field.
Collapse
|
12
|
Calabrese EJ. Human periodontal ligament stem cells and hormesis: Enhancing cell renewal and cell differentiation. Pharmacol Res 2021; 173:105914. [PMID: 34563662 DOI: 10.1016/j.phrs.2021.105914] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 12/19/2022]
Abstract
This paper provides a detailed assessment of hormetic dose responses by human periodontal ligament stem cells (hPDLSCs). Hormetic dose responses were induced by a broad range of chemicals, including dietary supplements (e.g., curcumin, ginsenoside Rg1), pharmaceutical/commercial substances (e.g., metformin) and endogenous agents (e.g., periostin, TNF-α) for cell proliferation/viability and osteogenic/adipocyte differentiation. This paper clarifies underlying mechanistic foundations of the hPLDSC hormetic dose responses and explores their therapeutic implications. Emerging evidence based on assessments of multiple types of stem cells shows hormetic dose responses to be widespread, reflecting considerable generality and a highly conserved evolutionary trait.
Collapse
Affiliation(s)
- Edward J Calabrese
- School of Public Health and Health Sciences, Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, Unites States.
| |
Collapse
|
13
|
Prudovsky I. Cellular Mechanisms of FGF-Stimulated Tissue Repair. Cells 2021; 10:cells10071830. [PMID: 34360000 PMCID: PMC8304273 DOI: 10.3390/cells10071830] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 01/10/2023] Open
Abstract
Growth factors belonging to the FGF family play important roles in tissue and organ repair after trauma. In this review, I discuss the regulation by FGFs of the aspects of cellular behavior important for reparative processes. In particular, I focus on the FGF-dependent regulation of cell proliferation, cell stemness, de-differentiation, inflammation, angiogenesis, cell senescence, cell death, and the production of proteases. In addition, I review the available literature on the enhancement of FGF expression and secretion in damaged tissues resulting in the increased FGF supply required for tissue repair.
Collapse
Affiliation(s)
- Igor Prudovsky
- Maine Medical Center Research Institute, 81 Research Dr., Scarborough, ME 04074, USA
| |
Collapse
|
14
|
Ren W, Wang L, Zhang X, Feng X, Zhuang L, Jiang N, Xu R, Li X, Wang P, Sun X, Yu H, Yu Y. Expansion of murine and human olfactory epithelium/mucosa colonies and generation of mature olfactory sensory neurons under chemically defined conditions. Am J Cancer Res 2021; 11:684-699. [PMID: 33391499 PMCID: PMC7738855 DOI: 10.7150/thno.46750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
Olfactory dysfunctions, including hyposmia and anosmia, affect ~100 million people around the world and the underlying causes are not fully understood. Degeneration of olfactory sensory neurons and incapacity of globose basal cells to generate olfactory sensory neurons are found in elder people and patients with smell disorders. Thus, olfactory stem cell may function as a promising tool to replace inactivated globose basal cells and to generate sensory neurons. Methods: We established clonal expansion of cells from the murine olfactory epithelium as well as colony growth from human olfactory mucosa using Matrigel-based three-dimensional system. These colonies were characterized by immunostaining against olfactory epithelium cellular markers and by calcium imaging of responses to odors. Chemical addition was optimized to promote Lgr5 expression, colony growth and sensory neuron generation, tested by quantitative PCR and immunostaining against progenitor and neuronal markers. The differential transcriptomes in multiple signaling pathways between colonies under different base media and chemical cocktails were determined by RNA-Seq. Results: In defined culture media, we found that VPA and CHIR99021 induced the highest Lgr5 expression level, while LY411575 resulted in the most abundant yield of OMP+ mature sensory neurons in murine colonies. Different base culture media with drug cocktails led to apparent morphological alteration from filled to cystic appearance, accompanied with massive transcriptional changes in multiple signaling pathways. Generation of sensory neurons in human colonies was affected through TGF-β signaling, while Lgr5 expression and cell proliferation was regulated by VPA. Conclusion: Our findings suggest that targeting expansion of olfactory epithelium/mucosa colonies in vitro potentially results in discovery of new source to cell replacement-based therapy against smell loss.
