1
|
Alimohammadi M, Kahkesh S, Abbasi A, Hashemi M, Khoshnazar SM, Taheriazam A, Hushmandi K. LncRNAs and IgA nephropathy: underlying molecular pathways and clinical applications. Clin Exp Med 2025; 25:140. [PMID: 40328979 PMCID: PMC12055897 DOI: 10.1007/s10238-025-01660-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 04/01/2025] [Indexed: 05/08/2025]
Abstract
IgA nephropathy (IgAN), also known as Berger's disease, is a prevalent kidney disorder caused by the accumulation of IgA antibodies in the glomerular tissue. Long noncoding RNAs (lncRNAs), a class of noncoding RNAs longer than 200 nucleotides, play crucial roles in regulating various cellular and molecular processes, including translation, chromatin remodeling, and transcriptional efficiency. Research has highlighted the significant impact of lncRNA imbalances on the development and progression of kidney diseases, including IgAN. These molecules influence several key signaling pathways, such as PI3K/AKT/mTOR, PTEN, Notch, JNK, and immune-related pathways, with their dysregulation contributing to IgAN pathogenesis. This review aims to provide a comprehensive analysis of the molecular signaling pathways involving lncRNAs in IgAN, underscoring their potential as biomarkers for screening, diagnosis, and prevention. Furthermore, it explores the therapeutic potential of lncRNAs as precise targets for personalized treatment strategies.
Collapse
Affiliation(s)
- Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Kahkesh
- Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Amirhosein Abbasi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Seyedeh Mahdieh Khoshnazar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Yang G, Khan A, Liang W, Xiong Z, Stegbauer J. Aortic aneurysm: pathophysiology and therapeutic options. MedComm (Beijing) 2024; 5:e703. [PMID: 39247619 PMCID: PMC11380051 DOI: 10.1002/mco2.703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024] Open
Abstract
Aortic aneurysm (AA) is an aortic disease with a high mortality rate, and other than surgery no effective preventive or therapeutic treatment have been developed. The renin-angiotensin system (RAS) is an important endocrine system that regulates vascular health. The ACE2/Ang-(1-7)/MasR axis can antagonize the adverse effects of the activation of the ACE/Ang II/AT1R axis on vascular dysfunction, atherosclerosis, and the development of aneurysms, thus providing an important therapeutic target for the prevention and treatment of AA. However, products targeting the Ang-(1-7)/MasR pathway still lack clinical validation. This review will outline the epidemiology of AA, including thoracic, abdominal, and thoracoabdominal AA, as well as current diagnostic and treatment strategies. Due to the highest incidence and most extensive research on abdominal AA (AAA), we will focus on AAA to explain the role of the RAS in its development, the protective function of Ang-(1-7)/MasR, and the mechanisms involved. We will also describe the roles of agonists and antagonists, suggest improvements in engineering and drug delivery, and provide evidence for Ang-(1-7)/MasR's clinical potential, discussing risks and solutions for clinical use. This study will enhance our understanding of AA and offer new possibilities and promising targets for therapeutic intervention.
