1
|
Scott JS, Al Ayadi L, Epeslidou E, van Scheppingen RH, Mukha A, Kaaij LJT, Lutz C, Prekovic S. Emerging roles of cohesin-STAG2 in cancer. Oncogene 2025; 44:277-287. [PMID: 39613934 DOI: 10.1038/s41388-024-03221-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 12/01/2024]
Abstract
Cohesin, a crucial regulator of genome organisation, plays a fundamental role in maintaining chromatin architecture as well as gene expression. Among its subunits, STAG2 stands out because of its frequent deleterious mutations in various cancer types, such as bladder cancer and melanoma. Loss of STAG2 function leads to significant alterations in chromatin structure, disrupts transcriptional regulation, and impairs DNA repair pathways. In this review, we explore the molecular mechanisms underlying cohesin-STAG2 function, highlighting its roles in healthy cells and its contributions to cancer biology, showing how STAG2 dysfunction promotes tumourigenesis and presents opportunities for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Julia S Scott
- Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands
| | - Loubna Al Ayadi
- Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands
| | | | | | - Anna Mukha
- Department of Medical BioSciences, RadboudUMC, Nijmegen, The Netherlands
| | - Lucas J T Kaaij
- Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands
| | - Catrin Lutz
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Stefan Prekovic
- Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
2
|
Yang S, Sun M, Chen L, Zhang H, Sun L, Liu E, Tian X, Hou X, Lin Y, Lu M. WNT inhibitory factor 1 (WIF1) is a novel fusion partner of RUNX family transcription factor 1 (RUNX1) in acute myeloid leukemia with t(12;21)(q14;q22). J Hematop 2024; 17:245-249. [PMID: 39066949 DOI: 10.1007/s12308-024-00597-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 07/14/2024] [Indexed: 07/30/2024] Open
Abstract
As a member of the core transcription factor family, RUNX1 plays an important role in stem cell differentiation. RUNX1 rearrangements are common in myeloid and lymphoid tumors [1]. (Blood 129(15):2070-2082, 2017). One of the most commonly detected abnormalities in acute myeloid leukemia (AML) is the translocation t(8;21)(q22;q22) (Blood Adv 4(1):229-238, 2020), resulting in a RUNX1::RUNX1T1 fusion. Occasionally, RUNX1 is translocated with other genes. This article describes an AML patient with a specific chromosomal translocation involving the RUNX1 gene and the identification of the RUNX1::WIF1 fusion. Chromosomal abnormalities were detected through karyotype analysis, break gene involved was identified via fluorescence in situ hybridization (FISH), and the novel fusion was identified through transcriptome sequencing and subsequently confirmed through reverse transcription-polymerase chain reaction (RT-PCR) and Sanger sequencing. A 79-year-old female patient diagnosed with AML was found to have a t(12;21)(q14;q12) translocation. FISH analysis provided evidence of RUNX1 gene rearrangement. Additionally, transcriptomic sequencing revealed a novel fusion known as RUNX1::WIF1, which consists of RUNX1 exon 2 and WIF1 exon 3. The novel fusion was further confirmed through RT-PCR and Sanger sequencing. We identified WIF1 as a novel fusion partner of RUNX1 in AML. Additionally, this is the first report of a RUNX1 fusion gene with the break point in intron 2, resulting in an out-of-frame fusion. Further research is needed to investigate the impact of this novel fusion on the establishment and progression of the disease.
Collapse
Affiliation(s)
- Shaobin Yang
- Sino-US Diagnostics Lab, Tianjin Enterprise Key Laboratory of Al-Aided Hematopathology Diagnosis, Tianjin, China
| | - Ming Sun
- Department of Hematology, Zibo Municipal Hospital, Zibo, Shandong, China
| | - Long Chen
- Sino-US Diagnostics Lab, Tianjin Enterprise Key Laboratory of Al-Aided Hematopathology Diagnosis, Tianjin, China
| | - Hong Zhang
- Sino-US Diagnostics Lab, Tianjin Enterprise Key Laboratory of Al-Aided Hematopathology Diagnosis, Tianjin, China
| | - Lidan Sun
- Sino-US Diagnostics Lab, Tianjin Enterprise Key Laboratory of Al-Aided Hematopathology Diagnosis, Tianjin, China
| | - Enbin Liu
- Sino-US Diagnostics Lab, Tianjin Enterprise Key Laboratory of Al-Aided Hematopathology Diagnosis, Tianjin, China
| | - Xin Tian
- Sino-US Diagnostics Lab, Tianjin Enterprise Key Laboratory of Al-Aided Hematopathology Diagnosis, Tianjin, China
| | - Xiaoju Hou
- Sino-US Diagnostics Lab, Tianjin Enterprise Key Laboratory of Al-Aided Hematopathology Diagnosis, Tianjin, China
| | - Yani Lin
- Sino-US Diagnostics Lab, Tianjin Enterprise Key Laboratory of Al-Aided Hematopathology Diagnosis, Tianjin, China
| | - Mize Lu
- Department of Hematology, Affiliated Wuxi People's Hospital, Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, China.
| |
Collapse
|
3
|
Ryzhkova A, Maltseva E, Battulin N, Kabirova E. Loop Extrusion Machinery Impairments in Models and Disease. Cells 2024; 13:1896. [PMID: 39594644 PMCID: PMC11592926 DOI: 10.3390/cells13221896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Structural maintenance of chromosomes (SMC) complexes play a crucial role in organizing the three-dimensional structure of chromatin, facilitating key processes such as gene regulation, DNA repair, and chromosome segregation. This review explores the molecular mechanisms and biological significance of SMC-mediated loop extrusion complexes, including cohesin, condensins, and SMC5/6, focusing on their structure, their dynamic function during the cell cycle, and their impact on chromatin architecture. We discuss the implications of impairments in loop extrusion machinery as observed in experimental models and human diseases. Mutations affecting these complexes are linked to various developmental disorders and cancer, highlighting their importance in genome stability and transcriptional regulation. Advances in model systems and genomic techniques have provided deeper insights into the pathological roles of SMC complex dysfunction, offering potential therapeutic avenues for associated diseases.