Collapse
|
15
|
Hao Y, Wu M, Wang J. Fibroblast growth factor-2 ameliorates tumor necrosis factor-alpha-induced osteogenic damage of human bone mesenchymal stem cells by improving oxidative phosphorylation. Mol Cell Probes 2020; 52:101538. [PMID: 32084581 DOI: 10.1016/j.mcp.2020.101538] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/30/2020] [Accepted: 02/17/2020] [Indexed: 12/13/2022]
Abstract
Tumor necrosis factor-alpha (TNF-α) has been shown to have an inhibitory effect on the osteogenic differentiation of mesenchymal stem cells. The metabolic switch from glycolysis to oxidative phosphorylation (OXPHOS) is vital for energy supply during osteogenic differentiation. However, the metabolic switch is inhibited under inflammatory stimulation. FGF2 has shown that it can improve osteogenic differentiation and promote autoimmune inflammation. In this study, we investigated whether FGF2 can ameliorate TNF-a-inhibited osteogenic damage by improving OXPHOS. Effects of TNF-α or FGF2 on the proliferation and osteogenic differentiation of hBMSCs were evaluated by MTT assay, qRT-PCR, and ALP activity tests. The function of FGF2 on the TNF-a-inhibited metabolic switch was determined by Mito Stress test. The results showed that TNF-α was able to inhibit the osteogenic differentiation and OXPHOS of hBMSCs. FGF2 has no obvious function in improving the osteogenic-related genes, but it can ameliorate the impaired osteogenesis and OCR value caused by TNF-α. These findings suggest that FGF2 can prevent the impaired osteogenic differentiation and metabolic switch of hBMSCs under inflammatory stimulation, which might enhance the regeneration capacity of hBMSCs.
Collapse
Affiliation(s)
- Yishan Hao
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Minting Wu
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Jinming Wang
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
16
|
Jin S, Yang C, Huang J, Liu L, Zhang Y, Li S, Zhang L, Sun Q, Yang P. Conditioned medium derived from FGF-2-modified GMSCs enhances migration and angiogenesis of human umbilical vein endothelial cells. Stem Cell Res Ther 2020; 11:68. [PMID: 32070425 PMCID: PMC7029497 DOI: 10.1186/s13287-020-1584-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/19/2020] [Accepted: 02/04/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Angiogenesis plays an important role in tissue repair and regeneration, and conditioned medium (CM) derived from mesenchymal stem cells (MSC-CM) possesses pro-angiogenesis. Nevertheless, the profile and concentration of growth factors in MSC-CM remain to be optimized. Fibroblast growth factor-2 (FGF-2) has been proven to be an effective angiogenic factor. Thus, the aim of this study was to verify whether FGF-2 gene overexpression optimized CM from human gingival mesenchymal stem cells (hGMSCs) and whether such optimized CM possessed more favorable pro-angiogenesis effect. METHODS First, FGF-2 gene-modified hGMSCs were constructed using lentiviral transfection technology (LV-FGF-2+-hGMSCs) and the concentration of angiogenesis-related factors in LV-FGF-2+-hGMSC-CM was determined by ELISA. Then, human umbilical vein endothelial cells (HUVECs) were co-cultured for 3 days with LV-FGF-2+-hGMSC-CM, and the expression level of placenta growth factor (PLGF), stem cell factor (SCF), vascular endothelial growth factor receptor 2 (VEGFR2) in HUVECs were determined by qRT-PCR, western blot, and cellular immunofluorescence techniques. The migration assay using transwell and in vitro tube formation experiments on matrigel matrix was conducted to determine the chemotaxis and angiogenesis enhanced by LV-FGF-2+-hGMSC-CM. Finally, NOD-SCID mice were injected with matrigel mixed LV-FGF-2+-hGMSC-CM, and the plug sections were analyzed by immunohistochemistry staining with anti-human CD31 antibody. RESULTS LV-FGF-2+-hGMSC-CM contained significantly more FGF-2, vascular endothelial growth factor A (VEGF-A), and transforming growth factor β (TGF-β) than hGMSC-CM. HUVECs pretreated with LV-FGF-2+-hGMSC-CM expressed significantly more PLGF, SCF, and VEGFR2 at gene and protein level than hGMSC-CM pretreated HUVECs. Compared with hGMSC-CM, LV-FGF-2+-hGMSC-CM presented significantly stronger chemotaxis to HUVECs and significantly strengthened HUVECs mediated in vitro tube formation ability. In vivo, LV-FGF-2+-hGMSC-CM also possessed stronger promoting angiogenesis ability than hGMSC-CM. CONCLUSIONS Overexpression of FGF-2 gene promotes hGMSCs paracrine of angiogenesis-related growth factors, thereby obtaining an optimized conditioned medium for angiogenesis promotion.