Collapse
Affiliation(s)
- Guang Yang
- Division of Renal Medicine Peking University Shenzhen Hospital Shenzhen China
- Shenzhen Institute of Translational Medicine Shenzhen Second People's Hospital The First Affiliated Hospital of Shenzhen University Shenzhen China
- Department of Life Sciences Yuncheng University Yuncheng China
- Shenzhen Clinical Research Center for Urology and Nephrology Shenzhen China
| | - Abbas Khan
- Department of Nutrition and Health Promotion University of Home Economics Lahore Pakistan Lahore Pakistan
| | - Wei Liang
- Division of Renal Medicine Peking University Shenzhen Hospital Shenzhen China
- Shenzhen Clinical Research Center for Urology and Nephrology Shenzhen China
| | - Zibo Xiong
- Division of Renal Medicine Peking University Shenzhen Hospital Shenzhen China
- Shenzhen Clinical Research Center for Urology and Nephrology Shenzhen China
| | - Johannes Stegbauer
- Department of Nephrology Medical Faculty University Hospital Düsseldorf Heinrich Heine University Düsseldorf Düsseldorf Germany
| |
Collapse
|
3
|
Scimone C, Donato L, Alibrandi S, Conti A, Bortolotti C, Germanò A, Alafaci C, Vinci SL, D'Angelo R, Sidoti A. Methylome analysis of endothelial cells suggests new insights on sporadic brain arteriovenous malformation. Heliyon 2024; 10:e35126. [PMID: 39170526 PMCID: PMC11336478 DOI: 10.1016/j.heliyon.2024.e35126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Arteriovenous malformation of the brain (bAVM) is a vascular phenotype related to brain defective angiogenesis. Involved vessels show impaired expression of vascular differentiation markers resulting in the arteriolar to venule direct shunt. In order to clarify aberrant gene expression occurring in bAVM, here we describe results obtained by methylome analysis performed on endothelial cells (ECs) isolated from bAVM specimens, compared to human cerebral microvascular ECs. Results were validated by quantitative methylation-specific PCR and quantitative realtime-PCR. Differential methylation events occur in genes already linked to bAVM onset, as RBPJ and KRAS. However, among differentially methylated genes, we identified EPHB1 and several other loci involved in EC adhesion as well as in EC/vascular smooth muscle cell (VSMC) crosstalk, suggesting that only endothelial dysfunction might not be sufficient to trigger the bAVM phenotype. Moreover, aberrant methylation pattern was reported for many lncRNA genes targeting transcription factors expressed during neurovascular development. Among these, the YBX1 that was recently shown to target the arteridin coding gene. Finally, in addition to the conventional CpG methylation, we further considered the role of impaired CHG methylation, mainly occurring in brain at embryo stage. We showed as differentially CHG methylated genes are clustered in pathways related to EC homeostasis, as well as to VSMC-EC crosstalk, suggesting as impairment of this interaction plays a prominent role in loss of vascular differentiation, in bAVM phenotype.
Collapse
Affiliation(s)
- Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125, Messina, Italy
- Department of Biomolecular Strategies, Genetics, Cutting-edge Therapies, I.E.ME.S.T., Via Michele Miraglia 20, Palermo, 90139, Italy
| | - Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125, Messina, Italy
- Department of Biomolecular Strategies, Genetics, Cutting-edge Therapies, I.E.ME.S.T., Via Michele Miraglia 20, Palermo, 90139, Italy
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125, Messina, Italy
- Department of Biomolecular Strategies, Genetics, Cutting-edge Therapies, I.E.ME.S.T., Via Michele Miraglia 20, Palermo, 90139, Italy
| | - Alfredo Conti
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Via Altura 3, 40123, Bologna, Italy
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), Alma Mater Studiorum – University of Bologna, Bologna, Italy
| | - Carlo Bortolotti
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Via Altura 3, 40123, Bologna, Italy
| | - Antonino Germanò
- Neurosurgery Unit, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125, Messina, Italy
| | - Concetta Alafaci
- Neurosurgery Unit, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125, Messina, Italy
| | - Sergio Lucio Vinci
- Neuroradiology Unit, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Rosalia D'Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125, Messina, Italy
- Department of Biomolecular Strategies, Genetics, Cutting-edge Therapies, I.E.ME.S.T., Via Michele Miraglia 20, Palermo, 90139, Italy
