1
|
Chavda VP, Bojarska J. Peptides on patrol: Carrier systems for targeted delivery. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2025; 212:129-161. [PMID: 40122644 DOI: 10.1016/bs.pmbts.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
The peptide is a small unit of protein that exhibits a diverse range of therapeutic applications, including but not limited to respiratory, inflammatory, oncologic, metabolic and neurological disorders. Peptides also play a significant role in signal transduction in cells. This chapter focuses on the delivery of peptides through the utilization of various carrier molecules, including liposomes, micelles, polymeric nanoparticles, and inorganic materials. These carriers facilitate targeted delivery and site-specific delivery of peptides. Different nanocarriers and therapeutic drug molecules also help with the delivery of peptides. Application to various diseases and different routes of delivery are described in this manuscript, along with current limitations and future prospects.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad, Gujarat, India.
| | - Joanna Bojarska
- Chemistry Department, Institute of Ecological and Inorganic Chemistry, Technical, University of Lodz, Zeromskiego St., Lodz, Poland
| |
Collapse
|
2
|
Zhang L, Zheng Y, Lei L, Zhang X, Yang J, Zeng Y, Chen K. Development of a machine learning-based model for predicting positive margins in high-grade squamous intraepithelial lesion (HSIL) treatment by Cold Knife Conization(CKC): a single-center retrospective study. BMC Womens Health 2024; 24:332. [PMID: 38849836 PMCID: PMC11157760 DOI: 10.1186/s12905-024-03180-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024] Open
Abstract
OBJECTIVES This study aims to analyze factors associated with positive surgical margins following cold knife conization (CKC) in patients with cervical high-grade squamous intraepithelial lesion (HSIL) and to develop a machine-learning-based risk prediction model. METHOD We conducted a retrospective analysis of 3,343 patients who underwent CKC for HSIL at our institution. Logistic regression was employed to examine the relationship between demographic and pathological characteristics and the occurrence of positive surgical margins. Various machine learning methods were then applied to construct and evaluate the performance of the risk prediction model. RESULTS The overall rate of positive surgical margins was 12.9%. Independent risk factors identified included glandular involvement (OR = 1.716, 95% CI: 1.345-2.189), transformation zone III (OR = 2.838, 95% CI: 2.258-3.568), HPV16/18 infection (OR = 2.863, 95% CI: 2.247-3.648), multiple HR-HPV infections (OR = 1.930, 95% CI: 1.537-2.425), TCT ≥ ASC-H (OR = 3.251, 95% CI: 2.584-4.091), and lesions covering ≥ 3 quadrants (OR = 3.264, 95% CI: 2.593-4.110). Logistic regression demonstrated the best prediction performance, with an accuracy of 74.7%, sensitivity of 76.7%, specificity of 74.4%, and AUC of 0.826. CONCLUSION Independent risk factors for positive margins after CKC include HPV16/18 infection, multiple HR-HPV infections, glandular involvement, extensive lesion coverage, high TCT grades, and involvement of transformation zone III. The logistic regression model provides a robust and clinically valuable tool for predicting the risk of positive margins, guiding clinical decisions and patient management post-CKC.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Yangtze University, Shashi District, 8 Hangkong Road, Jingzhou, Hubei, China
| | - Yahong Zheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Yangtze University, Shashi District, 8 Hangkong Road, Jingzhou, Hubei, China
| | - Lingyu Lei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Yangtze University, Shashi District, 8 Hangkong Road, Jingzhou, Hubei, China
| | - Xufeng Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Yangtze University, Shashi District, 8 Hangkong Road, Jingzhou, Hubei, China
| | - Jing Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Yangtze University, Shashi District, 8 Hangkong Road, Jingzhou, Hubei, China
| | - Yong Zeng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Yangtze University, Shashi District, 8 Hangkong Road, Jingzhou, Hubei, China.
| | - Keming Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Yangtze University, Shashi District, 8 Hangkong Road, Jingzhou, Hubei, China.
| |
Collapse
|
3
|
Stoup N, Liberelle M, Lebègue N, Van Seuningen I. Emerging paradigms and recent progress in targeting ErbB in cancers. Trends Pharmacol Sci 2024; 45:552-576. [PMID: 38797570 DOI: 10.1016/j.tips.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/29/2024]
Abstract
The epidermal growth factor receptor (EGFR) family is a class of transmembrane proteins, highly regarded as anticancer targets due to their pivotal role in various malignancies. Standard cancer treatments targeting the ErbB receptors include tyrosine kinase inhibitors (TKIs) and monoclonal antibodies (mAbs). Despite their substantial survival benefits, the achievement of curative outcomes is hindered by acquired resistance. Recent advancements in anti-ErbB approaches, such as inhibitory peptides, nanobodies, targeted-protein degradation strategies, and bispecific antibodies (BsAbs), aim to overcome such resistance. More recently, emerging insights into the cell surface interactome of the ErbB family open new avenues for modulating ErbB signaling by targeting specific domains of ErbB partners. Here, we review recent progress in ErbB targeting and elucidate emerging paradigms that underscore the significance of EGF domain-containing proteins (EDCPs) as new ErbB-targeting pathways.