Collapse
Affiliation(s)
- Shanshan Jin
- Department of Periodontology, School and Hospital of Stomatology, Shandong University, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Chengzhe Yang
- Department of Stomatology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jiahui Huang
- Department of Periodontology, School and Hospital of Stomatology, Shandong University, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Lianlian Liu
- Department of Periodontology, School and Hospital of Stomatology, Shandong University, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Yu Zhang
- Department of Periodontology, School and Hospital of Stomatology, Shandong University, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Shutong Li
- Department of Periodontology, School and Hospital of Stomatology, Shandong University, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Liguo Zhang
- Department of Periodontology, School and Hospital of Stomatology, Shandong University, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Qinfeng Sun
- Department of Periodontology, School and Hospital of Stomatology, Shandong University, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China.
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong, China.
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China.
| | - Pishan Yang
- Department of Periodontology, School and Hospital of Stomatology, Shandong University, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China.
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong, China.
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China.
| |
Collapse
|
17
|
Qiu J, Wang X, Zhou H, Zhang C, Wang Y, Huang J, Liu M, Yang P, Song A. Enhancement of periodontal tissue regeneration by conditioned media from gingiva-derived or periodontal ligament-derived mesenchymal stem cells: a comparative study in rats. Stem Cell Res Ther 2020; 11:42. [PMID: 32014015 PMCID: PMC6998241 DOI: 10.1186/s13287-019-1546-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/24/2019] [Accepted: 12/29/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Evidence has demonstrated conditioned medium (CM) from periodontal ligament stem cells (PDLSCs) improved periodontal regeneration. Gingival mesenchymal stem cells (GMSCs) have been considered an alternative strategy for regenerative medicine. To determine whether GMSC-CM could promote periodontal wound healing, we compared the effects of GMSC-CM and PDLSC-CM on periodontal regeneration and the underlying mechanisms in rat periodontal defects. METHODS Cell-free CMs were collected from PDLSCs, GMSCs, and gingival fibroblasts (GFs) using ultracentrifugation (100-fold concentration). Periodontal defects were created on the buccal side of the first molar in the left mandible of 90 rats by a surgical method. Collagen membranes loaded with concentrated CMs (α-MEM, GF-CM, GMSC-CM, PDLSC-CM) were transplanted into periodontal defects. After 1, 2, and 4 weeks, the animals were sacrificed and specimens including the first molar and the surrounding tissues were separated and decalcified. Hematoxylin-eosin and Masson's trichrome staining were performed to evaluate periodontal regeneration. Immunohistochemical staining for tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-10 was conducted to analyze inflammation. Immunohistochemistry of BSP-II and Runx2 was performed to analyze osteoblast differentiation. RESULTS Histological analysis showed the amount of newly formed periodontal tissue was significantly higher in both the GMSC-CM and PDLSC-CM groups than in the other groups, with no significant difference between these two groups. At 1 and 2 weeks, the expression levels of TNF-α and IL-1β were significantly lower in the GMSC-CM and PDLSC-CM groups than in the other three groups, while there was no significant difference between these two groups. IL-10 expression was significantly higher in the GMSC-CM group than in the PDLSC-CM group and the other three groups. At 1, 2, and 4 weeks, BSP-II and Runx2 expressions were significantly higher in the GMSC-CM and PDLSC-CM groups than in the other three groups, with no significant difference between the two groups. CONCLUSIONS Our results demonstrate that GMSC-CM transplantation can significantly promote periodontal regeneration in rats and achieve the same effect as PDLSC-CM. The mechanism of periodontal regeneration may involve the regulation of inflammatory factors and the promotion of osteogenic differentiation of bone progenitor cells in the wound region by CMs from MSCs.
Collapse
Affiliation(s)
- Jiling Qiu
- Department of Periodontology, School and Hospital of Stomatology, Shandong University, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Xiaotong Wang
- Department of Periodontology, School and Hospital of Stomatology, Shandong University, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Haowen Zhou
- Department of Periodontology, School and Hospital of Stomatology, Shandong University, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Chunshu Zhang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Yijia Wang
- Department of Periodontology, School and Hospital of Stomatology, Shandong University, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Jiahui Huang
- Department of Periodontology, School and Hospital of Stomatology, Shandong University, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Meng Liu
- Department of Periodontology, School and Hospital of Stomatology, Shandong University, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Pishan Yang
- Department of Periodontology, School and Hospital of Stomatology, Shandong University, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China.