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125, Messina, Italy
- Department of Biomolecular Strategies, Genetics, Cutting-edge Therapies, I.E.ME.S.T., Via Michele Miraglia 20, Palermo, 90139, Italy
| |
Collapse
|
4
|
Zhang H, Zhang K, Gu Y, Tu Y, Ouyang C. Roles and Mechanisms of miRNAs in Abdominal Aortic Aneurysm: Signaling Pathways and Clinical Insights. Curr Atheroscler Rep 2024; 26:273-287. [PMID: 38709435 DOI: 10.1007/s11883-024-01204-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 05/07/2024]
Abstract
PURPOSE OF REVIEW Abdominal aortic aneurysm refers to a serious medical condition that can cause the irreversible expansion of the abdominal aorta, which can lead to ruptures that are associated with up to 80% mortality. Currently, surgical and interventional procedures are the only treatment options available for treating abdominal aortic aneurysm patients. In this review, we focus on the upstream and downstream molecules of the microRNA-related signaling pathways and discuss the roles, mechanisms, and targets of microRNAs in abdominal aortic aneurysm modulation to provide novel insights for precise and targeted drug therapy for the vast number of abdominal aortic aneurysm patients. RECENT FINDINGS Recent studies have highlighted that microRNAs, which are emerging as novel regulators of gene expression, are involved in the biological activities of regulating abdominal aortic aneurysms. Accumulating studies suggested that microRNAs modulate abdominal aortic aneurysm development through various signaling pathways that are yet to be comprehensively summarized. A total of six signaling pathways (NF-κB signaling pathway, PI3K/AKT signaling pathway, MAPK signaling pathway, TGF-β signaling pathway, Wnt signaling pathway, and P53/P21 signaling pathway), and a total of 19 miRNAs are intimately associated with the biological properties of abdominal aortic aneurysm through targeting various essential molecules. MicroRNAs modulate the formation, progression, and rupture of abdominal aortic aneurysm by regulating smooth muscle cell proliferation and phenotype change, vascular inflammation and endothelium function, and extracellular matrix remodeling. Because of the broad crosstalk among signaling pathways, a comprehensive analysis of miRNA-mediated signaling pathways is necessary to construct a well-rounded upstream and downstream regulatory network for future basic and clinical research of AAA therapy.
Collapse
Affiliation(s)
- Haorui Zhang
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xi Cheng District, Beijing, 100037, China
| | - Ke Zhang
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xi Cheng District, Beijing, 100037, China
| | - Yuanrui Gu
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xi Cheng District, Beijing, 100037, China
| | - Yanxia Tu
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xi Cheng District, Beijing, 100037, China
| | - Chenxi Ouyang
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xi Cheng District, Beijing, 100037, China.
| |
Collapse
|
5
|
Luo H, Li Y, Song H, Zhao K, Li W, Hong H, Wang YT, Qi L, Zhang Y. Role of EZH2-mediated epigenetic modification on vascular smooth muscle in cardiovascular diseases: A mini-review. Front Pharmacol 2024; 15:1416992. [PMID: 38994197 PMCID: PMC11236572 DOI: 10.3389/fphar.2024.1416992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/03/2024] [Indexed: 07/13/2024] Open
Abstract
Vascular smooth muscle cells (VSMCs) are integral to the pathophysiology of cardiovascular diseases (CVDs). Enhancer of zeste homolog 2 (EZH2), a histone methyltransferase, plays a crucial role in epigenetic regulation of VSMCs gene expression. Emerging researches suggest that EZH2 has a dual role in VSMCs, contingent on the pathological context of specific CVDs. This mini-review synthesizes the current knowledge on the mechanisms by which EZH2 regulates VSMC proliferation, migration and survival in the context of CVDs. The goal is to underscore the potential of EZH2 as a therapeutic target for CVDs treatment. Modulating EZH2 and its associated epigenetic pathways in VSMCs could potentially ameliorate vascular remodeling, a key factor in the progression of many CVDs. Despite the promising outlook, further investigation is warranted to elucidate the epigenetic mechanisms mediated by EZH2 in VSMCs, which may pave the way for novel epigenetic therapies for conditions such as atherosclerosis and hypertension.