Collapse
Affiliation(s)
- Nicolas Stoup
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Maxime Liberelle
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - LiNC -Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Nicolas Lebègue
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - LiNC -Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Isabelle Van Seuningen
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France.
| |
Collapse
|
4
|
Yang L, Li Y, Du Y, Guo Y, Guo Z, Liu B, Liu J, Liu Y, Niu H, Sun Y, Yan H, Yang Y, Yu S, Zhang Y, Zhang Y, Zheng K, Zheng N, Zhang X, Zhang Q, Hu L. Discovery of Novel 5,6-Dihydro-4 H-pyrido[2,3,4- de]quinazoline Irreversible Inhibitors Targeting Both Wild-Type and A775_G776insYVMA Mutated HER2 Kinases. J Med Chem 2024; 67:5662-5682. [PMID: 38518121 DOI: 10.1021/acs.jmedchem.3c02302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
HER2 mutations were seen in 4% of non-small-cell lung cancer (NSCLC) patients. Most of these mutations (90%) occur as an insertion mutation within the exon 20 frame, leading to the downstream activation of the PI3K-AKT and RAS/MAPK pathways. However, no targeted therapies have yet been approved worldwide. Here a novel series of highly potent HER2 inhibitors with a pyrido[2,3,4-de]quinazoline core were designed and developed. The derivatives with the pyrido[2,3,4-de]quinazoline core displayed superior efficacy of antiproliferation in BaF3 cells harboring HER2insYVMA mutation compared with afatinib and neratinib. Rat studies showed that 8a and 9a with the newly developed core have good pharmacokinetic properties with an oral bioavailability of 41.7 and 42.0%, respectively. Oral administration of 4a and 10e (30 mg/kg, QD) displayed significant antitumor efficacy in an in vivo xenograft model. We proposed promising strategies for the development of HER2insYVMA mutant inhibitors in this study.
Collapse
Affiliation(s)
- Leifu Yang
- . College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
- . . Beijing Scitech MQ Pharmaceuticals Ltd., Beijing 101320, China
| | - Yaxin Li
- . College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Yunling Du
- . . Beijing Scitech MQ Pharmaceuticals Ltd., Beijing 101320, China
| | - Yan Guo
- . . Beijing Scitech MQ Pharmaceuticals Ltd., Beijing 101320, China
| | - Zhenke Guo
- . . Beijing Scitech MQ Pharmaceuticals Ltd., Beijing 101320, China
| | - Baoxiu Liu
- . . Beijing Scitech MQ Pharmaceuticals Ltd., Beijing 101320, China
| | - Jianglin Liu
- . . Beijing Scitech MQ Pharmaceuticals Ltd., Beijing 101320, China
| | - Yanfei Liu
- . . Beijing Scitech MQ Pharmaceuticals Ltd., Beijing 101320, China
| | - Hongdan Niu
- . . Beijing Scitech MQ Pharmaceuticals Ltd., Beijing 101320, China
| | - Yueming Sun
- . . Beijing Scitech MQ Pharmaceuticals Ltd., Beijing 101320, China
| | - Henglin Yan
- . . Beijing Scitech MQ Pharmaceuticals Ltd., Beijing 101320, China
| | - Yajuan Yang
- . . Beijing Scitech MQ Pharmaceuticals Ltd., Beijing 101320, China
| | - Shannan Yu
- . . Beijing Scitech MQ Pharmaceuticals Ltd., Beijing 101320, China
| | - Yifan Zhang
- . . Beijing Scitech MQ Pharmaceuticals Ltd., Beijing 101320, China
| | - Yuan Zhang
- . . Beijing Scitech MQ Pharmaceuticals Ltd., Beijing 101320, China
| | - Kun Zheng
- . . Beijing Scitech MQ Pharmaceuticals Ltd., Beijing 101320, China
| | - Nanqiao Zheng
- . . Beijing Scitech MQ Pharmaceuticals Ltd., Beijing 101320, China
| | - Xiaoqing Zhang
- . . Beijing Scitech MQ Pharmaceuticals Ltd., Beijing 101320, China
| | - Qiang Zhang
- . . Beijing Scitech MQ Pharmaceuticals Ltd., Beijing 101320, China
| | - Liming Hu
- . College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
- . Beijing Key Laboratory of Environmental and Viral Oncology, Beijing 100124, China
