1
|
Todhunter-Brown A, Campbell P, Broderick C, Cowie J, Davis B, Fenton C, Markham S, Sellers C, Thomson K. Recent research in myalgic encephalomyelitis/chronic fatigue syndrome: an evidence map. Health Technol Assess 2025:1-78. [PMID: 40162526 PMCID: PMC11973615 DOI: 10.3310/btbd8846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Background Myalgic encephalomyelitis/chronic fatigue syndrome is a chronic condition, classified by the World Health Organization as a nervous system disease, impacting around 17 million people worldwide. Presentation involves persistent fatigue and postexertional malaise (a worsening of symptoms after minimal exertion) and a wide range of other symptoms. Case definitions have historically varied; postexertional malaise is a core diagnostic criterion in current definitions. In 2022, a James Lind Alliance Priority Setting Partnership established research priorities relating to myalgic encephalomyelitis/chronic fatigue syndrome. Objective(s) We created a map of myalgic encephalomyelitis/chronic fatigue syndrome evidence (2018-23), showing the volume and key characteristics of recent research in this field. We considered diagnostic criteria and how current research maps against the James Lind Alliance Priority Setting Partnership research priorities. Methods Using a predefined protocol, we conducted a comprehensive search of Cochrane, MEDLINE, EMBASE and Cumulative Index to Nursing and Allied Health Literature. We included all English-language research studies published between January 2018 and May 2023. Two reviewers independently applied inclusion criteria with consensus involving additional reviewers. Studies including people diagnosed with myalgic encephalomyelitis/chronic fatigue syndrome using any criteria (including self-report), of any age and in any setting were eligible. Studies with < 10 myalgic encephalomyelitis/chronic fatigue syndrome participants were excluded. Data extraction, coding of topics (involving stakeholder consultation) and methodological quality assessment of systematic reviews (using A MeaSurement Tool to Assess systematic Reviews 2) was conducted independently by two reviewers, with disagreements resolved by a third reviewer. Studies were presented in an evidence map. Results Of the 11,278 identified studies, 742 met the selection criteria, but only 639 provided sufficient data for inclusion in the evidence map. These reported data from approximately 610,000 people with myalgic encephalomyelitis/chronic fatigue syndrome. There were 81 systematic reviews, 72 experimental studies, 423 observational studies and 63 studies with other designs. Most studies (94%) were from high-income countries. Reporting of participant details was poor; 16% did not report gender, 74% did not report ethnicity and 81% did not report the severity of myalgic encephalomyelitis/chronic fatigue syndrome. Forty-four per cent of studies used multiple diagnostic criteria, 16% did not specify criteria, 24% used a single criterion not requiring postexertional malaise and 10% used a single criterion requiring postexertional malaise. Most (89%) systematic reviews had a low methodological quality. Five main topics (37 subtopics) were included in the evidence map. Of the 639 studies; 53% addressed the topic 'what is the cause?'; 38% 'what is the problem?'; 26% 'what can we do about it?'; 15% 'diagnosis and assessment'; and 13% other topics, including 'living with myalgic encephalomyelitis/chronic fatigue syndrome'. Discussion Studies have been presented in an interactive evidence map according to topic, study design, diagnostic criteria and age. This evidence map should inform decisions about future myalgic encephalomyelitis/chronic fatigue syndrome research. Limitations An evidence map does not summarise what the evidence says. Our evidence map only includes studies published in 2018 or later and in English language. Inconsistent reporting and use of diagnostic criteria limit the interpretation of evidence. We assessed the methodological quality of systematic reviews, but not of primary studies. Conclusions We have produced an interactive evidence map, summarising myalgic encephalomyelitis/chronic fatigue syndrome research from 2018 to 2023. This evidence map can inform strategic plans for future research. We found some, often limited, evidence addressing every James Lind Alliance Priority Setting Partnership priority; high-quality systematic reviews should inform future studies. Funding This article presents independent research funded by the National Institute for Health and Care Research (NIHR) Evidence Synthesis programme as award number NIHR159926.