Collapse
Affiliation(s)
- Haiyan Luo
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yao Li
- Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, China
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Nanchang, China
| | - Honghu Song
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Kui Zhao
- College of Material Science and Chemical Engineering, Southwest Forestry University, Kunming, Yunnan, China
| | - Wenlin Li
- Center for Quality Evaluation and Research in Higher Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hailan Hong
- Center for Quality Evaluation and Research in Higher Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yun-Ting Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Luming Qi
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yang Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| |
Collapse
|
6
|
Liu Y, Sun X, Gou Z, Deng Z, Zhang Y, Zhao P, Sun W, Bai Y, Jing Y. Epigenetic modifications in abdominal aortic aneurysms: from basic to clinical. Front Cardiovasc Med 2024; 11:1394889. [PMID: 38895538 PMCID: PMC11183338 DOI: 10.3389/fcvm.2024.1394889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Abdominal Aortic Aneurysm (AAA) is a disease characterized by localized dilation of the abdominal aorta, involving multiple factors in its occurrence and development, ultimately leading to vessel rupture and severe bleeding. AAA has a high mortality rate, and there is a lack of targeted therapeutic drugs. Epigenetic regulation plays a crucial role in AAA, and the treatment of AAA in the epigenetic field may involve a series of related genes and pathways. Abnormal expression of these genes may be a key factor in the occurrence of the disease and could potentially serve as promising therapeutic targets. Understanding the epigenetic regulation of AAA is of significant importance in revealing the mechanisms underlying the disease and identifying new therapeutic targets. This knowledge can contribute to offering AAA patients better clinical treatment options beyond surgery. This review systematically explores various aspects of epigenetic regulation in AAA, including DNA methylation, histone modification, non-coding RNA, and RNA modification. The analysis of the roles of these regulatory mechanisms, along with the identification of relevant genes and pathways associated with AAA, is discussed comprehensively. Additionally, a comprehensive discussion is provided on existing treatment strategies and prospects for epigenetics-based treatments, offering insights for future clinical interventions.
Collapse
Affiliation(s)
- YuChen Liu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - XiaoYun Sun
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Zhen Gou
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - ZhenKun Deng
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - YunRui Zhang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - PingPing Zhao
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Wei Sun
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Yang Bai
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - YuChen Jing
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Zhou Z, Wang Y, Zhang J, Liu Z, Hao X, Wang X, He S, Wang R. Characterization of PANoptosis-related genes and the immune landscape in moyamoya disease. Sci Rep 2024; 14:10278. [PMID: 38704490 PMCID: PMC11069501 DOI: 10.1038/s41598-024-61241-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/02/2024] [Indexed: 05/06/2024] Open
Abstract
Moyamoya disease (MMD) is a cerebrovascular narrowing and occlusive condition characterized by progressive stenosis of the terminal portion of the internal carotid artery and the formation of an abnormal network of dilated, fragile perforators at the base of the brain. However, the role of PANoptosis, an apoptotic mechanism associated with vascular disease, has not been elucidated in MMD. In our study, a total of 40 patients' genetic data were included, and a total of 815 MMD-related differential genes were screened, including 215 upregulated genes and 600 downregulated genes. Among them, DNAJA3, ESR1, H19, KRT18 and STK3 were five key genes. These five key genes were associated with a variety of immune cells and immune factors. Moreover, GSEA (gene set enrichment analysis) and GSVA (gene set variation analysis) showed that the different expression levels of the five key genes affected multiple signaling pathways associated with MMD. In addition, they were associated with the expression of MMD-related genes. Then, based on the five key genes, a transcription factor regulatory network was constructed. In addition, targeted therapeutic drugs against MMD-related genes were obtained by the Cmap drug prediction method: MST-312, bisacodyl, indirubin, and tropanyl-3,5-dimethylbenzoate. These results suggest that the PANoptosis-related genes may contribute to the pathogenesis of MMD through multiple mechanisms.