| |
Collapse
|
5
|
Atwell B, Chalasani P, Schroeder J. Nuclear epidermal growth factor receptor as a therapeutic target. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:616-629. [PMID: 37720348 PMCID: PMC10501894 DOI: 10.37349/etat.2023.00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/09/2023] [Indexed: 09/19/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) is one of the most well-studied oncogenes with roles in proliferation, growth, metastasis, and therapeutic resistance. This intense study has led to the development of a range of targeted therapeutics including small-molecule tyrosine kinase inhibitors (TKIs), monoclonal antibodies, and nanobodies. These drugs are excellent at blocking the activation and kinase function of wild-type EGFR (wtEGFR) and several common EGFR mutants. These drugs have significantly improved outcomes for patients with cancers including head and neck, glioblastoma, colorectal, and non-small cell lung cancer (NSCLC). However, therapeutic resistance is often seen, resulting from acquired mutations or activation of compensatory signaling pathways. Additionally, these therapies are ineffective in tumors where EGFR is found predominantly in the nucleus, as can be found in triple negative breast cancer (TNBC). In TNBC, EGFR is subjected to alternative trafficking which drives the nuclear localization of the receptor. In the nucleus, EGFR interacts with several proteins to activate transcription, DNA repair, migration, and chemoresistance. Nuclear EGFR (nEGFR) correlates with metastatic disease and worse patient prognosis yet targeting its nuclear localization has proved difficult. This review provides an overview of current EGFR-targeted therapies and novel peptide-based therapies that block nEGFR, as well as their clinical applications and potential for use in oncology.
Collapse
Affiliation(s)
- Benjamin Atwell
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Pavani Chalasani
- Department of Medicine, University of Arizona, Tucson, AZ 85721, USA
- University of Arizona Cancer Center, Tucson, AZ 85721, USA
| | - Joyce Schroeder
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
- University of Arizona Cancer Center, Tucson, AZ 85721, USA
- Bio5 Institute, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
6
|
Adak A, Das G, Gupta V, Khan J, Mukherjee N, Mondal P, Roy R, Barman S, Gharai PK, Ghosh S. Evolution of Potential Antimitotic Stapled Peptides from Multiple Helical Peptide Stretches of the Tubulin Heterodimer Interface: Helix-Mimicking Stapled Peptide Tubulin Inhibitors. J Med Chem 2022; 65:13866-13878. [PMID: 36240440 DOI: 10.1021/acs.jmedchem.2c01116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein-protein interactions play a crucial role in microtubule dynamics. Microtubules are considered as a key target for the design and development of anticancer therapeutics, where inhibition of tubulin-tubulin interactions plays a crucial role. Here, we focused on a few key helical stretches at the interface of α,β-tubulin heterodimers and developed a structural mimic of these helical peptides, which can serve as potent inhibitors of microtubule polymerization. To induce helicity, we have made stapled analogues of these sequences. Thereafter, we modified the lead sequences of the antimitotic stapled peptides with halo derivatives. It is observed that halo-substituted stapled peptides follow an interesting trend for the electronegativity of halogen atoms in interaction patterns with tubulin and a correlation in the toxicity profile. Remarkably, we found that para-fluorophenylalanine-modified stapled peptide is the most potent inhibitors, which perturbs microtubule dynamics, induces apoptotic death, and inhibits the growth of melanoma.