Collapse
Affiliation(s)
| | | | | | - Julie Cowie
- NESSIE, Glasgow Caledonian University, Glasgow, UK
| | | | - Candida Fenton
- NESSIE, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Sarah Markham
- NESSIE Patient and public involvement member, UK
- Department of Biostatistics and Health Informatics, King's College London, London, UK
| | - Ceri Sellers
- NESSIE, Glasgow Caledonian University, Glasgow, UK
| | | |
Collapse
|
2
|
Morrow AK, Villatoro C, Kokorelis C, Rowe PC, Malone LA. Orthostatic Intolerance in Children With Long COVID Utilizing a 10-Minute Passive Standing Test. Clin Pediatr (Phila) 2025; 64:416-424. [PMID: 39123312 DOI: 10.1177/00099228241272053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Despite there being a wide variety of symptoms reported in pediatric long COVID, one condition that has become increasingly recognized is orthostatic intolerance (OI), which can cause significant morbidity, limiting activities of daily living. This study examines rates of OI in 92 children with long COVID who underwent a bedside passive standing test in a pediatric post-COVID-19 rehabilitation clinic. Seventy-one percent met criteria for an orthostatic condition, including postural orthostatic tachycardia syndrome (POTS), orthostatic tachycardia (OT), classic orthostatic hypotension (OH), delayed OH, and orthostatic hypertension. Our findings suggest that OI is common in pediatric long COVID, necessitating appropriate clinical screening and treatment.
Collapse
Affiliation(s)
- Amanda K Morrow
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kennedy Krieger Institute, Baltimore, MD, USA
| | | | - Christina Kokorelis
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kennedy Krieger Institute, Baltimore, MD, USA
| | - Peter C Rowe
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laura A Malone
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
van Campen C(LMC, Rowe PC, Visser FC. Two Different Hemodynamic Responses in ME/CFS Patients with Postural Orthostatic Tachycardia Syndrome During Head-Up Tilt Testing. J Clin Med 2024; 13:7726. [PMID: 39768649 PMCID: PMC11677391 DOI: 10.3390/jcm13247726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Introduction: While the diagnosis of postural orthostatic tachycardia syndrome (POTS) is based on heart rate (HR) and blood pressure (BP) criteria, the pathophysiology of POTS is not fully understood as multiple pathophysiological mechanisms have been recognized. Also, cardiac function, being dependent on preload, afterload, contractility, and HR, has not been properly studied. Preload and contractility changes can be inferred from stroke volume index (SVI) changes during a tilt test. Afterload plays a minor role in POTS as a normal BP response is a prerequisite for POTS. Therefore, we analyzed the HR-SVI relation during a tilt test in myalgic encephalomyelitis (ME/CFS) patients with POTS and compared the data with ME/CFS patients with a normal HR-BP response and with that of healthy controls (HC). Material and Methods: In ME/CFS patients with either POTS (n = 233) or a normal HR-BP response (n = 507) and healthy controls (n = 48), we measured SVI (by suprasternal echo), HR, and BP during the tilt. Results: In all ME/CFS patients, the decrease in SVI was larger compared to HC. In patients with a normal HR-BP response and in POTS patients with a HR increase between 30-39 bpm, there was an inverse relationship between the HR increase and SVI decrease during the tilt, compatible with increased venous pooling. In POTS patients with a HR increase ≥40 bpm, this inverse relation was lost, and SVI changes were significantly less compared to POTS patients with a HR increase between 30-39 bpm, suggestive of a hyperadrenergic response. Conclusions: In ME/CFS patients with POTS, two different hemodynamic profiles can be observed: in patients with a limited HR increase, mainly increased venous pooling is observed, while in patients with a large (≥ 40 bpm) HR increase the data are suggestive of a hyperadrenergic response. These two different profiles may have different therapeutic implications.
Collapse
Affiliation(s)
| | - Peter C. Rowe
- Department of Pediatrics, John Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Frans C. Visser
- Stichting CardioZorg, Kraayvel 5, 1171 JE Badhoevedorp, The Netherlands;
| |
Collapse
|
4
|
Trimble KZ, Switzer JN, Blitshteyn S. Exercise in Postural Orthostatic Tachycardia Syndrome: Focus on Individualized Exercise Approach. J Clin Med 2024; 13:6747. [PMID: 39597891 PMCID: PMC11594886 DOI: 10.3390/jcm13226747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/23/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Exercise is a vital component of health and is commonly utilized as a non-pharmacologic therapy for many disorders, including postural orthostatic tachycardia syndrome (POTS). However, exercise intolerance is a key feature of POTS and other autonomic disorders and, therefore, presents a major barrier for many patients. Despite exercise being uniformly recommended as a therapeutic intervention, a majority of patients with POTS, especially those with severe orthostatic intolerance and fatigue, are unable to complete or sustain rigorous exercise programs or successfully integrate them into their daily routine. In this narrative review, we discuss the current literature on exercise and POTS and our clinical experience with a home-based exercise approach developed at the Dysautonomia Clinic. We conclude that individualized exercise programs that are delivered remotely by a certified physical therapist may be convenient, easily accessible, and safe for patients with POTS, especially those with severe symptoms who may be home- or bedbound. Future randomized controlled studies are needed to quantify and characterize the benefits of home-based exercise programs delivered remotely compared to standard therapy.
