1
|
Castillo BS, Boadi T, Han X, Shulman LN, Martei YM. Racial Disparities in Receipt of Guideline-Concordant Care in Older Adults With Early Breast Cancer. JAMA Netw Open 2024; 7:e2441056. [PMID: 39446324 PMCID: PMC11581576 DOI: 10.1001/jamanetworkopen.2024.41056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/30/2024] [Indexed: 11/06/2024] Open
Abstract
Importance Racial disparities in receipt of guideline-concordant care (GCC) among older patients with potentially curable breast cancer are understudied. Objective To determine whether rates of GCC, time to treatment initiation, and all-cause mortality in stage I to III breast cancer differ by race among older adults. Design, Setting, and Participants This cohort study used data from the National Cancer Database and included patients aged 65 years and older with stage I to III breast cancer, diagnosed between 2010 and 2019. Data analysis was conducted between July 2022 to July 2023. Exposures Race, defined as non-Hispanic Black or non-Hispanic White. Main Outcomes and Measures The primary outcome was nonreceipt of GCC, defined using the National Comprehensive Cancer Network guidelines, and all-cause mortality. The secondary outcome was time to treatment initiation. Univariate and multivariate regression analysis were used to determine association between exposure and outcomes. Models for GCC and all-cause mortality included age, stage, receptor status, year of diagnosis, Charlson-Deyo comorbidity index, insurance, health care setting, and neighborhood-level educational attainment and median income. Results The analytic cohort included 258 531 participants (mean [SD] age, 72.5 [6.0] years), with 25 174 participants who identified as non-Hispanic Black (9.7%) and 233 357 participants who identified as non-Hispanic White (90.3%), diagnosed between 2010 and 2017. A total of 4563 non-Hispanic Black participants (18.1%) and 35 374 non-Hispanic White participants (15.2%) did not receive GCC. Non-Hispanic Black race, compared with non-Hispanic White race, was associated with increased odds of not receiving GCC in the multivariate analysis (adjusted odds ratio [aOR], 1.13; 95% CI, 1.08-1.17; P < .001). Non-Hispanic Black race was associated with 26.1% increased risk of all-cause mortality in the univariate analysis, which decreased to 4.7%, after adjusting for GCC and clinical and sociodemographic factors (adjusted hazard ratio, 1.05; 95% CI, 1.01-1.08; P = .006). Non-Hispanic White race, compared with non-Hispanic Black race, was associated with increased odds of initiating treatment within 30 (OR, 1.65; 95% CI, 1.6-1.69), 60 (OR, 2.11; 95% CI, 2.04-2.18), and 90 (OR, 2.39; 95% CI, 2.27-2.51) days of diagnosis. Conclusions and Relevance In this cohort study, non-Hispanic Black race was associated with increased odds of not receiving GCC and less timely treatment initiation. Non-Hispanic Black race was associated with increased all-cause mortality, which was reduced after adjusting for GCC and clinical and sociodemographic factors. These findings suggest that optimizing timely receipt of GCC may represent a modifiable pathway to improving inferior survival outcomes among older non-Hispanic Black patients with breast cancer.
Collapse
Affiliation(s)
- Brenda S. Castillo
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | | | - Xiaoyan Han
- Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Lawrence N. Shulman
- Hematology-Oncology Division, Department of Medicine, University of Pennsylvania, Philadelphia
- Abramson Cancer Center, University of Pennsylvania, Philadelphia
| | - Yehoda M. Martei
- Hematology-Oncology Division, Department of Medicine, University of Pennsylvania, Philadelphia
- Abramson Cancer Center, University of Pennsylvania, Philadelphia
| |
Collapse
|
2
|
Miao X, Shen S, Koch G, Wang X, Li J, Shen X, Qu J, Straubinger RM, Jusko WJ. Systems Pharmacodynamic Model of Combined Gemcitabine and Trabectedin in Pancreatic Cancer Cells. Part I: Effects on Signal Transduction Pathways Related to Tumor Growth. J Pharm Sci 2024; 113:214-227. [PMID: 38498417 PMCID: PMC11017371 DOI: 10.1016/j.xphs.2023.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/22/2023] [Accepted: 10/22/2023] [Indexed: 03/20/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is often chemotherapy-resistant, and novel drug combinations would fill an unmet clinical need. Previously we reported synergistic cytotoxic effects of gemcitabine and trabectedin on pancreatic cancer cells, but underlying protein-level interaction mechanisms remained unclear. We employed a reliable, sensitive, comprehensive, quantitative, high-throughput IonStar proteomic workflow to investigate the time course of gemcitabine and trabectedin effects, alone and combined, upon pancreatic cancer cells. MiaPaCa-2 cells were incubated with vehicle (controls), gemcitabine, trabectedin, and their combinations over 72 hours. Samples were collected at intervals and analyzed using the label-free IonStar liquid chromatography-mass spectrometry (LC-MS/MS) workflow to provide temporal quantification of protein expression for 4,829 proteins in four experimental groups. To characterize diverse signal transduction pathways, a comprehensive systems pharmacodynamic (SPD) model was developed. The analysis is presented in two parts. Here, Part I describes drug responses in cancer cell growth and migration pathways included in the full model: receptor tyrosine kinase- (RTK), integrin-, G-protein coupled receptor- (GPCR), and calcium-signaling pathways. The developed model revealed multiple underlying mechanisms of drug actions, provides insight into the basis of drug interaction synergism, and offers a scientific rationale for potential drug combination strategies.