Collapse
Affiliation(s)
- Anindyasundar Adak
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700 032, India
| | - Gaurav Das
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700 032, India
| | - Varsha Gupta
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700 032, India
| | - Juhee Khan
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700 032, India
| | - Nabanita Mukherjee
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology Jodhpur, NH 62, Surpura Bypass Road, Karwar, Jodhpur, Rajasthan 342037, India
| | - Prasenjit Mondal
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700 032, India
| | - Rajsekhar Roy
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 62, Surpura Bypass Road, Karwar, Jodhpur, Rajasthan 342037, India
| | - Surajit Barman
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700 032, India
| | - Prabir Kumar Gharai
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700 032, India
| | - Surajit Ghosh
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700 032, India.,Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 62, Surpura Bypass Road, Karwar, Jodhpur, Rajasthan 342037, India.,Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology Jodhpur, NH 62, Surpura Bypass Road, Karwar, Jodhpur, Rajasthan 342037, India
| |
Collapse
|
7
|
Parrasia S, Szabò I, Zoratti M, Biasutto L. Peptides as Pharmacological Carriers to the Brain: Promises, Shortcomings and Challenges. Mol Pharm 2022; 19:3700-3729. [PMID: 36174227 DOI: 10.1021/acs.molpharmaceut.2c00523] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Central nervous system (CNS) diseases are among the most difficult to treat, mainly because the vast majority of the drugs fail to cross the blood-brain barrier (BBB) or to reach the brain at concentrations adequate to exert a pharmacological activity. The obstacle posed by the BBB has led to the in-depth study of strategies allowing the brain delivery of CNS-active drugs. Among the most promising strategies is the use of peptides addressed to the BBB. Peptides are versatile molecules that can be used to decorate nanoparticles or can be conjugated to drugs, with either a stable link or as pro-drugs. They have been used to deliver to the brain both small molecules and proteins, with applications in diverse therapeutic areas such as brain cancers, neurodegenerative diseases and imaging. Peptides can be generally classified as receptor-targeted, recognizing membrane proteins expressed by the BBB microvessels (e.g., Angiopep2, CDX, and iRGD), "cell-penetrating peptides" (CPPs; e.g. TAT47-57, SynB1/3, and Penetratin), undergoing transcytosis through unspecific mechanisms, or those exploiting a mixed approach. The advantages of peptides have been extensively pointed out, but so far few studies have focused on the potential negative aspects. Indeed, despite having a generally good safety profile, some peptide conjugates may display toxicological characteristics distinct from those of the peptide itself, causing for instance antigenicity, cardiovascular alterations or hemolysis. Other shortcomings are the often brief lifetime in vivo, caused by the presence of peptidases, the vulnerability to endosomal/lysosomal degradation, and the frequently still insufficient attainable increase of brain drug levels, which remain below the therapeutically useful concentrations. The aim of this review is to analyze not only the successful and promising aspects of the use of peptides in brain targeting but also the problems posed by this strategy for drug delivery.
Collapse
Affiliation(s)
- Sofia Parrasia
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Ildikò Szabò
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Mario Zoratti
- CNR Neuroscience Institute, Viale G. Colombo 3, 35131 Padova, Italy.,Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Lucia Biasutto
- CNR Neuroscience Institute, Viale G. Colombo 3, 35131 Padova, Italy.,Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| |
Collapse
|
8
|
Screening and Isolation of Potential Anti-Inflammatory Compounds from Saxifraga atrata via Affinity Ultrafiltration-HPLC and Multi-Target Molecular Docking Analyses. Nutrients 2022; 14:nu14122405. [PMID: 35745138 PMCID: PMC9230087 DOI: 10.3390/nu14122405] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 12/13/2022] Open
Abstract
In this study, a 100 g sample of Saxifraga atrata was processed to separate 1.3 g of 11-O-(4′-O-methylgalloyl)-bergenin (Fr1) after 1 cycle of MCI GEL® CHP20P medium pressure liquid chromatography using methanol/water. Subsequently, COX-2 affinity ultrafiltration coupled with reversed-phase liquid chromatography was successfully used to screen for potential COX-2 ligands in this target fraction (Fr1). After 20 reversed-phase liquid chromatography runs, 74.1 mg of >99% pure 11-O-(4′-O-methylgalloyl)-bergenin (Fr11) was obtained. In addition, the anti-inflammatory activity of 11-O-(4′-O-methylgalloyl)-bergenin was further validated through molecular docking analyses which suggested it was capable of binding strongly to ALOX15, iNOS, ERBB2, SELE, and NF-κB. As such, the AA metabolism, MAPK, and NF-κB signaling pathways were hypothesized to be the main pathways through which 11-O-(4′-O-methylgalloyl)-bergenin regulates inflammatory responses, potentially functioning by reducing pro-inflammatory cytokine production, blocking pro-inflammatory factor binding to cognate receptors and inhibiting the expression of key proteins. In summary, affinity ultrafiltration-HPLC coupling technology can rapidly screen for multi-target bioactive components and when combined with molecular docking analyses, this approach can further elucidate the pharmacological mechanisms of action for these compounds, providing valuable information to guide the further development of new multi-target drugs derived from natural products.