Collapse
Affiliation(s)
- Zhenyu Zhou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yanru Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Junze Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Ziqi Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xiaokuan Hao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xilong Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Shihao He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Rong Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
- Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
8
|
Sheng C, Zeng Q, Huang W, Liao M, Yang P. Identification of abdominal aortic aneurysm subtypes based on mechanosensitive genes. PLoS One 2024; 19:e0296729. [PMID: 38335213 PMCID: PMC10857568 DOI: 10.1371/journal.pone.0296729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/18/2023] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Rupture of abdominal aortic aneurysm (rAAA) is a fatal event in the elderly. Elevated blood pressure and weakening of vessel wall strength are major risk factors for this devastating event. This present study examined whether the expression profile of mechanosensitive genes correlates with the phenotype and outcome, thus, serving as a biomarker for AAA development. METHODS In this study, we identified mechanosensitive genes involved in AAA development using general bioinformatics methods and machine learning with six human datasets publicly available from the GEO database. Differentially expressed mechanosensitive genes (DEMGs) in AAAs were identified by differential expression analysis. Molecular biological functions of genes were explored using functional clustering, Protein-protein interaction (PPI), and weighted gene co-expression network analysis (WGCNA). According to the datasets (GSE98278, GSE205071 and GSE165470), the changes of diameter and aortic wall strength of AAA induced by DEMGs were verified by consensus clustering analysis, machine learning models, and statistical analysis. In addition, a model for identifying AAA subtypes was built using machine learning methods. RESULTS 38 DEMGs clustered in pathways regulating 'Smooth muscle cell biology' and 'Cell or Tissue connectivity'. By analyzing the GSE205071 and GSE165470 datasets, DEMGs were found to respond to differences in aneurysm diameter and vessel wall strength. Thus, in the merged datasets, we formally created subgroups of AAAs and found differences in immune characteristics between the subgroups. Finally, a model that accurately predicts the AAA subtype that is more likely to rupture was successfully developed. CONCLUSION We identified 38 DEMGs that may be involved in AAA. This gene cluster is involved in regulating the maximum vessel diameter, degree of immunoinflammatory infiltration, and strength of the local vessel wall in AAA. The prognostic model we developed can accurately identify the AAA subtypes that tend to rupture.
Collapse
Affiliation(s)
- Chang Sheng
- Department of Vascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qin Zeng
- National Health Commission Key Laboratory of Nanobiological Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weihua Huang
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Mingmei Liao
- National Health Commission Key Laboratory of Nanobiological Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Pu Yang
- Department of Vascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
9
|
Fang T, Wang X, Huangfu N. Superfamily II helicases: the potential therapeutic target for cardiovascular diseases. Front Cardiovasc Med 2023; 10:1309491. [PMID: 38152606 PMCID: PMC10752008 DOI: 10.3389/fcvm.2023.1309491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023] Open
Abstract
Cardiovascular diseases (CVDs) still maintain high morbidity and mortality globally. Helicases, a unique class of enzymes, are extensively implicated in the processes of nucleic acid (NA) metabolism across various organisms. They play a pivotal role in gene expression, inflammatory response, lipid metabolism, and so forth. However, abnormal helicase expression has been associated with immune response, cancer, and intellectual disability in humans. Superfamily II (SFII) is one of the largest and most diverse of the helicase superfamilies. Increasing evidence has implicated SFⅡ helicases in the pathogenesis of multiple CVDs. In this review, we comprehensively review the regulation mechanism of SFⅡ helicases in CVDs including atherosclerosis, myocardial infarction, cardiomyopathies, and heart failure, which will contribute to the investigation of ideal therapeutic targets for CVDs.