Collapse
Affiliation(s)
- Anastasiya Ryzhkova
- Institute of Cytology and Genetics, 630090 Novosibirsk, Russia; (A.R.); (N.B.)
| | - Ekaterina Maltseva
- Department of Genetics and Genetic Technologies, Sirius University of Science and Technology, 354340 Sirius, Russia;
| | - Nariman Battulin
- Institute of Cytology and Genetics, 630090 Novosibirsk, Russia; (A.R.); (N.B.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Evelyn Kabirova
- Institute of Cytology and Genetics, 630090 Novosibirsk, Russia; (A.R.); (N.B.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
4
|
Kimura S, Park CS, Montefiori LE, Iacobucci I, Polonen P, Gao Q, Arnold ED, Attarbaschi A, Brown A, Buldini B, Caldwell KJ, Chang Y, Chen C, Cheng C, Cheng Z, Choi J, Conter V, Crews KR, de Groot-Kruseman HA, Deguchi T, Eguchi M, Muhle HE, Elitzur S, Escherich G, Freeman BB, Gu Z, Han K, Horibe K, Imamura T, Jeha S, Kato M, Chiew KH, Khan T, Kicinski M, Köhrer S, Kornblau SM, Kotecha RS, Li CK, Liu YC, Locatelli F, Luger SM, Paietta EM, Manabe A, Marquart HV, Masetti R, Maybury M, Mazilier P, Meijerink JP, Mitchell S, Miyamura T, Moore AS, Oshima K, Pawinska-Wasikowska K, Pieters R, Prater MS, Pruett-Miller SM, Pui CH, Qu C, Reiterova M, Reyes N, Roberts KG, Rowe JM, Sato A, Schmiegelow K, Schrappe M, Shen S, Skoczeń S, Spinelli O, Stary J, Svaton M, Takagi M, Takita J, Tang Y, Teachey DT, Thomas PG, Tomizawa D, Trka J, Varotto E, Vincent TL, Yang JJ, Yeoh AEJ, Zhou Y, Zimmermann M, Inaba H, Mullighan CG. Biologic and Clinical Analysis of Childhood Gamma Delta T-ALL Identifies LMO2/STAG2 Rearrangements as Extremely High Risk. Cancer Discov 2024; 14:1838-1859. [PMID: 38916500 PMCID: PMC11452281 DOI: 10.1158/2159-8290.cd-23-1452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/02/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
Acute lymphoblastic leukemia expressing the gamma delta T-cell receptor (γδ T-ALL) is a poorly understood disease. We studied 200 children with γδ T-ALL from 13 clinical study groups to understand the clinical and genetic features of this disease. We found age and genetic drivers were significantly associated with outcome. γδ T-ALL diagnosed in children under 3 years of age was extremely high-risk and enriched for genetic alterations that result in both LMO2 activation and STAG2 inactivation. Mechanistically, using patient samples and isogenic cell lines, we show that inactivation of STAG2 profoundly perturbs chromatin organization by altering enhancer-promoter looping, resulting in deregulation of gene expression associated with T-cell differentiation. High-throughput drug screening identified a vulnerability in DNA repair pathways arising from STAG2 inactivation, which can be targeted by poly(ADP-ribose) polymerase inhibition. These data provide a diagnostic framework for classification and risk stratification of pediatric γδ T-ALL. Significance: Patients with acute lymphoblastic leukemia expressing the gamma delta T-cell receptor under 3 years old or measurable residual disease ≥1% at end of induction showed dismal outcomes and should be classified as having high-risk disease. The STAG2/LMO2 subtype was enriched in this very young age group. STAG2 inactivation may perturb chromatin conformation and cell differentiation and confer vulnerability to poly(ADP-ribose) polymerase inhibition.
Collapse
Affiliation(s)
- Shunsuke Kimura
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Chun Shik Park
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Ilaria Iacobucci
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Petri Polonen
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Qingsong Gao
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Elizabeth D. Arnold
- Department of Cell and Molecular Biology and Center for Advance Genome Engineering, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Andishe Attarbaschi
- Department of Pediatric Hematology and Oncology, St. Anna Children’s Hospital, Medical University of Vienna, Vienna, Austria
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | - Anthony Brown
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Barbara Buldini
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Maternal and Child Health Department, University of Padova, Padova, Italy
- Pediatric Onco-Hematology, Stem Cell Transplant and Gene Therapy Laboratory, Istituto di Ricerca Pediatrica (IRP)-Città della Speranza, Padova, Italy
| | | | - Yunchao Chang
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Chelsey Chen
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zhongshan Cheng
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - John Choi
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Valentino Conter
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Kristine R. Crews
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Takao Deguchi
- Children's Cancer Center, National Center for Child Health and Development
| | - Mariko Eguchi
- Department of Pediatrics, Ehime University, Ehime, Japan
| | - Hannah Elisa Muhle
- Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Elitzur
- Department of Pediatric Hematology and Oncology, Schneider Children's Medical Center and Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gabriele Escherich
- Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Burgess B. Freeman
- Preclinical Pharmacokinetic Shared Resource, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Zhaohui Gu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Departments of Computational and Quantitative Medicine, and Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Katie Han
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Keizo Horibe
- Clinical Research Center, National Hospital Organization Nagoya Medical Center
| | - Toshihiko Imamura
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Sima Jeha
- Department of Global Pediatric Medicine, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Motohiro Kato
- Department of Pediatrics, Tokyo University, Tokyo, Japan
| | - Kean Hui Chiew
- Department of Paediatrics, National University of Singapore, National University of Singapore, Singapore, Singapore
| | - Tanya Khan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | | | - Steven M Kornblau
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, TX, USA
| | - Rishi S Kotecha
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children's Hospital, Perth, WA, Australia
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
- Curtin Medical School, Curtin University, Perth, WA, Australia
| | - Chi-Kong Li
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yen-Chun Liu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Franco Locatelli
- Department of Pediatric Hematology–Oncology and Cell and Gene Therapy, IRCCS Ospedale Pediatrico Bambino Gesù, Catholic University of the Sacred Heart, Rome, Italy
| | - Selina M. Luger
- Abramson Cancer Center, Univeristy of Pennsylvania, Philadelphia, PA, USA
| | | | - Atsushi Manabe
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| | - Hanne Vibeke Marquart
- Department of Clinical Immunology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Riccardo Masetti
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero Universitaria di Bologna, University of Bologna, Bologna, Italy
| | - Mellissa Maybury
- Child Health Research Centre, the University of Queensland, Brisbane, QLD, Australia
| | - Pauline Mazilier
- Pediatric hemato-oncology and transplantation, HUB - HUDERF, Brussels, Belgium
| | | | - Sharnise Mitchell
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Takako Miyamura
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Andrew S. Moore
- Child Health Research Centre, the University of Queensland, Brisbane, QLD, Australia
- Oncology Service, Children’s Health Queensland Hospital and Health Service, Brisbane, QLD, Australia
| | - Koichi Oshima
- Department of Hematology/Oncology, Saitama Children's Medical Center
| | | | - Rob Pieters
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Mollie S. Prater
- Department of Cell and Molecular Biology and Center for Advance Genome Engineering, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Shondra M. Pruett-Miller