Collapse
Affiliation(s)
| | | | - Svetlana Blitshteyn
- Dysautonomia Clinic, Williamsville, NY 14221, USA
- Department of Neurology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| |
Collapse
|
5
|
Nunes M, Vlok M, Proal A, Kell DB, Pretorius E. Data-independent LC-MS/MS analysis of ME/CFS plasma reveals a dysregulated coagulation system, endothelial dysfunction, downregulation of complement machinery. Cardiovasc Diabetol 2024; 23:254. [PMID: 39014464 PMCID: PMC11253362 DOI: 10.1186/s12933-024-02315-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/16/2024] [Indexed: 07/18/2024] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating chronic condition that is characterized by unresolved fatigue, post-exertion symptom exacerbation (PESE), cognitive dysfunction, orthostatic intolerance, and other symptoms. ME/CFS lacks established clinical biomarkers and requires further elucidation of disease mechanisms. A growing number of studies demonstrate signs of hematological and cardiovascular pathology in ME/CFS cohorts, including hyperactivated platelets, endothelial dysfunction, vascular dysregulation, and anomalous clotting processes. To build on these findings, and to identify potential biomarkers that can be related to pathophysiology, we measured differences in protein expression in platelet-poor plasma (PPP) samples from 15 ME/CFS study participants and 10 controls not previously infected with SARS-CoV-2, using DIA LC-MS/MS. We identified 24 proteins that are significantly increased in the ME/CFS group compared to the controls, and 21 proteins that are significantly downregulated. Proteins related to clotting processes - thrombospondin-1 (important in platelet activation), platelet factor 4, and protein S - were differentially expressed in the ME/CFS group, suggestive of a dysregulated coagulation system and abnormal endothelial function. Complement machinery was also significantly downregulated, including C9 which forms part of the membrane attack complex. Additionally, we identified a significant upregulation of lactotransferrin, protein S100-A9, and an immunoglobulin variant. The findings from this experiment further implicate the coagulation and immune system in ME/CFS, and bring to attention the pathology of or imposed on the endothelium. This study highlights potential systems and proteins that require further research with regards to their contribution to the pathogenesis of ME/CFS, symptom manifestation, and biomarker potential, and also gives insight into the hematological and cardiovascular risk for ME/CFS individuals affected by diabetes mellitus.
Collapse
Affiliation(s)
- Massimo Nunes
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch, 7602, South Africa
| | - Mare Vlok
- Central Analytical Facility: Mass Spectrometry, Stellenbosch University, Tygerberg Campus, Room 6054, Clinical Building, Francie Van Zijl Drive Tygerberg, Cape Town, 7505, South Africa
| | - Amy Proal
- PolyBio Research Foundation, 7900 SE 28th ST, Suite 412, Mercer Island, DC, 98040, USA
| | - Douglas B Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch, 7602, South Africa.
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool, L69 7ZB, UK.
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Chemitorvet 200, 2800, Kongens Lyngby, Denmark.
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch, 7602, South Africa.
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool, L69 7ZB, UK.