Collapse
|
9
|
Gallo M, Defaus S, Andreu D. Disrupting GPCR Complexes with Smart Drug-like Peptides. Pharmaceutics 2022; 14:pharmaceutics14010161. [PMID: 35057055 PMCID: PMC8779866 DOI: 10.3390/pharmaceutics14010161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 02/04/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are a superfamily of proteins classically described as monomeric transmembrane (TM) receptors. However, increasing evidence indicates that many GPCRs form higher-order assemblies made up of monomers pertaining to identical (homo) or to various (hetero) receptors. The formation and structure of these oligomers, their physiological role and possible therapeutic applications raise a variety of issues that are currently being actively explored. In this context, synthetic peptides derived from TM domains stand out as powerful tools that can be predictably targeted to disrupt GPCR oligomers, especially at the interface level, eventually impairing their action. However, despite such potential, TM-derived, GPCR-disrupting peptides often suffer from inadequate pharmacokinetic properties, such as low bioavailability, a short half-life or rapid clearance, which put into question their therapeutic relevance and promise. In this review, we provide a comprehensive overview of GPCR complexes, with an emphasis on current studies using GPCR-disrupting peptides mimicking TM domains involved in multimerization, and we also highlight recent strategies used to achieve drug-like versions of such TM peptide candidates for therapeutic application.
Collapse
Affiliation(s)
| | - Sira Defaus
- Correspondence: (S.D.); (D.A.); Tel.: +34-933160868 (S.D. & D.A.)
| | - David Andreu
- Correspondence: (S.D.); (D.A.); Tel.: +34-933160868 (S.D. & D.A.)
| |
Collapse
|
10
|
Cxcl10 chemokine induces migration of ING4-deficient breast cancer cells via a novel crosstalk mechanism between the Cxcr3 and Egfr receptors. Mol Cell Biol 2021; 42:e0038221. [PMID: 34871062 DOI: 10.1128/mcb.00382-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The chemokine Cxcl10 has been associated with poor prognosis in breast cancer, but the mechanism is not well understood. Our previous study have shown that CXCL10 was repressed by the ING4 tumor suppressor, suggesting a potential inverse functional relationship. We thus investigated a role for Cxcl10 in the context of ING4 deficiencies in breast cancer. We first analyzed public gene expression datasets and found that patients with CXCL10-high/ING4-low expressing tumors had significantly reduced disease-free survival in breast cancer. In vitro, Cxcl10 induced migration of ING4-deleted breast cancer cells, but not of ING4-intact cells. Using inhibitors, we found that Cxcl10-induced migration of ING4-deleted cells required Cxcr3, Egfr, and the Gβγ subunits downstream of Cxcr3, but not Gαi. Immunofluorescent imaging showed that Cxcl10 induced early transient colocalization between Cxcr3 and Egfr in both ING4-intact and ING4-deleted cells, which recurred only in ING4-deleted cells. A peptide agent that binds to the internal juxtamembrane domain of Egfr inhibited Cxcr3/Egfr colocalization and cell migration. Taken together, these results presented a novel mechanism of Cxcl10 that elicits migration of ING4-deleted cells, in part by inducing a physical or proximal association between Cxcr3 and Egfr and signaling downstream via Gβγ. These results further indicated that ING4 plays a critical role in the regulation of Cxcl10 signaling that enables breast cancer progression.
Collapse
|
11
|
Jiwacharoenchai N, Tabtimmai L, Kiriwan D, Suwattanasophon C, Seetaha S, Sinthuvanich C, Choowongkomon K. A novel cyclic NP1 reveals obstruction of EGFR kinase activity and attenuation of EGFR-driven cell lines. J Cell Biochem 2021; 123:248-258. [PMID: 34633106 DOI: 10.1002/jcb.30160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/30/2021] [Accepted: 09/29/2021] [Indexed: 11/11/2022]
Abstract
Aberrations of the epidermal growth factor receptor (EGFR), for example, mutations and overexpression, play pivotal roles in various cellular functions, such as proliferation, migration, and cell differentiation. Approved small molecule-based inhibitors, including gefitinib and erlotinib, are used clinically to target the tyrosine kinase domain of EGFR (TK-EGFR). However, the severity of the side effects, off-target effects, and drug resistance is a concern. Cyclic peptides are a well-known peptide format with high stability and are promising molecules for drug development. Herein, the Ph.D.™-C7C phage display library was used to screen cyclic peptides against TK-EGFR. Biopanning, both with and without propagation methods, was performed to assess the highest capacity peptides using the enzymatic activity of TK-EGFR. Interestingly, NP1, a peptide selected during biopanning without propagation demonstrated an inhibitory effect against TK-EGFR at IC50 within the nanomolar range; this effect was better than that of P1 obtained using biopanning with propagation. Moreover, NP1 elicited EGFR with an affinity binding (KD ) value of 18.40 ± 5.50 µM by surface plasmon resonance (SPR). Introducing cell-penetrating peptides or Arginine-9 (Arg9) at the N-terminus of NP1 thus improves cell-penetrability and can lead to the inhibition of EGFR-driven cancer cell lines; however, it exhibits no hepatotoxicity. Furthermore, NP1 caused a decrease in phosphorylated EGFR after activation within cells. A docking model shows that NP1 interacted primarily with TK-EGFR via hydrogen bonding. Together, this suggests that NP1 is a novel EGFR peptide inhibitor candidate with specificity and selectivity toward TK-EGFR, and may be applied to targeted therapy.