- Department of Cell and Molecular Biology and Center for Advance Genome Engineering, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Chunxu Qu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michaela Reiterova
- CLIP - Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Noemi Reyes
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kathryn G. Roberts
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jacob M. Rowe
- Department of Hematology, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Atsushi Sato
- Department of Hematology and Oncology, Miyagi Children's Hospital
| | - Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet University Hospital, København, Denmark
| | - Martin Schrappe
- Department of Pediatrics, University Hospital Schleswig-Holstein, Berlin, Germany
| | - Shuhong Shen
- Department of Hematology/Oncology, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Szymon Skoczeń
- Department of Pediatric Oncology and Hematology, Jagiellonian University Medical College, Krakow, Poland
| | - Orietta Spinelli
- Hematology and Bone Marrow Transplant Unit, ASST-Papa Giovanni XXIII Hospital, Piazza OMS, Bergamo, Italy
| | - Jan Stary
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Michael Svaton
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
- CLIP - Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Junko Takita
- Department of Pediatrics, Graduate School of Medicine Kyoto University, Kyoto, Japan
| | - Yanjing Tang
- Department of Hematology/Oncology, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - David T. Teachey
- Division of Oncology, Children's Hospital of Philadelphia, PA, USA
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Daisuke Tomizawa
- Division of Leukemia and Lymphoma, Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Jan Trka
- CLIP - Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Elena Varotto
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Maternal and Child Health Department, University of Padova, Padova, Italy
| | | | - Jun J. Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Allen EJ Yeoh
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yinmei Zhou
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Martin Zimmermann
- Department of Pediatric Hematology and Oncology, Medical School Hannover, Hannover, Germany
| | - Hiroto Inaba
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Charles G. Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Center of Excellence for Leukemia Studies, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
5
|
Mulet-Lazaro R, Delwel R. Oncogenic Enhancers in Leukemia. Blood Cancer Discov 2024; 5:303-317. [PMID: 39093124 PMCID: PMC11369600 DOI: 10.1158/2643-3230.bcd-23-0211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/06/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024] Open
Abstract
Although the study of leukemogenesis has traditionally focused on protein-coding genes, the role of enhancer dysregulation is becoming increasingly recognized. The advent of high-throughput sequencing, together with a better understanding of enhancer biology, has revealed how various genetic and epigenetic lesions produce oncogenic enhancers that drive transformation. These aberrations include translocations that lead to enhancer hijacking, point mutations that modulate enhancer activity, and copy number alterations that modify enhancer dosage. In this review, we describe these mechanisms in the context of leukemia and discuss potential therapeutic avenues to target these regulatory elements. Significance: Large-scale sequencing projects have uncovered recurrent gene mutations in leukemia, but the picture remains incomplete: some patients harbor no such aberrations, whereas others carry only a few that are insufficient to bring about transformation on their own. One of the missing pieces is enhancer dysfunction, which only recently has emerged as a critical driver of leukemogenesis. Knowledge of the various mechanisms of enhancer dysregulation is thus key for a complete understanding of leukemia and its causes, as well as the development of targeted therapies in the era of precision medicine.
Collapse
Affiliation(s)
- Roger Mulet-Lazaro
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
- Oncode Institute, Utrecht, the Netherlands.
| | - Ruud Delwel
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
- Oncode Institute, Utrecht, the Netherlands.
| |
Collapse
|
6
|
Kiri S, Ryba T. Cancer, metastasis, and the epigenome. Mol Cancer 2024; 23:154. [PMID: 39095874 PMCID: PMC11295362 DOI: 10.1186/s12943-024-02069-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Cancer is the second leading cause of death worldwide and disease burden is expected to increase globally throughout the next several decades, with the majority of cancer-related deaths occurring in metastatic disease. Cancers exhibit known hallmarks that endow them with increased survival and proliferative capacities, frequently as a result of de-stabilizing mutations. However, the genomic features that resolve metastatic clones from primary tumors are not yet well-characterized, as no mutational landscape has been identified as predictive of metastasis. Further, many cancers exhibit no known mutation signature. This suggests a larger role for non-mutational genome re-organization in promoting cancer evolution and dissemination. In this review, we highlight current critical needs for understanding cell state transitions and clonal selection advantages for metastatic cancer cells. We examine links between epigenetic states, genome structure, and misregulation of tumor suppressors and oncogenes, and discuss how recent technologies for understanding domain-scale regulation have been leveraged for a more complete picture of oncogenic and metastatic potential.
Collapse
Affiliation(s)
- Saurav Kiri
- College of Medicine, University of Central Florida, 6850 Lake Nona Blvd., Orlando, 32827, Florida, USA.
| | - Tyrone Ryba
- Department of Natural Sciences, New College of Florida, 5800 Bay Shore Rd., Sarasota, 34243, Florida, USA.
| |
Collapse
|
7
|
Xu W, Kim JS, Yang T, Ya A, Sadzewicz L, Tallon L, Harris BT, Sarkaria J, Jin F, Waldman T. STAG2 mutations regulate 3D genome organization, chromatin loops, and Polycomb signaling in glioblastoma multiforme. J Biol Chem 2024; 300:107341. [PMID: 38705393 PMCID: PMC11157269 DOI: 10.1016/j.jbc.2024.107341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024] Open
Abstract
Inactivating mutations of genes encoding the cohesin complex are common in a wide range of human cancers. STAG2 is the most commonly mutated subunit. Here we report the impact of stable correction of endogenous, naturally occurring STAG2 mutations on gene expression, 3D genome organization, chromatin loops, and Polycomb signaling in glioblastoma multiforme (GBM). In two GBM cell lines, correction of their STAG2 mutations significantly altered the expression of ∼10% of all expressed genes. Virtually all the most highly regulated genes were negatively regulated by STAG2 (i.e., expressed higher in STAG2-mutant cells), and one of them-HEPH-was regulated by STAG2 in uncultured GBM tumors as well. While STAG2 correction had little effect on large-scale features of 3D genome organization (A/B compartments, TADs), STAG2 correction did alter thousands of individual chromatin loops, some of which controlled the expression of adjacent genes. Loops specific to STAG2-mutant cells, which were regulated by STAG1-containing cohesin complexes, were very large, supporting prior findings that STAG1-containing cohesin complexes have greater loop extrusion processivity than STAG2-containing cohesin complexes and suggesting that long loops may be a general feature of STAG2-mutant cancers. Finally, STAG2 mutation activated Polycomb activity leading to increased H3K27me3 marks, identifying Polycomb signaling as a potential target for therapeutic intervention in STAG2-mutant GBM tumors. Together, these findings illuminate the landscape of STAG2-regulated genes, A/B compartments, chromatin loops, and pathways in GBM, providing important clues into the largely still unknown mechanism of STAG2 tumor suppression.