| |
Collapse
|
6
|
Keller B, Receno CN, Franconi CJ, Harenberg S, Stevens J, Mao X, Stevens SR, Moore G, Levine S, Chia J, Shungu D, Hanson MR. Cardiopulmonary and metabolic responses during a 2-day CPET in myalgic encephalomyelitis/chronic fatigue syndrome: translating reduced oxygen consumption to impairment status to treatment considerations. J Transl Med 2024; 22:627. [PMID: 38965566 PMCID: PMC11229500 DOI: 10.1186/s12967-024-05410-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 06/17/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Post-exertional malaise (PEM), the hallmark symptom of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), represents a constellation of abnormal responses to physical, cognitive, and/or emotional exertion including profound fatigue, cognitive dysfunction, and exertion intolerance, among numerous other maladies. Two sequential cardiopulmonary exercise tests (2-d CPET) provide objective evidence of abnormal responses to exertion in ME/CFS but validated only in studies with small sample sizes. Further, translation of results to impairment status and approaches to symptom reduction are lacking. METHODS Participants with ME/CFS (Canadian Criteria; n = 84) and sedentary controls (CTL; n = 71) completed two CPETs on a cycle ergometer separated by 24 h. Two-way repeated measures ANOVA compared CPET measures at rest, ventilatory/anaerobic threshold (VAT), and peak effort between phenotypes and CPETs. Intraclass correlations described stability of CPET measures across tests, and relevant objective CPET data indicated impairment status. A subset of case-control pairs (n = 55) matched for aerobic capacity, age, and sex, were also analyzed. RESULTS Unlike CTL, ME/CFS failed to reproduce CPET-1 measures during CPET-2 with significant declines at peak exertion in work, exercise time, V ˙ e, V ˙ O2, V ˙ CO2, V ˙ T, HR, O2pulse, DBP, and RPP. Likewise, CPET-2 declines were observed at VAT for V ˙ e/ V ˙ CO2, PetCO2, O2pulse, work, V ˙ O2 and SBP. Perception of effort (RPE) exceeded maximum effort criteria for ME/CFS and CTL on both CPETs. Results were similar in matched pairs. Intraclass correlations revealed greater stability in CPET variables across test days in CTL compared to ME/CFS owing to CPET-2 declines in ME/CFS. Lastly, CPET-2 data signaled more severe impairment status for ME/CFS compared to CPET-1. CONCLUSIONS Presently, this is the largest 2-d CPET study of ME/CFS to substantiate impaired recovery in ME/CFS following an exertional stressor. Abnormal post-exertional CPET responses persisted compared to CTL matched for aerobic capacity, indicating that fitness level does not predispose to exertion intolerance in ME/CFS. Moreover, contributions to exertion intolerance in ME/CFS by disrupted cardiac, pulmonary, and metabolic factors implicates autonomic nervous system dysregulation of blood flow and oxygen delivery for energy metabolism. The observable declines in post-exertional energy metabolism translate notably to a worsening of impairment status. Treatment considerations to address tangible reductions in physiological function are proffered. TRIAL REGISTRATION NUMBER ClinicalTrials.gov, retrospectively registered, ID# NCT04026425, date of registration: 2019-07-17.
Collapse
Affiliation(s)
- Betsy Keller
- Department of Exercise Science and Athletic Training, Ithaca College, Ithaca, NY, 14850, USA.
| | - Candace N Receno
- Department of Exercise Science and Athletic Training, Ithaca College, Ithaca, NY, 14850, USA
| | - Carl J Franconi
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Sebastian Harenberg
- Department of Human Kinetics, St. Francis Xavier University, Antigonish, NS, B2G 2W5, Canada
| | - Jared Stevens
- Department of Radiology, Weill Cornell Medicine, New York, NY, 10065, USA
| | | | - Staci R Stevens
- Department of Radiology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Geoff Moore
- Department of Exercise Science and Athletic Training, Ithaca College, Ithaca, NY, 14850, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Susan Levine
- Susan Levine, MD Clinical Practice, New York, NY, 10021, USA
| | | | | | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
7
|
Nunes JM, Kell DB, Pretorius E. Herpesvirus Infection of Endothelial Cells as a Systemic Pathological Axis in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Viruses 2024; 16:572. [PMID: 38675914 PMCID: PMC11053605 DOI: 10.3390/v16040572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Understanding the pathophysiology of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is critical for advancing treatment options. This review explores the novel hypothesis that a herpesvirus infection of endothelial cells (ECs) may underlie ME/CFS symptomatology. We review evidence linking herpesviruses to persistent EC infection and the implications for endothelial dysfunction, encompassing blood flow regulation, coagulation, and cognitive impairment-symptoms consistent with ME/CFS and Long COVID. This paper provides a synthesis of current research on herpesvirus latency and reactivation, detailing the impact on ECs and subsequent systemic complications, including latent modulation and long-term maladaptation. We suggest that the chronicity of ME/CFS symptoms and the multisystemic nature of the disease may be partly attributable to herpesvirus-induced endothelial maladaptation. Our conclusions underscore the necessity for further investigation into the prevalence and load of herpesvirus infection within the ECs of ME/CFS patients. This review offers conceptual advances by proposing an endothelial infection model as a systemic mechanism contributing to ME/CFS, steering future research toward potentially unexplored avenues in understanding and treating this complex syndrome.