Collapse
Affiliation(s)
- Xin Miao
- Department of Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, United States
| | - Shichen Shen
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, NY, United States; New York State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY, United States
| | - Gilbert Koch
- Pediatric Pharmacology and Pharmacometrics Research Center, University of Basel, Children's Hospital, Basel, Switzerland
| | - Xue Wang
- New York State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY, United States; Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, United States
| | - Jun Li
- New York State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY, United States
| | - Xiaomeng Shen
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, NY, United States; New York State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY, United States
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, United States; New York State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY, United States
| | - Robert M Straubinger
- Department of Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, United States; New York State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY, United States; Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, United States
| | - William J Jusko
- Department of Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, United States.
| |
Collapse
|
3
|
Pranteda A, Piastra V, Serra M, Bernardini R, Lo Sardo F, Carpano S, Diodoro MG, Bartolazzi A, Milella M, Blandino G, Bossi G. Activated MKK3/MYC crosstalk impairs dabrafenib response in BRAFV600E colorectal cancer leading to resistance. Biomed Pharmacother 2023; 167:115480. [PMID: 37713993 DOI: 10.1016/j.biopha.2023.115480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023] Open
Abstract
Colorectal cancer (CRC) patients with BRAF mutations develop resistance to BRAF inhibitors at a very early stage. Understanding the molecular mechanisms involved in BRAF inhibitor resistance is critical for the development of novel therapeutic opportunities for this subtype of CRC patients. CRC cells bearing BRAF mutations are mostly sensitive to the abrogation of Mitogen-Activated Protein Kinase Kinase 3 (MKK3), a specific activator of p38MAPKs signaling, suggesting that BRAF alterations might addict CRC cells to the MKK3/p38MAPK signaling. Interestingly, publicly available gene expression profiling data show significantly higher MKK3 transcript levels in CRC lines with acquired resistance to BRAF inhibitors. Herein, we investigated the roles of MKK3 in the response to BRAF targeting (dabrafenib) with COLO205 and HT29 BRAFV600E CRC lines and derived dabrafenib-resistant (DABR) sublines. Dabrafenib treatments reduce MKK3 activation by inducing autophagy in parental but not DABR cells. The MKK3 knockdown induces cell death in DABR cells, whereas ectopic MKK3 expression reduces dabrafenib sensitivity in parental cells. Mechanistically, activated MKK3 interacts and co-localizes with c-Myc oncoprotein (MYC), sustaining MYC protein stability and thus preventing the dabrafenib induced effects in CRC DABR cells both in vitro and in vivo. Overall, we identify a novel molecular mechanism beyond the dabrafenib resistance, shedding light on an uncovered vulnerability for the development of novel therapeutic opportunities in BRAFV600E CRC.