Collapse
Affiliation(s)
- Tianxiang Fang
- Health Science Center, Ningbo University, Ningbo, China
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Department of Cardiology, Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, China
- Clinical Medicine Research Centre for Cardiovascular Disease of Ningbo, Ningbo, China
| | - Xizhi Wang
- Department of Cardiology, Lihuili Hospital Affiliated to Ningbo University, Ningbo, China
| | - Ning Huangfu
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Department of Cardiology, Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, China
- Clinical Medicine Research Centre for Cardiovascular Disease of Ningbo, Ningbo, China
| |
Collapse
|
10
|
Puertas-Umbert L, Almendra-Pegueros R, Jiménez-Altayó F, Sirvent M, Galán M, Martínez-González J, Rodríguez C. Novel pharmacological approaches in abdominal aortic aneurysm. Clin Sci (Lond) 2023; 137:1167-1194. [PMID: 37559446 PMCID: PMC10415166 DOI: 10.1042/cs20220795] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/05/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
Abdominal aortic aneurysm (AAA) is a severe vascular disease and a major public health issue with an unmet medical need for therapy. This disease is featured by a progressive dilation of the abdominal aorta, boosted by atherosclerosis, ageing, and smoking as major risk factors. Aneurysm growth increases the risk of aortic rupture, a life-threatening emergency with high mortality rates. Despite the increasing progress in our knowledge about the etiopathology of AAA, an effective pharmacological treatment against this disorder remains elusive and surgical repair is still the unique available therapeutic approach for high-risk patients. Meanwhile, there is no medical alternative for patients with small aneurysms but close surveillance. Clinical trials assessing the efficacy of antihypertensive agents, statins, doxycycline, or anti-platelet drugs, among others, failed to demonstrate a clear benefit limiting AAA growth, while data from ongoing clinical trials addressing the benefit of metformin on aneurysm progression are eagerly awaited. Recent preclinical studies have postulated new therapeutic targets and pharmacological strategies paving the way for the implementation of future clinical studies exploring these novel therapeutic strategies. This review summarises some of the most relevant clinical and preclinical studies in search of new therapeutic approaches for AAA.
Collapse
Affiliation(s)
- Lídia Puertas-Umbert
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
| | | | - Francesc Jiménez-Altayó
- Department of Pharmacology, Therapeutics and Toxicology, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Neuroscience Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marc Sirvent
- CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
- Departamento de Angiología y Cirugía Vascular del Hospital Universitari General de Granollers, Granollers, Barcelona, Spain
| | - María Galán
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
- Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - José Martínez-González
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
- Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Barcelona, Spain
| | - Cristina Rodríguez
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
| |
Collapse
|
11
|
Sun L, Li X, Luo H, Guo H, Zhang J, Chen Z, Lin F, Zhao G. EZH2 can be used as a therapeutic agent for inhibiting endothelial dysfunction. Biochem Pharmacol 2023; 213:115594. [PMID: 37207700 DOI: 10.1016/j.bcp.2023.115594] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/21/2023]
Abstract
Enhancer of zeste homolog 2 (EZH2) is a catalytic subunit of polycomb repressor complex 2 and plays important roles in endothelial cell homeostasis. EZH2 functionally methylates lysine 27 of histone H3 and represses gene expression through chromatin compaction. EZH2 mediates the effects of environmental stimuli by regulating endothelial functions, such as angiogenesis, endothelial barrier integrity, inflammatory signaling, and endothelial mesenchymal transition. Numerous studies have been conducted to determine the significance of EZH2 in endothelial function. The aim of this review is to provide a concise summary of the roles EZH2 plays in endothelial function and elucidate its therapeutic potential in cardiovascular diseases.
Collapse
Affiliation(s)
- Li Sun
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Xuefang Li
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Hui Luo
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Huige Guo
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Jie Zhang
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Zhigang Chen
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Fei Lin
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China.
| | - Guoan Zhao
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China.
| |
Collapse
|
12
|
Xu Y, Yang S, Xue G. The role of long non-coding RNA in abdominal aortic aneurysm. Front Genet 2023; 14:1153899. [PMID: 37007957 PMCID: PMC10050724 DOI: 10.3389/fgene.2023.1153899] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
The abdominal aortic aneurysm (AAA) is characterized by segmental expansion of the abdominal aorta and a high mortality rate. The characteristics of AAA suggest that apoptosis of smooth muscle cells, the production of reactive oxygen species, and inflammation are potential pathways for the formation and development of AAA. Long non-coding RNA (lncRNA) is becoming a new and essential regulator of gene expression. Researchers and physicians are focusing on these lncRNAs to use them as clinical biomarkers and new treatment targets for AAAs. LncRNA studies are beginning to emerge, suggesting that they may play a significant but yet unidentified role in vascular physiology and disease. This review examines the role of lncRNA and their target genes in AAA to increase our understanding of the disease’s onset and progression, which is crucial for developing potential AAA therapies.