Collapse
Affiliation(s)
- Jean M. Nunes
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1, Matieland 7602, South Africa;
| | - Douglas B. Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1, Matieland 7602, South Africa;
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Chemitorvet 200, 2800 Kongens Lyngby, Denmark
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1, Matieland 7602, South Africa;
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| |
Collapse
|
8
|
Peebles KC, Jacobs C, Makaroff L, Pacey V. The use and effectiveness of exercise for managing postural orthostatic tachycardia syndrome in young adults with joint hypermobility and related conditions: A scoping review. Auton Neurosci 2024; 252:103156. [PMID: 38401460 DOI: 10.1016/j.autneu.2024.103156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 02/26/2024]
Abstract
PURPOSE Postural Orthostatic Tachycardia Syndrome (POTS) is a form of dysautonomia. It may occur in isolation, but frequently co-exists in individuals with hypermobile variants of Ehlers-Danlos Syndrome (EDS) and related conditions (chronic fatigue syndrome [CFS] and fibromyalgia). Exercise is recommended for non-pharmacological POTS management but needs to be individualised. This scoping review explores the current literature on use and effectiveness of exercise-based management for POTS, with specific focus on individuals with joint hypermobility and related conditions who experience hypermobility, and/or pain, and/or fatigue. METHODS A systematic search, to January 2023, of Medline, EMBASE, AMED, CINAHL and the Cochrane library was conducted. Studies that reported on adolescents and adults who had been diagnosed with POTS using standard criteria and underwent an exercise-based training intervention were included. RESULTS Following full-text screening, 10 articles were identified (2 randomised control trials, 4 comparative studies and 4 case reports). One comparative study reported a small subset of participants with EDS and one case report included an individual diagnosed with CFS; the remainder investigated a wider POTS population. Overall, 3 months of endurance followed by resistance exercise, graduating from the horizontal-to-upright position reduced POTS symptoms and improved quality-of-life. CONCLUSION The findings highlight a paucity of higher-level studies documenting exercise for POTS management in people with joint hypermobility and related conditions. Results from the wider POTS population demonstrate exercise is safe and effective. Large, well-designed clinical studies exploring exercise for POTS management adapting to meet the complex musculoskeletal and non-musculoskeletal features of symptomatic joint hypermobility are needed.
Collapse
Affiliation(s)
- Karen C Peebles
- Department of Health Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia.
| | - Charl Jacobs
- Department of Health Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Logan Makaroff
- Department of Health Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Verity Pacey
- Department of Health Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
9
|
Adler BL, Chung T, Rowe PC, Aucott J. Dysautonomia following Lyme disease: a key component of post-treatment Lyme disease syndrome? Front Neurol 2024; 15:1344862. [PMID: 38390594 PMCID: PMC10883079 DOI: 10.3389/fneur.2024.1344862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Dysautonomia, or dysfunction of the autonomic nervous system (ANS), may occur following an infectious insult and can result in a variety of debilitating, widespread, and often poorly recognized symptoms. Dysautonomia is now widely accepted as a complication of COVID-19 and is an important component of Post-Acute Sequelae of COVID-19 (PASC or long COVID). PASC shares many overlapping clinical features with other infection-associated chronic illnesses including Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and Post-Treatment Lyme Disease Syndrome (PTLDS), suggesting that they may share common underlying mechanisms including autonomic dysfunction. Despite the recognition of this complication of Lyme disease in the care of patients with PTLD, there has been a scarcity of research in this field and dysautonomia has not yet been established as a complication of Lyme disease in the medical literature. In this review, we discuss the evidence implicating Borrelia burgdorferi as a cause of dysautonomia and the related symptoms, propose potential pathogenic mechanisms given our knowledge of Lyme disease and mechanisms of PASC and ME/CFS, and discuss the diagnostic evaluation and treatments of dysautonomia. We also outline gaps in the literature and priorities for future research.