Collapse
Affiliation(s)
- Angelina Pranteda
- Translational Oncology Research Unit, Department of Diagnostic Research and Technological Innovation, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi, 53, 00144 Rome, Italy; Department of Science, University Roma TRE, Viale G. Marconi, 446 I, 00146 Rome, Italy
| | - Valentina Piastra
- Translational Oncology Research Unit, Department of Diagnostic Research and Technological Innovation, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi, 53, 00144 Rome, Italy; Department of Science, University Roma TRE, Viale G. Marconi, 446 I, 00146 Rome, Italy
| | - Martina Serra
- Interdepartmental Centre for Comparative Medicine, Alternative Techniques and Aquaculture (CIMETA), University of Rome "Tor Vergata, Via Montpellier, 1, 00133 Rome, Italy
| | - Roberta Bernardini
- Interdepartmental Centre for Comparative Medicine, Alternative Techniques and Aquaculture (CIMETA), University of Rome "Tor Vergata, Via Montpellier, 1, 00133 Rome, Italy; Center for Research and Services "Preclinical Experimentation and Animal Welfare" (SPBA), University of Rome "La Sapienza", Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Federica Lo Sardo
- Translational Oncology Research Unit, Department of Diagnostic Research and Technological Innovation, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi, 53, 00144 Rome, Italy
| | - Silvia Carpano
- Second Division of Medical Oncology, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi, 53, 00144 Rome, Italy
| | - Maria Grazia Diodoro
- Department of Pathology, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi, 53, 00144 Rome, Italy
| | - Armando Bartolazzi
- Pathology Research Laboratory, Sant'Andrea University Hospital, Via di Grottarossa, 1035, 00189 Rome, Italy
| | - Michele Milella
- UOC of Oncology, Verona University and Hospital Trust (Azienda Ospedaliera Universitaria Integrata-AOUI-Verona), Piazzale Aristide Stefani, 1, 37126 Verona, Italy
| | - Giovanni Blandino
- Translational Oncology Research Unit, Department of Diagnostic Research and Technological Innovation, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi, 53, 00144 Rome, Italy
| | - Gianluca Bossi
- Translational Oncology Research Unit, Department of Diagnostic Research and Technological Innovation, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi, 53, 00144 Rome, Italy.
| |
Collapse
|
4
|
Johnson JA, Moore BJ, Syrnioti G, Eden CM, Wright D, Newman LA. Landmark Series: The Cancer Genome Atlas and the Study of Breast Cancer Disparities. Ann Surg Oncol 2023; 30:6427-6440. [PMID: 37587359 DOI: 10.1245/s10434-023-13866-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/24/2023] [Indexed: 08/18/2023]
Abstract
Race-related variation in breast cancer incidence and mortality are well-documented in the United States. The effect of genetic ancestry on disparities in tumor genomics, risk factors, treatment, and outcomes of breast cancer is less understood. The Cancer Genome Atlas (TCGA) is a publicly available resource that has allowed for the recent emergence of genome analysis research seeking to characterize tumor DNA and protein expression by ancestry as well as the social construction of race and ethnicity. Results from TCGA based studies support previous clinical evidence that demonstrates that American women with African ancestry are more likely to be afflicted with breast cancers featuring aggressive biology and poorer outcomes compared with women with other backgrounds. Data from TCGA based studies suggest that Asian women have tumors with favorable immune microenvironments and may experience better disease-free survival compared with white Americans. TCGA contains limited data on Hispanic/Latinx patients due to small sample size. Overall, TCGA provides important opportunities to define the molecular, biologic, and germline genetic factors that contribute to breast cancer disparities.