Collapse
Affiliation(s)
- Wanying Xu
- Department of Genetics and Genome Sciences, Case Comprehensive Cancer Center, Case Western Reserve School of Medicine, Cleveland, Ohio, USA; The Biomedical Sciences Training Program, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jung-Sik Kim
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, District of Columbia, USA
| | - Tianyi Yang
- Department of Genetics and Genome Sciences, Case Comprehensive Cancer Center, Case Western Reserve School of Medicine, Cleveland, Ohio, USA; The Biomedical Sciences Training Program, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Alvin Ya
- MD/PhD Program, Georgetown University School of Medicine, Washington, District of Columbia, USA; Tumor Biology Training Program, Georgetown University School of Medicine, Washington, District of Columbia, USA
| | - Lisa Sadzewicz
- Institute for Genome Sciences, University of Maryland, Baltimore, Maryland, USA
| | - Luke Tallon
- Institute for Genome Sciences, University of Maryland, Baltimore, Maryland, USA
| | - Brent T Harris
- Departments of Neurology and Pathology, Georgetown University School of Medicine, Washington, District of Columbia, USA
| | - Jann Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Fulai Jin
- Department of Genetics and Genome Sciences, Case Comprehensive Cancer Center, Case Western Reserve School of Medicine, Cleveland, Ohio, USA; Department of Computer and Data Sciences, Department of Population and Quantitative Health Sciences, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA.
| | - Todd Waldman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, District of Columbia, USA.
| |
Collapse
|
8
|
Meyer A, Stelloh C, Zhu N, Rao S. Cohesin loss and MLL-AF9 are not synthetic lethal in murine hematopoietic stem and progenitor cells. RESEARCH SQUARE 2024:rs.3.rs-3894962. [PMID: 38352423 PMCID: PMC10862952 DOI: 10.21203/rs.3.rs-3894962/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Objective As cohesin mutations are rarely found in MLL-rearranged acute myeloid leukemias, we investigated the potential synthetic lethality between cohesin mutations and MLL-AF9 using murine hematopoietic stem and progenitor cells. Results Contrary to our hypothesis, a complete loss of Stag2 or haploinsufficiency of Smc3 were well tolerated in MLL-AF9-expressing hematopoietic stem and progenitor cells. Minimal effect of cohesin subunit loss on the in vitro self-renewal of MLL-AF9-expressing cells was observed. Despite the differing mutational landscapes of cohesin-mutated and MLL fusion AMLs, previous studies showed that cohesin and MLL fusion mutations similarly drive abnormal self-renewal through HOXA gene upregulation. The utilization of a similar mechanism suggests that little selective pressure exists for the acquisition of cohesin mutations in AMLs expressing MLL fusions, explaining their lack of co-occurrence. Our results emphasize the importance of using genetic models to test suspected synthetic lethality and suggest that a lack of co-occurrence may instead point to a common mechanism of action between two mutations.
Collapse
|
9
|
Kimura S, Polonen P, Montefiori L, Park CS, Iacobucci I, Yeoh AE, Attarbaschi A, Moore AS, Brown A, Manabe A, Buldini B, Freeman BB, Chen C, Cheng C, Kean Hui C, Li CK, Pui CH, Qu C, Tomizawa D, Teachey DT, Varotto E, Paietta EM, Arnold ED, Locatelli F, Escherich G, Elisa Muhle H, Marquart HV, de Groot-Kruseman HA, Rowe JM, Stary J, Trka J, Choi JK, Meijerink JPP, Yang JJ, Takita J, Pawinska-Wasikowska K, Roberts KG, Han K, Caldwell KJ, Schmiegelow K, Crews KR, Eguchi M, Schrappe M, Zimmerman M, Takagi M, Maybury M, Svaton M, Reiterova M, Kicinski M, Prater MS, Kato M, Reyes N, Spinelli O, Thomas P, Mazilier P, Gao Q, Masetti R, Kotecha RS, Pieters R, Elitzur S, Luger SM, Mitchell S, Pruett-Miller SM, Shen S, Jeha S, Köhrer S, Kornblau SM, Skoczeń S, Miyamura T, Vincent TL, Imamura T, Conter V, Tang Y, Liu YC, Chang Y, Gu Z, Cheng Z, Yinmei Z, Inaba H, Mullighan CG. Biologic and clinical features of childhood gamma delta T-ALL: identification of STAG2/LMO2 γδ T-ALL as an extremely high risk leukemia in the very young. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.06.23298028. [PMID: 37986997 PMCID: PMC10659466 DOI: 10.1101/2023.11.06.23298028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
PURPOSE Gamma delta T-cell receptor-positive acute lymphoblastic leukemia (γδ T-ALL) is a high-risk but poorly characterized disease. METHODS We studied clinical features of 200 pediatric γδ T-ALL, and compared the prognosis of 93 cases to 1,067 protocol-matched non-γδ T-ALL. Genomic features were defined by transcriptome and genome sequencing. Experimental modeling was used to examine the mechanistic impacts of genomic alterations. Therapeutic vulnerabilities were identified by high throughput drug screening of cell lines and xenografts. RESULTS γδ T-ALL in children under three was extremely high-risk with 5-year event-free survival (33% v. 70% [age 3-<10] and 73% [age ≥10], P =9.5 x 10 -5 ) and 5-year overall survival (49% v. 78% [age 3-<10] and 81% [age ≥10], P =0.002), differences not observed in non-γδ T-ALL. γδ T-ALL in this age group was enriched for genomic alterations activating LMO2 activation and inactivating STAG2 inactivation ( STAG2/LMO2 ). Mechanistically, we show that inactivation of STAG2 profoundly perturbs chromatin organization by altering enhancer-promoter looping resulting in deregulation of gene expression associated with T-cell differentiation. Drug screening showed resistance to prednisolone, consistent with clinical slow treatment response, but identified a vulnerability in DNA repair pathways arising from STAG2 inactivation, which was efficaciously targeted by Poly(ADP-ribose) polymerase (PARP) inhibition, with synergism with HDAC inhibitors. Ex-vivo drug screening on PDX cells validated the efficacy of PARP inhibitors as well as other potential targets including nelarabine. CONCLUSION γδ T-ALL in children under the age of three is extremely high-risk and enriched for STAG2/LMO2 ALL. STAG2 loss perturbs chromatin conformation and differentiation, and STAG2/LMO2 ALL is sensitive to PARP inhibition. These data provide a diagnostic and therapeutic framework for pediatric γδ T-ALL. SUPPORT The authors are supported by the American and Lebanese Syrian Associated Charities of St Jude Children's Research Hospital, NCI grants R35 CA197695, P50 CA021765 (C.G.M.), the Henry Schueler 41&9 Foundation (C.G.M.), and a St. Baldrick's Foundation Robert J. Arceci Innovation Award (C.G.M.), Gabriella Miller Kids First X01HD100702 (D.T.T and C.G.M.) and R03CA256550 (D.T.T. and C.G.M.), F32 5F32CA254140 (L.M.), and a Garwood Postdoctoral Fellowship of the Hematological Malignancies Program of the St Jude Children's Research Hospital Comprehensive Cancer Center (S.K.). This project was supported by the National Cancer Institute of the National Institutes of Health under the following award numbers: U10CA180820, UG1CA189859, U24CA114766, U10CA180899, U10CA180866 and U24CA196173. DISCLAIMER The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The funding agencies were not directly involved in the design of the study, gathering, analysis and interpretation of the data, writing of the manuscript, or decision to submit the manuscript for publication.