Collapse
Affiliation(s)
- Brittany L Adler
- Division of Rheumatology, Johns Hopkins University, Baltimore, MD, United States
| | - Tae Chung
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, MD, United States
| | - Peter C Rowe
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD, United States
| | - John Aucott
- Division of Rheumatology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
10
|
Wirth KJ, Löhn M. Microvascular Capillary and Precapillary Cardiovascular Disturbances Strongly Interact to Severely Affect Tissue Perfusion and Mitochondrial Function in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Evolving from the Post COVID-19 Syndrome. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:194. [PMID: 38399482 PMCID: PMC10890404 DOI: 10.3390/medicina60020194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/07/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024]
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a frequent, debilitating and still enigmatic disease. There is a broad overlap in the symptomatology of ME/CFS and the Post-COVID-19 Syndrome (PCS). A fraction of the PCS patients develop the full clinical picture of ME/CFS. New observations in microvessels and blood from patients suffering from PCS have appeared and include microclots and malformed pathological blood cells. Capillary blood flow is impaired not only by pathological blood components but also by prothrombotic changes in the vascular wall, endothelial dysfunction, and the expression of adhesion molecules in the capillaries. These disturbances can finally cause a low capillary flow and even capillary stasis. A low cardiac stroke volume due to hypovolemia and the inability of the capacitance vessels to adequately constrict to deliver the necessary cardiac preload generate an unfavorable low precapillary perfusion pressure. Furthermore, a predominance of vasoconstrictor over vasodilator influences exists, in which sympathetic hyperactivity and endothelial dysfunction play a strong role, causing the constriction of resistance vessels and of precapillary sphincters, which leads to a fall in capillary pressure behind the sphincters. The interaction of these two precapillary cardiovascular mechanisms causing a low capillary perfusion pressure is hemodynamically highly unfavorable in the presence of a primary capillary stasis, which is already caused by the pathological blood components and their interaction with the capillary wall, to severely impair organ perfusion. The detrimental coincidence of microcirculatory and precapillary cardiovascular disturbances may constitute the key disturbance of the Post-COVID-19 syndrome and finally lead to ME/CFS in predisposed patients because the interaction causes a particular kind of perfusion disturbance-capillary ischemia/reperfusion-which has a high potential of causing mitochondrial dysfunction by inducing sodium- and calcium-overload in skeletal muscles. The latter, in turn, worsens the vascular situation through the generation of reactive oxygen species to close a vicious cycle from which the patient can hardly escape.
Collapse
Affiliation(s)
| | - Matthias Löhn
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt am Main, Goethe-University, Theodor-Stern Kai 7, D-60590 Frankfurt am Main, Germany;
| |
Collapse
|
11
|
Thoma M, Froehlich L, Hattesohl DBR, Quante S, Jason LA, Scheibenbogen C. Why the Psychosomatic View on Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Is Inconsistent with Current Evidence and Harmful to Patients. MEDICINA (KAUNAS, LITHUANIA) 2023; 60:83. [PMID: 38256344 PMCID: PMC10819994 DOI: 10.3390/medicina60010083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/18/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024]
Abstract
Since 1969, Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) has been classified as a neurological disease in the International Classification of Diseases by the World Health Organization. Although numerous studies over time have uncovered organic abnormalities in patients with ME/CFS, and the majority of researchers to date classify the disease as organic, many physicians still believe that ME/CFS is a psychosomatic illness. In this article, we show how detrimental this belief is to the care and well-being of affected patients and, as a consequence, how important the education of physicians and the public is to stop misdiagnosis, mistreatment, and stigmatization on the grounds of incorrect psychosomatic attributions about the etiology and clinical course of ME/CFS.
Collapse
Affiliation(s)
- Manuel Thoma
- German Association for ME/CFS, 20146 Hamburg, Germany; (D.B.R.H.); (S.Q.)
| | - Laura Froehlich
- Research Center CATALPA, FernUniversität in Hagen, 58097 Hagen, Germany;
| | | | - Sonja Quante
- German Association for ME/CFS, 20146 Hamburg, Germany; (D.B.R.H.); (S.Q.)
| | - Leonard A. Jason
- Center for Community Research, DePaul University, Chicago, IL 60614, USA;
| | - Carmen Scheibenbogen
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin and Berlin Institute of Health (BIH), 10117 Berlin, Germany;
| |
Collapse
|
12
|
Nunes JM, Kell DB, Pretorius E. Cardiovascular and haematological pathology in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): A role for viruses. Blood Rev 2023; 60:101075. [PMID: 36963989 PMCID: PMC10027292 DOI: 10.1016/j.blre.2023.101075] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
ME/CFS is a debilitating chronic condition that often develops after viral or bacterial infection. Insight from the study of Long COVID/Post Acute Sequelae of COVID-19 (PASC), the post-viral syndrome associated with SARS-CoV-2 infection, might prove to be useful for understanding pathophysiological mechanisms of ME/CFS. Disease presentation is similar between the two conditions, and a subset of Long COVID patients meet the diagnostic criteria for ME/CFS. Since Long COVID is characterized by significant vascular pathology - including endothelial dysfunction, coagulopathy, and vascular dysregulation - the question of whether or not the same biological abnormalities are of significance in ME/CFS arises. Cardiac abnormalities have for a while now been documented in ME/CFS cohorts, with recent studies demonstrating major deficits in cerebral blood flow, and hence vascular dysregulation. A growing body of research is demonstrating that ME/CFS is accompanied by platelet hyperactivation, anomalous clotting, a procoagulant phenotype, and endothelial dysfunction. Endothelial damage and dysregulated clotting can impair substance exchange between blood and tissues, and result in hypoperfusion, which may contribute to the manifestation of certain ME/CFS symptoms. Here we review the ME/CFS literature to summarize cardiovascular and haematological findings documented in patients with the condition, and, in this context, briefly discuss the potential role of previously-implicated pathogens. Overall, cardiac and haematological abnormalities are present within ME/CFS cohorts. While atherosclerotic heart disease is not significantly associated with ME/CFS, suboptimal cardiovascular function defined by reduced cardiac output, impaired cerebral blood flow, and vascular dysregulation are, and these abnormalities do not appear to be influenced by deconditioning. Rather, these cardiac abnormalities may result from dysfunction in the (autonomic) nervous system. Plenty of recently published studies are demonstrating significant platelet hyperactivity and endothelial dysfunction in ME/CFS, as well as anomalous clotting processes. It is of particular importance to determine to what extent these cardiovascular and haematological abnormalities contribute to symptom severity, and if these two systems can be targeted for therapeutic purposes. Viral reservoirs of herpesviruses exist in ME/CFS, and most likely contribute to cardiovascular and haematological dysfunction directly or indirectly. This review highlights the potential of studying cardiac functioning, the vasculature, and coagulation system in ME/CFS.