Collapse
Affiliation(s)
- Josh A Johnson
- Department of Surgery, New York Presbyterian, Weill Cornell Medicine, New York, NY, USA
| | | | - Georgia Syrnioti
- Department of Surgery, New York Presbyterian, Weill Cornell Medicine, New York, NY, USA
| | - Claire M Eden
- Department of Surgery, New York Presbyterian Queens, Weill Cornell Medicine, Flushing, NY, USA
| | - Drew Wright
- Samuel J. Wood Library, Weill Cornell Medicine, New York, NY, USA
| | - Lisa A Newman
- Department of Surgery, New York Presbyterian, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
5
|
Gordon EM, Hall FL. The advent of a pan-collagenous CLOVIS POINT for pathotropic targeting and cancer gene therapy, a retrospective. FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1125928. [PMID: 39086682 PMCID: PMC11285703 DOI: 10.3389/fmmed.2023.1125928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/13/2023] [Indexed: 08/02/2024]
Abstract
The 'Clovis Point'-an enabling prehistoric gain-of-function in stone-age tool technologies which empowered the Paleoindian-Americans to hunt, to strike-deep, and to kill designated target megafauna more efficiently-was created biochemically by molecular-genetic bio-engineering. This Biomedical "Clovis Point" was crafted by adapting a broad-spectrum Pan-Collagen Binding Domain (Pan-Coll/CBD) found within the immature pre-pro-peptide segment of Von Willebrand Factor into a constructive series of advanced medical applications. Developed experimentally, preclinically, and clinically into a cutting-edge Biotechnology Platform, the Clovis Point is suitable for 1) solid-state binding of growth factors on collagenous scaffolds for improved orthopedic wound healing, 2) promoting regeneration of injured/diseased tissues; and 3) autologous stem cell capture, expansion, and gene-based therapies. Subsequent adaptations of the high-affinity Pan-Coll/CBD (exposed-collagen-seeking/surveillance function) for intravenous administration in humans, enabled the physiological delivery, aka Pathotropic Targeting to diseased tissues via the modified envelopes of gene vectors; enabling 4) precision tumor-targeting for cancer gene therapy and 5) adoptive/localized immunotherapies, demonstrating improved long-term survival value-thus pioneering a proximal and accessible cell cycle control point for cancer management-empowering modern medical oncologists to address persistent problems of chemotherapy resistance, recurrence, and occult progression of metastatic disease. Recent engineering adaptations have advanced the clinical utility to include the targeted delivery of small molecule APIs: including taxanes, mAbs, and RNA-based therapeutics.
Collapse
Affiliation(s)
- Erlinda M. Gordon
- Counterpoint Biomedica LLC, Santa Monica, CA, United States
- Delta Next-Gene, LLC, Santa Monica, CA, United States
| | - Frederick L. Hall
- Counterpoint Biomedica LLC, Santa Monica, CA, United States
- Delta Next-Gene, LLC, Santa Monica, CA, United States
| |
Collapse
|
6
|
Istasy P, Lee WS, Iansavichene A, Upshur R, Gyawali B, Burkell J, Sadikovic B, Lazo-Langner A, Chin-Yee B. The Impact of Artificial Intelligence on Health Equity in Oncology: Scoping Review. J Med Internet Res 2022; 24:e39748. [PMID: 36005841 PMCID: PMC9667381 DOI: 10.2196/39748] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/11/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The field of oncology is at the forefront of advances in artificial intelligence (AI) in health care, providing an opportunity to examine the early integration of these technologies in clinical research and patient care. Hope that AI will revolutionize health care delivery and improve clinical outcomes has been accompanied by concerns about the impact of these technologies on health equity. OBJECTIVE We aimed to conduct a scoping review of the literature to address the question, "What are the current and potential impacts of AI technologies on health equity in oncology?" METHODS Following PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) guidelines for scoping reviews, we systematically searched MEDLINE and Embase electronic databases from January 2000 to August 2021 for records engaging with key concepts of AI, health equity, and oncology. We included all English-language articles that engaged with the 3 key concepts. Articles were analyzed qualitatively for themes pertaining to the influence of AI on health equity in oncology. RESULTS Of the 14,011 records, 133 (0.95%) identified from our review were included. We identified 3 general themes in the literature: the use of AI to reduce health care disparities (58/133, 43.6%), concerns surrounding AI technologies and bias (16/133, 12.1%), and the use of AI to examine biological and social determinants of health (55/133, 41.4%). A total of 3% (4/133) of articles focused on many of these themes. CONCLUSIONS Our scoping review revealed 3 main themes on the impact of AI on health equity in oncology, which relate to AI's ability to help address health disparities, its potential to mitigate or exacerbate bias, and its capability to help elucidate determinants of health. Gaps in the literature included a lack of discussion of ethical challenges with the application of AI technologies in low- and middle-income countries, lack of discussion of problems of bias in AI algorithms, and a lack of justification for the use of AI technologies over traditional statistical methods to address specific research questions in oncology. Our review highlights a need to address these gaps to ensure a more equitable integration of AI in cancer research and clinical practice. The limitations of our study include its exploratory nature, its focus on oncology as opposed to all health care sectors, and its analysis of solely English-language articles.