Collapse
|
10
|
Babcock S, Calvo KR, Hasserjian RP. Pediatric myelodysplastic syndrome. Semin Diagn Pathol 2023; 40:152-171. [PMID: 37173164 DOI: 10.1053/j.semdp.2023.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023]
Affiliation(s)
| | - Katherine R Calvo
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
11
|
Abstract
In the past decade, we have seen the emergence of sequence-based methods to understand chromosome organization. With the confluence of in situ approaches to capture information on looping, topological domains, and larger chromatin compartments, understanding chromatin-driven disease is becoming feasible. Excitingly, recent advances in single molecule imaging with capacity to reconstruct “bulk-cell” features of chromosome conformation have revealed cell-to-cell chromatin structural variation. The fundamental question motivating our analysis of the literature is, can altered chromatin structure drive tumorigenesis? As our community learns more about rare disease, including low mutational frequency cancers, understanding “chromatin-driven” pathology will illuminate the regulatory structures of the genome. We describe recent insights into altered genome architecture in human cancer, highlighting multiple pathways toward disruptions of chromatin structure, including structural variation, noncoding mutations, metabolism, and de novo mutations to architectural regulators themselves. Our analysis of the literature reveals that deregulation of genome structure is characteristic in distinct classes of chromatin-driven tumors. As we begin to integrate the findings from single cell imaging studies and chromatin structural sequencing, we will be able to understand the diversity of cells within a common diagnosis, and begin to define structure–function relationships of the misfolded genome.
Collapse
|
12
|
Athans SR, Krishnan N, Ramakrishnan S, Cortes Gomez E, Lage-Vickers S, Rak M, Kazmierczak ZI, Ohm JE, Attwood K, Wang J, Woloszynska A. STAG2 expression is associated with adverse survival outcomes and regulates cell phenotype in muscle-invasive bladder cancer. CANCER RESEARCH COMMUNICATIONS 2022; 2:1129-1143. [PMID: 36275363 PMCID: PMC9583756 DOI: 10.1158/2767-9764.crc-22-0155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
STAG2 (Stromal Antigen 2), in healthy somatic cells, functions in sister chromatid cohesion, DNA damage repair, and genome organization, but its role in muscle invasive bladder cancer (MIBC) remains unknown. Here, using whole-exome and targeted sequencing (n=119 bladder cancer clinical samples), we found several STAG2 mutations in MIBC that correlate with loss of protein expression. The analysis of a bladder cancer tissue microarray (n=346) revealed that decreased STAG2 protein expression is associated with improved overall and progression-free survival for MIBC patients. In mouse xenograft studies, STAG2 knockdown (KD) decelerated MIBC tumor growth, whereas STAG2 overexpression accelerated tumor growth. In cell line studies, STAG2 loss augmented treatment with cisplatin, a first-line therapy for MIBC. STAG2 KD or overexpression did not alter degree of aneuploidy, copy number variations, or cell cycle distribution. However, unbiased RNA sequencing analysis revealed that STAG2 KD altered gene expression. STAG2 KD led to significant downregulation of several gene sets, such as collagen containing extracellular matrix, external encapsulating structure organization, and regulation of chemotaxis. Therefore, we investigated the effect of STAG2 KD on cell migration and invasion in vitro. We found that STAG2 KD minimized cell speed, displacement, and invasion. Altogether, our results present a non-canonical function of STAG2 in promoting cell motility and invasion of MIBC cells. This work forms the basis for additional investigation into the role of STAG2 in transcriptional regulation and how it becomes dysregulated in STAG2-mutant MIBC.
Collapse
Affiliation(s)
- Sarah R. Athans
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Nithya Krishnan
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Swathi Ramakrishnan
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Eduardo Cortes Gomez
- Department of Bioinformatics and Biostatistics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | | | - Monika Rak
- Department of Cell Biology, Jagiellonian University, 31-007, Krakow, Poland
| | - Zara I. Kazmierczak
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Joyce Ellen Ohm
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Kristopher Attwood
- Department of Bioinformatics and Biostatistics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Jianmin Wang
- Department of Bioinformatics and Biostatistics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Anna Woloszynska
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
- Corresponding Author: Anna Woloszynska, Roswell Park Comprehensive Cancer Center, 665 Elm Street, Buffalo, NY 14203. Phone: 716-845-8495; E-mail:
| |
Collapse
|
13
|
McIntyre AJ, Angel CZ, Smith JS, Templeman A, Beattie K, Beattie S, Ormrod A, Devlin E, McGreevy C, Bothwell C, Eddie S, Buckley N, Williams R, Mullan P. TBX2 acts as a potent transcriptional silencer of tumour suppressor genes through interaction with the CoREST complex to sustain the proliferation of breast cancers. Nucleic Acids Res 2022; 50:6154-6173. [PMID: 35687133 PMCID: PMC9226508 DOI: 10.1093/nar/gkac494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 05/20/2022] [Accepted: 05/30/2022] [Indexed: 11/26/2022] Open
Abstract
Chromosome 17q23 amplification occurs in 20% of primary breast tumours and is associated with poor outcome. The TBX2 gene is located on 17q23 and is often over-expressed in this breast tumour subset. TBX2 is an anti-senescence gene, promoting cell growth and survival through repression of Tumour Suppressor Genes (TSGs), such as NDRG1 and CST6. Previously we found that TBX2 cooperates with the PRC2 complex to repress several TSGs, and that PRC2 inhibition restored NDRG1 expression to impede cellular proliferation. Here, we now identify CoREST proteins, LSD1 and ZNF217, as novel interactors of TBX2. Genetic or pharmacological targeting of CoREST emulated TBX2 loss, inducing NDRG1 expression and abolishing breast cancer growth in vitro and in vivo. Furthermore, we uncover that TBX2/CoREST targeting of NDRG1 is achieved by recruitment of TBX2 to the NDRG1 promoter by Sp1, the abolishment of which resulted in NDRG1 upregulation and diminished cancer cell proliferation. Through ChIP-seq we reveal that 30% of TBX2-bound promoters are shared with ZNF217 and identify novel targets repressed by TBX2/CoREST; of these targets a lncRNA, LINC00111, behaves as a negative regulator of cell proliferation. Overall, these data indicate that inhibition of CoREST proteins represents a promising therapeutic intervention for TBX2-addicted breast tumours.