Collapse
Affiliation(s)
- Nattanan Jiwacharoenchai
- Genetic Engineering Interdisciplinary Program, Graduate School, Kasetsart University, Bangkok, Thailand
| | - Lueacha Tabtimmai
- Department of Biotechnology, Faculty of Applied Science, King Mongkut University of North Bangkok, Bangkok, Thailand
| | - Duangnapa Kiriwan
- Genetic Engineering Interdisciplinary Program, Graduate School, Kasetsart University, Bangkok, Thailand
| | | | - Supaphorn Seetaha
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Chomdao Sinthuvanich
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Center for Advanced Studies in Nanotechnology for Chemical Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
12
|
Zaman A, Bivona TG. Targeting AXL in NSCLC. LUNG CANCER (AUCKLAND, N.Z.) 2021; 12:67-79. [PMID: 34408519 PMCID: PMC8364399 DOI: 10.2147/lctt.s305484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022]
Abstract
State-of-the-art cancer precision medicine approaches involve targeted inactivation of chemically and immunologically addressable vulnerabilities that often yield impressive initial anti-tumor responses in patients. Nonetheless, these responses are overshadowed by therapy resistance that follows. AXL, a receptor tyrosine kinase with bona fide oncogenic capacity, has been associated with the emergence of resistance in an array of cancers with varying pathophysiology and cellular origins, including in non-small-cell lung cancers (NSCLCs). Here in this review, we summarize AXL biology during normal homeostasis, oncogenic development and therapy resistance with a focus on NSCLC. In the context of NSCLC therapy resistance, we delineate AXL's role in mediating resistance to tyrosine kinase inhibitors (TKIs) deployed against epidermal growth factor receptor (EGFR) as well as other notable oncogenes and to chemotherapeutics. We also discuss the current understanding of AXL's role in mediating cell-biological variables that function as important modifiers of therapy resistance such as epithelial to mesenchymal transition (EMT), the tumor microenvironment and tumor heterogeneity. We also catalog and discuss a set of effective pharmacologic tools that are emerging to strategically perturb AXL mediated resistance programs in NSCLC. Finally, we enumerate ongoing and future exciting precision medicine approaches targeting AXL as well as challenges in this regard. We highlight that a holistic understanding of AXL biology in NSCLC may allow us to predict and improve targeted therapeutic strategies, such as through polytherapy approaches, potentially against a broad spectrum of NSCLC sub-types to forestall tumor evolution and drug resistance.
Collapse
Affiliation(s)
- Aubhishek Zaman
- Department of Medicine, University of California, San Francisco, CA, USA
- UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Trever G Bivona
- Department of Medicine, University of California, San Francisco, CA, USA
- UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| |
Collapse
|
13
|
Molecular Targeting of Epidermal Growth Factor Receptor (EGFR) and Vascular Endothelial Growth Factor Receptor (VEGFR). Molecules 2021; 26:molecules26041076. [PMID: 33670650 PMCID: PMC7922143 DOI: 10.3390/molecules26041076] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor (VEGFR) are two extensively studied membrane-bound receptor tyrosine kinase proteins that are frequently overexpressed in many cancers. As a result, these receptor families constitute attractive targets for imaging and therapeutic applications in the detection and treatment of cancer. This review explores the dynamic structure and structure-function relationships of these two growth factor receptors and their significance as it relates to theranostics of cancer, followed by some of the common inhibition modalities frequently employed to target EGFR and VEGFR, such as tyrosine kinase inhibitors (TKIs), antibodies, nanobodies, and peptides. A summary of the recent advances in molecular imaging techniques, including positron emission tomography (PET), single-photon emission computerized tomography (SPECT), computed tomography (CT), magnetic resonance imaging (MRI), and optical imaging (OI), and in particular, near-IR fluorescence imaging using tetrapyrrolic-based fluorophores, concludes this review.