Collapse
Affiliation(s)
- Paul Istasy
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Rotman Institute of Philosophy, Western University, London, ON, Canada
| | - Wen Shen Lee
- Department of Pathology & Laboratory Medicine, Schulich School of Medicine, Western University, London, ON, Canada
| | | | - Ross Upshur
- Division of Clinical Public Health, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Bridgepoint Collaboratory for Research and Innovation, Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Bishal Gyawali
- Division of Cancer Care and Epidemiology, Department of Oncology, Queen's University, Kingston, ON, Canada
- Division of Cancer Care and Epidemiology, Department of Public Health Sciences, Queen's University, Kingston, ON, Canada
| | - Jacquelyn Burkell
- Faculty of Information and Media Studies, Western University, London, ON, Canada
| | - Bekim Sadikovic
- Department of Pathology & Laboratory Medicine, Schulich School of Medicine, Western University, London, ON, Canada
| | - Alejandro Lazo-Langner
- Division of Hematology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Benjamin Chin-Yee
- Rotman Institute of Philosophy, Western University, London, ON, Canada
- Division of Hematology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Division of Hematology, Department of Medicine, London Health Sciences Centre, London, ON, Canada
| |
Collapse
|
7
|
Orthologs of human circulating miRNAs associated with hepatocellular carcinoma are elevated in mouse plasma months before tumour detection. Sci Rep 2022; 12:10927. [PMID: 35764780 PMCID: PMC9240017 DOI: 10.1038/s41598-022-15061-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/17/2022] [Indexed: 11/08/2022] Open
Abstract
Research examining the potential for circulating miRNA to serve as markers for preneoplastic lesions or early-stage hepatocellular carcinoma (HCC) is hindered by the difficulties of obtaining samples from asymptomatic individuals. As a surrogate for human samples, we identified hub miRNAs in gene co-expression networks using HCC-bearing C3H mice. We confirmed 38 hub miRNAs as associated with HCC in F2 hybrid mice derived from radiogenic HCC susceptible and resistant founders. When compared to a panel of 12 circulating miRNAs associated with human HCC, two had no mouse ortholog and 7 of the remaining 10 miRNAs overlapped with the 38 mouse HCC hub miRNAs. Using small RNA sequencing data generated from serially collected plasma samples in F2 mice, we examined the temporal levels of these 7 circulating miRNAs and found that the levels of 4 human circulating markers, miR-122-5p, miR-100-5p, miR-34a-5p and miR-365-3p increased linearly as the time approaching HCC detection neared, suggesting a correlation of miRNA levels with oncogenic progression. Estimation of change points in the kinetics of the 4 circulating miRNAs suggested the changes started 17.5 to 6.8 months prior to HCC detection. These data establish these 4 circulating miRNAs as potential sentinels for preneoplastic lesions or early-stage HCC.
Collapse
|
8
|
Luz DS, Lima TJ, Silva RR, Magalhães DM, Araujo FH. Automatic detection metastasis in breast histopathological images based on ensemble learning and color adjustment. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Dissection of the MKK3 Functions in Human Cancer: A Double-Edged Sword? Cancers (Basel) 2022; 14:cancers14030483. [PMID: 35158751 PMCID: PMC8833818 DOI: 10.3390/cancers14030483] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/02/2022] [Accepted: 01/17/2022] [Indexed: 01/27/2023] Open
Abstract
The role played by MKK3 in human cancer is controversial. MKK3 is an evolutionarily conserved protein kinase that activates in response to a variety of stimuli. Phosphorylates, specifically the p38MAPK family proteins, contribute to the regulation of a plethora of cellular processes such as proliferation, differentiation, apoptosis, invasion, and cell migration. Genes in carcinogenesis are classified as oncogenes and tumor suppressors; however, a clear distinction is not always easily made as it depends on the cell context and tissue specificity. The aim of this study is the examination of the potential contribution of MKK3 in cancer through a systematic analysis of the recent literature. The overall results reveal a complex scenario of MKK3’s involvement in cancer. The oncogenic functions of MKK3 were univocally documented in several solid tumors, such as colorectal, prostate cancer, and melanoma, while its tumor-suppressing functions were described in glioblastoma and gastric cancer. Furthermore, a dual role of MKK3 as an oncogene as well as tumor a suppressor has been described in breast, cervical, ovarian, liver, esophageal, and lung cancer. However, overall, more evidence points to its role as an oncogene in these diseases. This review indicates that the oncogenic and tumor-suppressing roles of MKK3 are strictly dependent on the tumor type and further suggests that MKK3 could represent an efficient putative molecular target that requires contextualization within a specific tumor type in order to adequately evaluate its potential effectiveness in designing novel anticancer therapies.