Collapse
Affiliation(s)
- Alexander J McIntyre
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Charlotte Z Angel
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, UK
| | - James S Smith
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, London SM2 5NG, UK
| | - Amy Templeman
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Katherine Beattie
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Shannon Beattie
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Alice Ormrod
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Eadaoin Devlin
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Charles McGreevy
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Chloe Bothwell
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Sharon L Eddie
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Niamh E Buckley
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Rich Williams
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Paul B Mullan
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, UK
| |
Collapse
|
14
|
Hou W, Li Y, Zhang J, Xia Y, Wang X, Chen H, Lou H. Cohesin in DNA damage response and double-strand break repair. Crit Rev Biochem Mol Biol 2022; 57:333-350. [PMID: 35112600 DOI: 10.1080/10409238.2022.2027336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 11/03/2022]
Abstract
Cohesin, a four-subunit ring comprising SMC1, SMC3, RAD21 and SA1/2, tethers sister chromatids by DNA replication-coupled cohesion (RC-cohesion) to guarantee correct chromosome segregation during cell proliferation. Postreplicative cohesion, also called damage-induced cohesion (DI-cohesion), is an emerging critical player in DNA damage response (DDR). In this review, we sum up recent progress on how cohesin regulates the DNA damage checkpoint activation and repair pathway choice, emphasizing postreplicative cohesin loading and DI-cohesion establishment in yeasts and mammals. DI-cohesion and RC-cohesion show distinct features in many aspects. DI-cohesion near or far from the break sites might undergo different regulations and execute different tasks in DDR and DSB repair. Furthermore, some open questions in this field and the significance of this new scenario to our understanding of genome stability maintenance and cohesinopathies are discussed.
Collapse
Affiliation(s)
- Wenya Hou
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Yan Li
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Jiaxin Zhang
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Yisui Xia
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Xueting Wang
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
- Union Shenzhen Hospital, Department of Dermatology, Huazhong University of Science and Technology (Nanshan Hospital), Shenzhen, Guangdong, China
| | - Hongxiang Chen
- Union Shenzhen Hospital, Department of Dermatology, Huazhong University of Science and Technology (Nanshan Hospital), Shenzhen, Guangdong, China
| | - Huiqiang Lou
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| |
Collapse
|
15
|
Syed S, Song A, Hussaini M. Expanding diagnostic criteria: Multiorgan T-Cell/myeloid mixed phenotype acute leukemia with t(v;11q23) KMT2A-rearrangement successfully treated by allogeneic stem cell transplant. Leuk Res Rep 2022; 17:100306. [PMID: 35356416 PMCID: PMC8958533 DOI: 10.1016/j.lrr.2022.100306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 11/26/2022] Open
Abstract
Mixed phenotype acute leukemia (MPAL) consists of a leukemia of two different lineages (myeloid, T, and/or B) co-occurring in the same tissue. KMT2A-rearrangement is rare and usually seen in B/myeloid MPAL. We report a unique case of T/myeloid MPAL with a t(v;11q23) KMT2A-rearrangement, with acute myeloid leukemia (AML) in the bone marrow but concurrent T-cell acute lymphoblastic leukemia (T-ALL) in lymph node and skin. Genomic interrogation suggests an undifferentiated stem cells with KMT2A rearrangement as the founder mutation that acquired additional lineage-specific mutations resulting in AML in the marrow and T-ALL in other sites.
Collapse
Affiliation(s)
- Suhayb Syed
- University of South Florida, Tampa, FL, United States
| | - Amy Song
- Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Mohammad Hussaini
- Department of Pathology and Lab Medicines, H. Lee Moffitt Cancer Center, United States
| |
Collapse
|
16
|
Simonetti G, Mengucci C, Padella A, Fonzi E, Picone G, Delpino C, Nanni J, De Tommaso R, Franchini E, Papayannidis C, Marconi G, Pazzaglia M, Perricone M, Scarpi E, Fontana MC, Bruno S, Tebaldi M, Ferrari A, Bochicchio MT, Ghelli Luserna Di Rorà A, Ghetti M, Napolitano R, Astolfi A, Baldazzi C, Guadagnuolo V, Ottaviani E, Iacobucci I, Cavo M, Castellani G, Haferlach T, Remondini D, Capozzi F, Martinelli G. Integrated genomic-metabolic classification of acute myeloid leukemia defines a subgroup with NPM1 and cohesin/DNA damage mutations. Leukemia 2021; 35:2813-2826. [PMID: 34193978 PMCID: PMC8478658 DOI: 10.1038/s41375-021-01318-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/21/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023]
Abstract
Although targeting of cell metabolism is a promising therapeutic strategy in acute myeloid leukemia (AML), metabolic dependencies are largely unexplored. We aimed to classify AML patients based on their metabolic landscape and map connections between metabolic and genomic profiles. Combined serum and urine metabolomics improved AML characterization compared with individual biofluid analysis. At intracellular level, AML displayed dysregulated amino acid, nucleotide, lipid, and bioenergetic metabolism. The integration of intracellular and biofluid metabolomics provided a map of alterations in the metabolism of polyamine, purine, keton bodies and polyunsaturated fatty acids and tricarboxylic acid cycle. The intracellular metabolome distinguished three AML clusters, correlating with distinct genomic profiles: NPM1-mutated(mut), chromatin/spliceosome-mut and TP53-mut/aneuploid AML that were confirmed by biofluid analysis. Interestingly, integrated genomic-metabolic profiles defined two subgroups of NPM1-mut AML. One was enriched for mutations in cohesin/DNA damage-related genes (NPM1/cohesin-mut AML) and showed increased serum choline + trimethylamine-N-oxide and leucine, higher mutation load, transcriptomic signatures of reduced inflammatory status and better ex-vivo response to EGFR and MET inhibition. The transcriptional differences of enzyme-encoding genes between NPM1/cohesin-mut and NPM1-mut allowed in silico modeling of intracellular metabolic perturbations. This approach predicted alterations in NAD and purine metabolism in NPM1/cohesin-mut AML that suggest potential vulnerabilities, worthy of being therapeutically explored.
Collapse
Affiliation(s)
- Giorgia Simonetti
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy.