Collapse
|
14
|
Patwa V, Guo S, Carter RL, Kraus L, Einspahr J, Teplitsky D, Sabri A, Tilley DG. Epidermal growth factor receptor association with β1-adrenergic receptor is mediated via its juxtamembrane domain. Cell Signal 2020; 78:109846. [PMID: 33238186 DOI: 10.1016/j.cellsig.2020.109846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 01/20/2023]
Abstract
β1-adrenergic receptor (β1AR)-mediated transactivation of epidermal growth factor receptor (EGFR) engages downstream signaling events that impact numerous cellular processes including growth and survival. While association of these receptors has been shown to occur basally and be important for relaying transactivation-specific intracellular events, the mechanism by which they do so is unclear and elucidation of which would aid in understanding the consequence of disrupting their interaction. Using fluorescence resonance energy transfer (FRET) and immunoprecipitation (IP) analyses, we evaluated the impact of C-terminal truncations of EGFR on its ability to associate with β1AR. While loss of the last 230 amino acid C-terminal phosphotyrosine-rich domain did not disrupt the ability of EGFR to associate with β1AR, truncation of the entire intracellular domain of EGFR resulted in almost complete loss of its interaction with β1AR, suggesting that either the kinase domain or juxtamembrane domain (JMD) may be required for this association. Treatment with the EGFR antagonist gefitinib did not prevent β1AR-EGFR association, however, treatment with a palmitoylated peptide encoding the first 20 amino acids of the JMD domain (JMD-A) disrupted β1AR-EGFR association over time and prevented β1AR-mediated ERK1/2 phosphorylation, both in general and specifically in association with EGFR. Conversely, neither a mutated JMD-A peptide nor a palmitoylated peptide fragment consisting of the subsequent 18 amino acids of the JMD domain (JMD-B) were capable of doing so. Altogether, the proximal region of the JMD of EGFR is responsible for its association with β1AR, and its disruption prevents β1AR-mediated transactivation, thus providing a new tool to study the functional consequences of disrupting β1AR-EGFR downstream signaling.
Collapse
Affiliation(s)
- Viren Patwa
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Shuchi Guo
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Rhonda L Carter
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Lindsay Kraus
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Jeanette Einspahr
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - David Teplitsky
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Abdelkarim Sabri
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Douglas G Tilley
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
15
|
Monti A, Sturlese M, Caporale A, Roger JDA, Mascanzoni F, Ruvo M, Doti N. Design, synthesis, structural analysis and biochemical studies of stapled AIF(370-394) analogues as ligand of CypA. Biochim Biophys Acta Gen Subj 2020; 1864:129717. [PMID: 32861757 DOI: 10.1016/j.bbagen.2020.129717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/28/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND The neuronal apoptotic process requires the nuclear translocation of Apoptosis Inducing Factor (AIF) in complex with Cyclophilin A (CypA) with consequent chromatin condensation and DNA degradation events. Targeting CypA by delivering an AIF-blocking peptide (AIF(370-394)) provides a significant neuroprotection, demonstrating the biological relevance of the AIF/CypA complex. To date pharmaceutical compounds targeting this complex are missing. METHODS We designed and synthesized a set of mono and bicyclic AIF(370-394) analogs containing both disulfide and 1,2,3-triazole bridges, in the attempt to both stabilize the peptide conformation and improve its binding affinity to CypA. Peptide structures in solution and in complex with CypA have been studied by circular dichroism (CD), Nuclear Magnetic Resonance (NMR) and molecular modeling. The ability of stapled peptides to interact with CypA was evaluated by using Epic Corning label free technique and Isothermal Titration Calorimetry experiments. RESULTS We identified a stapled peptide analogue of AIF(370-394) with a ten-fold improved affinity for CypA. Molecular modeling studies reveal that the new peptide acquires β-turn/β-fold structures and shares with the parent molecule the same binding region on CypA. CONCLUSIONS Data obtained provide invaluable assistance in designing new ligand of CypA for therapeutic approaches in neurodegenerative diseases. GENERAL SIGNIFICANCE Due to the crucial role of AIF/CypA complex formation in neurodegeneration, identification of selective inhibitors is of high importance for targeted therapies. We describe new bicyclic peptide inhibitors with improved affinity for CypA, investigating the kinetic, thermodynamic and structural effects of conformational constraints on the protein-ligand interaction, and their utility for drug design.