Collapse
|
10
|
A Multi-Omics Network of a Seven-Gene Prognostic Signature for Non-Small Cell Lung Cancer. Int J Mol Sci 2021; 23:ijms23010219. [PMID: 35008645 PMCID: PMC8745553 DOI: 10.3390/ijms23010219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/30/2022] Open
Abstract
There is an unmet clinical need to identify patients with early-stage non-small cell lung cancer (NSCLC) who are likely to develop recurrence and to predict their therapeutic responses. Our previous study developed a qRT-PCR-based seven-gene microfluidic assay to predict the recurrence risk and the clinical benefits of chemotherapy. This study showed it was feasible to apply this seven-gene panel in RNA sequencing profiles of The Cancer Genome Atlas (TCGA) NSCLC patients (n = 923) in randomly partitioned feasibility-training and validation sets (p < 0.05, Kaplan-Meier analysis). Using Boolean implication networks, DNA copy number variation-mediated transcriptional regulatory network of the seven-gene signature was identified in multiple NSCLC cohorts (n = 371). The multi-omics network genes, including PD-L1, were significantly correlated with immune infiltration and drug response to 10 commonly used drugs for treating NSCLC. ZNF71 protein expression was positively correlated with epithelial markers and was negatively correlated with mesenchymal markers in NSCLC cell lines in Western blots. PI3K was identified as a relevant pathway of proliferation networks involving ZNF71 and its isoforms formulated with CRISPR-Cas9 and RNA interference (RNAi) profiles. Based on the gene expression of the multi-omics network, repositioning drugs were identified for NSCLC treatment.
Collapse
|
11
|
Ye Q, Singh S, Qian PR, Guo NL. Immune-Omics Networks of CD27, PD1, and PDL1 in Non-Small Cell Lung Cancer. Cancers (Basel) 2021; 13:4296. [PMID: 34503105 PMCID: PMC8428355 DOI: 10.3390/cancers13174296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 01/03/2023] Open
Abstract
To date, there are no prognostic/predictive biomarkers to select chemotherapy, immunotherapy, and radiotherapy in individual non-small cell lung cancer (NSCLC) patients. Major immune-checkpoint inhibitors (ICIs) have more DNA copy number variations (CNV) than mutations in The Cancer Genome Atlas (TCGA) NSCLC tumors. Nevertheless, CNV-mediated dysregulated gene expression in NSCLC is not well understood. Integrated CNV and transcriptional profiles in NSCLC tumors (n = 371) were analyzed using Boolean implication networks for the identification of a multi-omics CD27, PD1, and PDL1 network, containing novel prognostic genes and proliferation genes. A 5-gene (EIF2AK3, F2RL3, FOSL1, SLC25A26, and SPP1) prognostic model was developed and validated for patient stratification (p < 0.02, Kaplan-Meier analyses) in NSCLC tumors (n = 1163). A total of 13 genes (COPA, CSE1L, EIF2B3, LSM3, MCM5, PMPCB, POLR1B, POLR2F, PSMC3, PSMD11, RPL32, RPS18, and SNRPE) had a significant impact on proliferation in 100% of the NSCLC cell lines in both CRISPR-Cas9 (n = 78) and RNA interference (RNAi) assays (n = 92). Multiple identified genes were associated with chemoresponse and radiotherapy response in NSCLC cell lines (n = 117) and patient tumors (n = 966). Repurposing drugs were discovered based on this immune-omics network to improve NSCLC treatment.
Collapse
Affiliation(s)
- Qing Ye
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA; (Q.Y.); (S.S.); (P.R.Q.)
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Salvi Singh
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA; (Q.Y.); (S.S.); (P.R.Q.)
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Peter R. Qian
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA; (Q.Y.); (S.S.); (P.R.Q.)
| | - Nancy Lan Guo
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA; (Q.Y.); (S.S.); (P.R.Q.)