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.
| | - Carlo Mengucci
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, FC, Italy
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Antonella Padella
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy.
| | - Eugenio Fonzi
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
| | - Gianfranco Picone
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, FC, Italy
| | - Claudio Delpino
- Departamento de Ingeniería Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Jacopo Nanni
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Rossella De Tommaso
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Eugenia Franchini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
| | - Cristina Papayannidis
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Giovanni Marconi
- Hematology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
| | - Martina Pazzaglia
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Margherita Perricone
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Emanuela Scarpi
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
| | - Maria Chiara Fontana
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
| | - Samantha Bruno
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Michela Tebaldi
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
| | - Anna Ferrari
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
| | - Maria Teresa Bochicchio
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
| | | | - Martina Ghetti
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
| | - Roberta Napolitano
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
| | - Annalisa Astolfi
- Giorgio Prodi" Cancer Research Center, University of Bologna, Bologna and Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Carmen Baldazzi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Viviana Guadagnuolo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Emanuela Ottaviani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Ilaria Iacobucci
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michele Cavo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Gastone Castellani
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | | | - Daniel Remondini
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Francesco Capozzi
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, FC, Italy
| | - Giovanni Martinelli
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
| |
Collapse
|
17
|
Jann JC, Tothova Z. Cohesin mutations in myeloid malignancies. Blood 2021; 138:649-661. [PMID: 34157074 PMCID: PMC8394903 DOI: 10.1182/blood.2019004259] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/24/2021] [Indexed: 12/25/2022] Open
Abstract
Cohesin is a multisubunit protein complex that forms a ring-like structure around DNA. It is essential for sister chromatid cohesion, chromatin organization, transcriptional regulation, and DNA damage repair and plays a major role in dynamically shaping the genome architecture and maintaining DNA integrity. The core complex subunits STAG2, RAD21, SMC1, and SMC3, as well as its modulators PDS5A/B, WAPL, and NIPBL, have been found to be recurrently mutated in hematologic and solid malignancies. These mutations are found across the full spectrum of myeloid neoplasia, including pediatric Down syndrome-associated acute megakaryoblastic leukemia, myelodysplastic syndromes, chronic myelomonocytic leukemia, and de novo and secondary acute myeloid leukemias. The mechanisms by which cohesin mutations act as drivers of clonal expansion and disease progression are still poorly understood. Recent studies have described the impact of cohesin alterations on self-renewal and differentiation of hematopoietic stem and progenitor cells, which are associated with changes in chromatin and epigenetic state directing lineage commitment, as well as genomic integrity. Herein, we review the role of the cohesin complex in healthy and malignant hematopoiesis. We discuss clinical implications of cohesin mutations in myeloid malignancies and discuss opportunities for therapeutic targeting.
Collapse
Affiliation(s)
- Johann-Christoph Jann
- Department of Hematology and Oncology, University of Heidelberg, Mannheim, Germany; and
| | - Zuzana Tothova
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
18
|
Antony J, Chin CV, Horsfield JA. Cohesin Mutations in Cancer: Emerging Therapeutic Targets. Int J Mol Sci 2021; 22:6788. [PMID: 34202641 PMCID: PMC8269296 DOI: 10.3390/ijms22136788] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/08/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
The cohesin complex is crucial for mediating sister chromatid cohesion and for hierarchal three-dimensional organization of the genome. Mutations in cohesin genes are present in a range of cancers. Extensive research over the last few years has shown that cohesin mutations are key events that contribute to neoplastic transformation. Cohesin is involved in a range of cellular processes; therefore, the impact of cohesin mutations in cancer is complex and can be cell context dependent. Candidate targets with therapeutic potential in cohesin mutant cells are emerging from functional studies. Here, we review emerging targets and pharmacological agents that have therapeutic potential in cohesin mutant cells.
Collapse
Affiliation(s)
- Jisha Antony
- Department of Pathology, Otago Medical School, University of Otago, Dunedin 9016, New Zealand;
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
| | - Chue Vin Chin
- Department of Pathology, Otago Medical School, University of Otago, Dunedin 9016, New Zealand;
| | - Julia A. Horsfield
- Department of Pathology, Otago Medical School, University of Otago, Dunedin 9016, New Zealand;
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
- Genetics Otago Research Centre, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
19
|
Surdez D, Zaidi S, Grossetête S, Laud-Duval K, Ferre AS, Mous L, Vourc'h T, Tirode F, Pierron G, Raynal V, Baulande S, Brunet E, Hill V, Delattre O. STAG2 mutations alter CTCF-anchored loop extrusion, reduce cis-regulatory interactions and EWSR1-FLI1 activity in Ewing sarcoma. Cancer Cell 2021; 39:810-826.e9. [PMID: 33930311 DOI: 10.1016/j.ccell.2021.04.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 08/31/2020] [Accepted: 04/02/2021] [Indexed: 12/19/2022]
Abstract
STAG2, a cohesin family gene, is among the most recurrently mutated genes in cancer. STAG2 loss of function (LOF) is associated with aggressive behavior in Ewing sarcoma, a childhood cancer driven by aberrant transcription induced by the EWSR1-FLI1 fusion oncogene. Here, using isogenic Ewing cells, we show that, while STAG2 LOF profoundly changes the transcriptome, it does not significantly impact EWSR1-FLI1, CTCF/cohesin, or acetylated H3K27 DNA binding patterns. In contrast, it strongly alters the anchored dynamic loop extrusion process at boundary CTCF sites and dramatically decreases promoter-enhancer interactions, particularly affecting the expression of genes regulated by EWSR1-FLI1 at GGAA microsatellite neo-enhancers. Down-modulation of cis-mediated EWSR1-FLI1 activity, observed in STAG2-LOF conditions, is associated with enhanced migration and invasion properties of Ewing cells previously observed in EWSR1-FLI1low cells. Our study illuminates a process whereby STAG2-LOF fine-tunes the activity of an oncogenic transcription factor through altered CTCF-anchored loop extrusion and cis-mediated enhancer mechanisms.