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China.
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China.
| | - Aimei Song
- Department of Periodontology, School and Hospital of Stomatology, Shandong University, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China.
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China.
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China.
| |
Collapse
|
18
|
Jiang L, Ding Z, Xia S, Liu Y, Lei S, Zhong M, Chen X. Poly lactic-co-glycolic acid scaffold loaded with plasmid DNA encoding fibroblast growth factor-2 promotes periodontal ligament regeneration of replanted teeth. J Periodontal Res 2020; 55:488-495. [PMID: 31960451 DOI: 10.1111/jre.12734] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 12/12/2019] [Accepted: 12/28/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVE This study investigated the effects of poly lactic-co-glycolic acid (PLGA) loaded with plasmid DNA encoding fibroblast growth factor-2 (pFGF-2) on human periodontal ligament cells (hPDLCs) in vitro and evaluated the ability of the PLGA/pFGF-2 scaffold to promote periodontal ligament (PDL) regeneration in a beagle dog teeth avulsion animal model. BACKGROUND Growth factor and scaffold play important roles in PDL regeneration. PLGA is a kind of biodegradable and biocompatible polymer that can be used as a carrier to deliver growth factors or genes. FGF-2 can induce potent proliferative responses, promote cell migration and regulate the production of extracellular matrix. Therefore, a gene-activated matrix composed of scaffold and genes is supposed to be a superior approach for promoting tissue regeneration. METHODS In this study, PLGA and PLGA/pFGF-2 scaffolds were fabricated using electrospinning. The characterization of scaffolds was shown by scanning electron microscope (SEM) and transmission electron microscope (TEM). dsDNA HS was used to test the plasmid release of PLGA/pFGF-2 scaffold. The viability and proliferation of hPDLCs on the two kinds of scaffolds were evaluated by the CCK-8 assay, and the expression of collagen I and scleraxis were analysed by RT-qPCR. The roots of avulsed teeth were covered by the two types of scaffolds and replanted into the alveolar pockets in beagles. Haematoxylin-eosin and Masson staining were used to evaluate the effects of PLGA/pFGF-2 scaffold on promoting PDL regeneration. RESULTS The smooth and uniform fibres can be observed in both scaffolds, and the plasmids were randomly distributed in the PLGA/pFGF-2 scaffold. dsDNA HS analysis demonstrated that the PLGA/pFGF-2 scaffold released up to 123 ng pFGF-2 over 21 days in a sustained manner without any obvious burst release. The PLGA/pFGF-2 scaffold promoted the proliferation of hPDLCs and increased the expression levels of collagen I and scleraxis compared with PLGA scaffold. Animal experiments showed that more regular PDL-like tissues and less root surface resorption occurred in the PLGA/pFGF-2 scaffold group compared with the PLGA scaffold group. CONCLUSIONS The PLGA/pFGF-2 scaffold promoted hPDLCs proliferation and facilitated periodontal ligament-related differentiation. The PLGA/pFGF-2 scaffold possesses excellent biological characteristics and could be used as a promising biomaterial for improving the treatment prognosis of replanted tooth.
Collapse
Affiliation(s)
- Liming Jiang
- Department of Paediatric Dentistry, School of Stomatology, China Medical University, Shenyang, Liaoning, China
| | - Zhenjiang Ding
- Department of Paediatric Dentistry, School of Stomatology, China Medical University, Shenyang, Liaoning, China
| | - Shang Xia
- Department of Paediatric Dentistry, School of Stomatology, China Medical University, Shenyang, Liaoning, China
| | - Yao Liu
- Department of Paediatric Dentistry, School of Stomatology, China Medical University, Shenyang, Liaoning, China
| | - Shuang Lei
- Department of Paediatric Dentistry, School of Stomatology, China Medical University, Shenyang, Liaoning, China
| | - Ming Zhong
- Department of Oral Histopathology, School of Stomatology, China Medical University, Shenyang, Liaoning, China
| | - Xu Chen
- Department of Paediatric Dentistry, School of Stomatology, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|