- Department of Occupational and Environmental Health Sciences, School of Public Health, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
12
|
Yang X, Fan D, Troha AH, Ahn HM, Qian K, Liang B, Du Y, Fu H, Ivanov AA. Discovery of the first chemical tools to regulate MKK3-mediated MYC activation in cancer. Bioorg Med Chem 2021; 45:116324. [PMID: 34333394 DOI: 10.1016/j.bmc.2021.116324] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 11/29/2022]
Abstract
The transcription master regulator MYC plays an essential role in regulating major cellular programs and is a well-established therapeutic target in cancer. However, MYC targeting for drug discovery is challenging. New therapeutic approaches to control MYC-dependent malignancy are urgently needed. The mitogen-activated protein kinase kinase 3 (MKK3) binds and activates MYC in different cell types, and disruption of MKK3-MYC protein-protein interaction may provide a new strategy to target MYC-driven programs. However, there is no perturbagen available to interrogate and control this signaling arm. In this study, we assessed the drugability of the MKK3-MYC complex and discovered the first chemical tool to regulate MKK3-mediated MYC activation. We have designed a short 44-residue inhibitory peptide and developed a cell lysate-based time-resolved fluorescence resonance energy transfer (TR-FRET) assay to discover the first small molecule MKK3-MYC PPI inhibitor. We have optimized and miniaturized the assay into an ultra-high-throughput screening (uHTS) 1536-well plate format. The pilot screen of ~6,000 compounds of a bioactive chemical library followed by multiple secondary and orthogonal assays revealed a quinoline derivative SGI-1027 as a potent inhibitor of MKK3-MYC PPI. We have shown that SGI-1027 disrupts the MKK3-MYC complex in cells and in vitro and inhibits MYC transcriptional activity in colon and breast cancer cells. In contrast, SGI-1027 does not inhibit MKK3 kinase activity and does not interfere with well-known MKK3-p38 and MYC-MAX complexes. Together, our studies demonstrate the drugability of MKK3-MYC PPI, provide the first chemical tool to interrogate its biological functions, and establish a new uHTS assay to enable future discovery of potent and selective inhibitors to regulate this oncogenic complex.
Collapse
Affiliation(s)
- Xuan Yang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, Atlanta, GA, USA; Emory Chemical Biology Discovery Center, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Dacheng Fan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, Atlanta, GA, USA; Emory Chemical Biology Discovery Center, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Aidan Henry Troha
- Department of Biochemistry, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Hyunjun Max Ahn
- Department of Biochemistry, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Kun Qian
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, Atlanta, GA, USA; Emory Chemical Biology Discovery Center, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Bo Liang
- Department of Biochemistry, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, Atlanta, GA, USA; Emory Chemical Biology Discovery Center, Emory University School of Medicine, Emory University, Atlanta, GA, USA; Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Haian Fu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, Atlanta, GA, USA; Emory Chemical Biology Discovery Center, Emory University School of Medicine, Emory University, Atlanta, GA, USA; Winship Cancer Institute, Emory University, Atlanta, GA, USA; Department of Hematology & Medical Oncology Emory University, Atlanta, GA, USA.
| | - Andrey A Ivanov
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, Atlanta, GA, USA; Emory Chemical Biology Discovery Center, Emory University School of Medicine, Emory University, Atlanta, GA, USA; Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| |
Collapse
|
13
|
Stringer-Reasor EM, Elkhanany A, Khoury K, Simon MA, Newman LA. Disparities in Breast Cancer Associated With African American Identity. Am Soc Clin Oncol Educ Book 2021; 41:e29-e46. [PMID: 34161138 DOI: 10.1200/edbk_319929] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Persistent disparities in the burden of breast cancer between African Americans and White Americans have been documented over many decades. Features characterizing breast cancer in the African American community include a 40% higher mortality rate, younger age distribution, greater advanced-stage distribution, increased risk of biologically aggressive disease such as the triple-negative phenotype, and increased incidence of male breast cancer. Public health experts, genetics researchers, clinical trialists, multidisciplinary oncology teams, and advocates must collaborate to comprehensively address the multifactorial etiology of and remedies for breast cancer disparities. Efforts to achieve breast health equity through improved access to affordable, high-quality care are especially imperative in the context of the COVID-19 pandemic and its disproportionately high economic toll on African Americans.
Collapse
Affiliation(s)
- Erica M Stringer-Reasor
- Division of Hematology Oncology, Department of Medicine, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Ahmed Elkhanany
- Division of Hematology Oncology, Department of Medicine, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Katia Khoury
- Division of Hematology Oncology, Department of Medicine, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Melissa A Simon
- Department of Obstetrics and Gynecology and the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Lisa A Newman
- Department of Surgery, Weill Cornell Medicine/New York Presbyterian Hospital Network, New York, NY
| |
Collapse
|