Collapse
MESH Headings
- Bone Neoplasms/genetics
- Bone Neoplasms/mortality
- Bone Neoplasms/pathology
- CCCTC-Binding Factor/chemistry
- CCCTC-Binding Factor/genetics
- CCCTC-Binding Factor/metabolism
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Line, Tumor
- Cell Movement/genetics
- Chromatin Immunoprecipitation
- Chromosomal Proteins, Non-Histone/metabolism
- Enhancer Elements, Genetic
- Gene Expression Regulation, Neoplastic
- Histones/metabolism
- Humans
- Loss of Function Mutation
- Lysine/metabolism
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Promoter Regions, Genetic
- Sarcoma, Ewing/genetics
- Sarcoma, Ewing/mortality
- Sarcoma, Ewing/pathology
- Cohesins
Collapse
Affiliation(s)
- Didier Surdez
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Centre, Institut Curie Research Centre, 75005 Paris, France.
| | - Sakina Zaidi
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Centre, Institut Curie Research Centre, 75005 Paris, France
| | - Sandrine Grossetête
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Centre, Institut Curie Research Centre, 75005 Paris, France
| | - Karine Laud-Duval
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Centre, Institut Curie Research Centre, 75005 Paris, France
| | - Anna Sole Ferre
- INSERM UMR 1163, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue contre le Cancer and Université de Paris, Imagine Institute, 75005 Paris, France
| | - Lieke Mous
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Centre, Institut Curie Research Centre, 75005 Paris, France
| | - Thomas Vourc'h
- UMR 168, Biology Inspired Physics at Mesoscales, PSL Research University, Institut Curie Research Centre, 75005 Paris, France
| | - Franck Tirode
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS 5286, INSERM U1052, Cancer Research Center of Lyon, 69008 Lyon, France
| | - Gaelle Pierron
- Unité de Génétique Somatique, Service d'oncogénétique, Institut Curie, Centre Hospitalier, 75005 Paris, France
| | - Virginie Raynal
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Centre, Institut Curie Research Centre, 75005 Paris, France; Institut Curie Genomics of Excellence (ICGex) Platform, PSL Université, Institut Curie Research Centre, 75005 Paris, France
| | - Sylvain Baulande
- Institut Curie Genomics of Excellence (ICGex) Platform, PSL Université, Institut Curie Research Centre, 75005 Paris, France
| | - Erika Brunet
- INSERM UMR 1163, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue contre le Cancer and Université de Paris, Imagine Institute, 75005 Paris, France
| | - Véronique Hill
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Centre, Institut Curie Research Centre, 75005 Paris, France
| | - Olivier Delattre
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Centre, Institut Curie Research Centre, 75005 Paris, France; Unité de Génétique Somatique, Service d'oncogénétique, Institut Curie, Centre Hospitalier, 75005 Paris, France.
| |
Collapse
|
20
|
Epigenetics in a Spectrum of Myeloid Diseases and Its Exploitation for Therapy. Cancers (Basel) 2021; 13:cancers13071746. [PMID: 33917538 PMCID: PMC8038780 DOI: 10.3390/cancers13071746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The genome is stored in the limited space of the nucleus in a highly condensed form. The regulation of this packaging contributes to determining the accessibility of genes and is important for cell function. Genes affecting the genome’s packaging are frequently mutated in bone marrow cells that give rise to the different types of blood cells. Here, we first discuss the molecular functions of these genes and their role in blood generation under healthy conditions. Then, we describe how their mutations relate to a subset of diseases including blood cancers. Finally, we provide an overview of the current efforts of using and developing drugs targeting these and related genes. Abstract Mutations in genes encoding chromatin regulators are early events contributing to developing asymptomatic clonal hematopoiesis of indeterminate potential and its frequent progression to myeloid diseases with increasing severity. We focus on the subset of myeloid diseases encompassing myelodysplastic syndromes and their transformation to secondary acute myeloid leukemia. We introduce the major concepts of chromatin regulation that provide the basis of epigenetic regulation. In greater detail, we discuss those chromatin regulators that are frequently mutated in myelodysplastic syndromes. We discuss their role in the epigenetic regulation of normal hematopoiesis and the consequence of their mutation. Finally, we provide an update on the drugs interfering with chromatin regulation approved or in development for myelodysplastic syndromes and acute myeloid leukemia.
Collapse
|
21
|
Heimbruch KE, Meyer AE, Agrawal P, Viny AD, Rao S. A cohesive look at leukemogenesis: The cohesin complex and other driving mutations in AML. Neoplasia 2021; 23:337-347. [PMID: 33621854 PMCID: PMC7905235 DOI: 10.1016/j.neo.2021.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023]
Abstract
Acute myeloid leukemia (AML) affects tens of thousands of patients a year, yet survival rates are as low as 25% in certain populations. This poor survival rate is partially due to the vast genetic diversity of the disease. Rarely do 2 patients with AML have the same mutational profile, which makes the development of targeted therapies particularly challenging. However, a set of recurrent mutations in chromatin modifiers have been identified in many patients, including mutations in the cohesin complex, which have been identified in up to 20% of cases. Interestingly, the canonical function of the cohesin complex in establishing sister chromatid cohesin during mitosis is unlikely to be the affected role in leukemogenesis. Instead, the cohesin complex's role in DNA looping and gene regulation likely facilitates disease. The epigenetic mechanisms by which cohesin complex mutations promote leukemia are not completely elucidated, but alterations of enhancer-promoter interactions and differential histone modifications have been shown to drive oncogenic gene expression changes. Such changes commonly include HoxA upregulation, which may represent a common pathway that could be therapeutically targeted. As cohesin mutations rarely occur alone, examining the impact of common co-occurring mutations, including those in NPM1, the core-binding factor complex, FLT3, and ASXL1, will yield additional insight. While further study of these mutational interactions is required, current research suggests that the use of combinatorial genetics could be the key to uncovering new targets, allowing for the treatment of AML patients based on their individual genetic profiles.
Collapse
Affiliation(s)
- Katelyn E Heimbruch
- Blood Research Institute, Versiti, Milwaukee, WI, USA; Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Puja Agrawal
- Blood Research Institute, Versiti, Milwaukee, WI, USA; Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Aaron D Viny
- Department of Medicine, Division of Hematology and Oncology, and Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Sridhar Rao
- Blood Research Institute, Versiti, Milwaukee, WI, USA; Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Pediatrics, Division of Hematology, Oncology, and Bone Marrow Transplantation, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
22
|
Prolonged Response of a Patient with Relapsed Acute Myeloid Leukemia to a Novel Oral Bromodomain Extraterminal Inhibitor (BETi). Case Rep Hematol 2020; 2020:8830123. [PMID: 33381331 PMCID: PMC7758129 DOI: 10.1155/2020/8830123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 11/18/2020] [Accepted: 11/30/2020] [Indexed: 01/03/2023] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive clonal bone marrow cancer characterized by high rates of relapse and mortality. A middle-aged woman with AML relapsed twice after achieving complete remission with induction therapy and subsequent salvage therapy. She was then enrolled in a clinical trial with the bromodomain extraterminal inhibitor (BETi) mivebresib and achieved complete remission with incomplete count recovery (CRi) with monotherapy. Subsequently, she relapsed and was transitioned to combination therapy with mivebresib plus venetoclax and achieved CR again. The patient required eltrombopag to decrease platelet dependence in both arms of the trial and exhibited less myelosuppression with the combination therapy. The exceptional response to mivebresib demonstrated by this patient underscores the therapeutic potential of mivebresib.
Collapse
|