Collapse
Affiliation(s)
- Jean M Nunes
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1, Matieland 7602, South Africa.
| | - Douglas B Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1, Matieland 7602, South Africa; Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK; The Novo Nordisk Foundation Centre for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1, Matieland 7602, South Africa; Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK.
| |
Collapse
|
13
|
Ghali A, Lacombe V, Ravaiau C, Delattre E, Ghali M, Urbanski G, Lavigne C. The relevance of pacing strategies in managing symptoms of post-COVID-19 syndrome. J Transl Med 2023; 21:375. [PMID: 37291581 PMCID: PMC10248991 DOI: 10.1186/s12967-023-04229-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND Post-COVID-19 syndrome (PCS) shares many features with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). PCS represents a major health issue worldwide because it severely impacts patients' work activities and their quality of life. In the absence of treatment for both conditions and given the beneficial effect of pacing strategies in ME/CFS, we conducted this study to assess the effectiveness of pacing in PCS patients. METHODS We retrospectively included patients meeting the World Health Organization definition of PCS who attended the Internal Medicine Department of Angers University Hospital, France between June 2020 and June 2022, and were followed up until December 2022. Pacing strategies were systematically proposed for all patients. Their medical records were reviewed and data related to baseline and follow-up assessments were collected. This included epidemiological characteristics, COVID-19 symptoms and associated conditions, fatigue features, perceived health status, employment activity, and the degree of pacing adherence assessed by the engagement in pacing subscale (EPS). Recovery was defined as the ability to return to work, and improvement was regarded as the reduction of the number and severity of symptoms. RESULTS A total of 86 patients were included and followed-up for a median time of 10 [6-13] months. Recovery and improvement rates were 33.7% and 23.3%, respectively. The EPS score was the only variable significantly associated with recovery on multivariate analysis (OR 40.43 [95% CI 6.22-262.6], p < 0.001). Patients who better adhered to pacing (high EPS scores) experienced significantly higher recovery and improvement rates (60-33.3% respectively) than those with low (5.5-5.5% respectively), or moderate (4.3-17.4% respectively) scores. CONCLUSION Our findings demonstrated that pacing is effective in the management of patients with PCS, and that high levels of adherence to pacing are associated with better outcomes.
Collapse
Affiliation(s)
- Alaa Ghali
- Department of Internal Medicine and Clinical Immunology, Angers University Hospital, 4 Rue Larrey, 49000, Angers, France.