Collapse
Affiliation(s)
- Alessandra Monti
- Istituto di Biostrutture e Bioimmagini-CNR; Via Mezzocannone, 16, 80134 Napoli, Italy; DISTABIF, Università degli Studi della Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, CE, Italy
| | - Mattia Sturlese
- Molecular Modeling Section, Dipartimento di Scienze del Farmaco, Università di Padova, via F. Marzolo 5, 35131 Padova, Italy
| | - Andrea Caporale
- Istituto di Biostrutture e Bioimmagini-CNR; Via Mezzocannone, 16, 80134 Napoli, Italy
| | - Jessica De Almeida Roger
- Molecular Modeling Section, Dipartimento di Scienze del Farmaco, Università di Padova, via F. Marzolo 5, 35131 Padova, Italy
| | - Fabiola Mascanzoni
- Istituto di Biostrutture e Bioimmagini-CNR; Via Mezzocannone, 16, 80134 Napoli, Italy
| | - Menotti Ruvo
- Istituto di Biostrutture e Bioimmagini-CNR; Via Mezzocannone, 16, 80134 Napoli, Italy
| | - Nunzianna Doti
- Istituto di Biostrutture e Bioimmagini-CNR; Via Mezzocannone, 16, 80134 Napoli, Italy.
| |
Collapse
|
16
|
Wang SG, Zhang B, Li CG, Zhu JQ, Sun BS, Wang CL. Sorting and gene mutation verification of circulating tumor cells of lung cancer with epidermal growth factor receptor peptide lipid magnetic spheres. Thorac Cancer 2020; 11:2887-2895. [PMID: 32856417 PMCID: PMC7529546 DOI: 10.1111/1759-7714.13625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/26/2022] Open
Abstract
Background This study aimed to identify an efficient, simple, and specific method of detecting mutations in the epidermal growth factor receptor (EGFR) gene in isolated lung cancer circulating tumor cells (CTCs) and to improve the ability to obtain tumor tissue clinically. Methods EGFR peptide lipid magnetic spheres (EG‐P‐LMB) were prepared by reverse evaporation, and characterization and cell capture efficiency assessed. The peripheral blood samples of 30 lung cancer patients were isolated and identified with the EG‐P‐LMB using 20 healthy volunteers as controls. Finally, the isolated CTCs were tested for EGFR gene mutations, and the tissue samples selected for comparison. Results The prepared magnetic spheres had a smaller particle size and higher stability according to the particle size potential test. Their morphology was homogeneous by atomic force observation, and the UV test showed that there were peptides on the surface. The separation efficiency of EG‐P‐LMB was greater than 90% in PBS and greater than 80% in the blood simulation system. Compared with the tissue sample results, the positive rate of EGFR gene mutations was 94%. The CTC test results of 27 patients were consistent with the tissue test results of the corresponding patients, and the consistency with the tissue comparison test results was 90% (27/30). Conclusions EG‐P‐LMB can effectively capture CTCs in the peripheral blood of patients with lung cancer. CTC detection can accurately identify mutations in the EGFR gene and improve the ability to obtain tumor tissue in clinical practice. Key points Significant findings of the study EG‐P‐LMB can effectively capture CTCs in the peripheral blood of patients with lung cancer. CTC detection can accurately identify mutations in the EGFR gene and improve the ability to obtain tumor tissue in clinical practice. What this study adds This study added EGFR peptide lipid magnetic spheres to capture CTCs in the blood. Genetic testing was performed and compared with tissues. It solves the problem of clinically difficult tumor tissue sampling.
Collapse
Affiliation(s)
- Sheng-Guang Wang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| | - Bin Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| | - Chen-Guang Li
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| | - Jian-Quan Zhu
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| | - Bing-Sheng Sun
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| | - Chang-Li Wang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| |
Collapse
|
17
|
Crook ZR, Nairn NW, Olson JM. Miniproteins as a Powerful Modality in Drug Development. Trends Biochem Sci 2020; 45:332-346. [PMID: 32014389 PMCID: PMC7197703 DOI: 10.1016/j.tibs.2019.12.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/06/2019] [Accepted: 12/31/2019] [Indexed: 01/03/2023]
Abstract
Miniproteins are a diverse group of protein scaffolds characterized by small (1-10 kDa) size, stability, and versatility in drug-like roles. Coming largely from native sources, they have been widely adopted into drug development pipelines. While their structures and capabilities are diverse, the approaches to their utilization share more similarities with each other than with more widely used modalities (e.g., antibodies or small molecules). In this review, we highlight recent advances in miniprotein-based approaches to otherwise poorly addressed clinical needs, including structure-based and functional characterization. We also summarize their unique screening strategies and pharmacology considerations. Through a greater understanding of the unique properties that make them attractive for drug design, miniproteins can be effectively utilized against targets that are intractable by other approaches.
Collapse
Affiliation(s)
- Zachary R Crook
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N., Room D4-100, Seattle, WA 98109, USA
| | - Natalie W Nairn
- Blaze Bioscience, Inc, 530 Fairview Ave N., Suite 1400, Seattle, WA 98109, USA
| | - James M Olson
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N., Room D4-100, Seattle, WA 98109, USA.
| |
Collapse
|