| | - Valentin Lacombe
- Department of Internal Medicine and Clinical Immunology, Angers University Hospital, 4 Rue Larrey, 49000, Angers, France
| | - Camille Ravaiau
- Department of Internal Medicine and Clinical Immunology, Angers University Hospital, 4 Rue Larrey, 49000, Angers, France
| | - Estelle Delattre
- Department of Internal Medicine and Clinical Immunology, Angers University Hospital, 4 Rue Larrey, 49000, Angers, France
| | - Maria Ghali
- Department of General Medicine, Faculty of Medicine of Angers, Angers, France
| | - Geoffrey Urbanski
- Department of Internal Medicine and Clinical Immunology, Angers University Hospital, 4 Rue Larrey, 49000, Angers, France
| | - Christian Lavigne
- Department of Internal Medicine and Clinical Immunology, Angers University Hospital, 4 Rue Larrey, 49000, Angers, France
| |
Collapse
|
14
|
Orthostatic Intolerance in Long-Haul COVID after SARS-CoV-2: A Case-Control Comparison with Post-EBV and Insidious-Onset Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients. Healthcare (Basel) 2022; 10:healthcare10102058. [PMID: 36292504 PMCID: PMC9602265 DOI: 10.3390/healthcare10102058] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 01/19/2023] Open
Abstract
Background: As complaints of long-haul COVID patients are similar to those of ME/CFS patients and as orthostatic intolerance (OI) plays an important role in the COVID infection symptomatology, we compared 14 long-haul COVID patients with 14 ME/CFS patients with a post-viral Ebstein-Barr (EBV) onset and 14 ME/CFS patients with an insidious onset of the disease. Methods: In all patients, OI analysis by history taking and OI assessed during a tilt test, as well as cerebral blood flow measurements by extracranial Doppler, and cardiac index measurements by suprasternal Doppler during the tilt test were obtained in all patients. Results: Except for disease duration no differences were found in clinical characteristics. The prevalence of POTS was higher in the long-haul patients (100%) than in post-EBV (43%) and in insidious-onset (50%) patients (p = 0.0002). No differences between the three groups were present in the prevalence of OI, heart rate and blood pressure changes, changes in cerebral blood flow or in cardiac index during the tilt test. Conclusion: OI symptomatology and objective abnormalities of OI (abnormal cerebral blood flow and cardiac index reduction during tilt testing) are comparable to those in ME/CFS patients. It indicates that long-haul COVID is essentially the same disease as ME/CFS.
Collapse
|
15
|
van Campen C(LMC, Rowe PC, Visser FC. Orthostatic Symptoms and Reductions in Cerebral Blood Flow in Long-Haul COVID-19 Patients: Similarities with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. MEDICINA (KAUNAS, LITHUANIA) 2021; 58:medicina58010028. [PMID: 35056336 PMCID: PMC8778312 DOI: 10.3390/medicina58010028] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022]
Abstract
Background and Objectives: Symptoms and hemodynamic findings during orthostatic stress have been reported in both long-haul COVID-19 and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), but little work has directly compared patients from these two groups. To investigate the overlap in these clinical phenotypes, we compared orthostatic symptoms in daily life and during head-up tilt, heart rate and blood pressure responses to tilt, and reductions in cerebral blood flow in response to orthostatic stress in long-haul COVID-19 patients, ME/CFS controls, and healthy controls. Materials and Methods: We compared 10 consecutive long-haul COVID-19 cases with 20 age- and gender-matched ME/CFS controls with postural tachycardia syndrome (POTS) during head-up tilt, 20 age- and gender-matched ME/CFS controls with a normal heart rate and blood pressure response to head-up tilt, and 10 age- and gender-matched healthy controls. Identical symptom questionnaires and tilt test procedures were used for all groups, including measurement of cerebral blood flow and cardiac index during the orthostatic stress. Results: There were no significant differences in ME/CFS symptom prevalence between the long-haul COVID-19 patients and the ME/CFS patients. All long-haul COVID-19 patients developed POTS during tilt. Cerebral blood flow and cardiac index were more significantly reduced in the three patient groups compared with the healthy controls. Cardiac index reduction was not different between the three patient groups. The cerebral blood flow reduction was larger in the long-haul COVID-19 patients compared with the ME/CFS patients with a normal heart rate and blood pressure response. Conclusions: The symptoms of long-haul COVID-19 are similar to those of ME/CFS patients, as is the response to tilt testing. Cerebral blood flow and cardiac index reductions during tilt were more severely impaired than in many patients with ME/CFS. The finding of early-onset orthostatic intolerance symptoms, and the high pre-illness physical activity level of the long-haul COVID-19 patients, makes it unlikely that POTS in this group is due to deconditioning. These data suggest that similar to SARS-CoV-1, SARS-CoV-2 infection acts as a trigger for the development of ME/CFS.
Collapse
Affiliation(s)
| | - Peter C. Rowe
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| | - Frans C. Visser
- Stichting CardioZorg, Planetenweg 5, 2132 HN Hoofddorp, The Netherlands;
| |
Collapse
|
16
|
Fluge Ø, Tronstad KJ, Mella O. Pathomechanisms and possible interventions in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). J Clin Invest 2021; 131:e150377. [PMID: 34263741 DOI: 10.1172/jci150377] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Øystein Fluge
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science and
| | - Karl J Tronstad
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Olav Mella
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science and
| |
Collapse
|