Collapse
|
13
|
Liu J, Ji Q, Cheng F, Chen D, Geng T, Huang Y, Zhang J, He Y, Song T. The lncRNAs involved in regulating the RIG-I signaling pathway. Front Cell Infect Microbiol 2022; 12:1041682. [PMID: 36439216 PMCID: PMC9682092 DOI: 10.3389/fcimb.2022.1041682] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/21/2022] [Indexed: 09/23/2023] Open
Abstract
Understanding the targets and interactions of long non-coding RNAs (lncRNAs) related to the retinoic acid-inducible gene-I (RIG-I) signaling pathway is essential for developing interventions, which would enable directing the host inflammatory response regulation toward protective immunity. In the RIG-I signaling pathway, lncRNAs are involved in the important processes of ubiquitination, phosphorylation, and glycolysis, thus promoting the transport of the interferon regulatory factors 3 and 7 (IRF3 and IRF7) and the nuclear factor kappa B (NF-κB) into the nucleus, and activating recruitment of type I interferons (IFN-I) and inflammatory factors to the antiviral action site. In addition, the RIG-I signaling pathway has recently been reported to contain the targets of coronavirus disease-19 (COVID-19)-related lncRNAs. The molecules in the RIG-I signaling pathway are directly regulated by the lncRNA-microRNAs (miRNAs)-messenger RNA (mRNA) axis. Therefore, targeting this axis has become a novel strategy for the diagnosis and treatment of cancer. In this paper, the studies on the regulation of the RIG-I signaling pathway by lncRNAs during viral infections and cancer are comprehensively analyzed. The aim is to provide a solid foundation of information for conducting further detailed studies on lncRNAs and RIG-I in the future and also contribute to clinical drug development.
Collapse
Affiliation(s)
- Jing Liu
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Qinglu Ji
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Feng Cheng
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Dengwang Chen
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Tingting Geng
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Yueyue Huang
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Jidong Zhang
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Yuqi He
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Tao Song
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
| |
Collapse
|
14
|
Li Y, Guo S, Zhao Y, Li R, Li Y, Qiu C, Xiao L, Gong K. EZH2 Regulates ANXA6 Expression via H3K27me3 and Is Involved in Angiotensin II-Induced Vascular Smooth Muscle Cell Senescence. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4838760. [PMID: 36160712 PMCID: PMC9492406 DOI: 10.1155/2022/4838760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/14/2022] [Accepted: 08/01/2022] [Indexed: 02/05/2023]
Abstract
Objectives Abdominal aortic aneurysm (AAA) has a high risk of rupture of the aorta and is one of the leading causes of death in older adults. This study is aimed at confirming the influence and mechanism of the abnormally expressed ANXA6 gene in AAA. Methods Clinical samples were collected for proteome sequencing to screen for differentially expressed proteins. An Ang II-induced vascular smooth muscle cell (VSMC) aging model as well as an AAA animal model was used. Using RT-qPCR to detect the mRNA levels of EZH2, ANXA6, IK-6, and IL-8 in cells and tissues were assessed. Western blotting and immunohistochemistry staining were used apply for the expression of associated proteins in cells and tissues. SA-β-gal staining, flow cytometry, and DHE staining were used to detect senescent cells and the level of ROS. The cell cycle was assessed by flow cytometry. Arterial pathology was observed by HE staining. The aging of VSMCs in arterial tissue was assessed by coimmunofluorescence for α-SMA and p53. Results There were 24 differentially expressed proteins in the AAA clinical samples, including 10 upregulated protein and 14 downregulated protein, and the differential expression of ANXA6 was associated with vascular disease. Our study found that ANXA6 was highly expressed and EZH2 was lowly expressed in an Ang II-induced VSMC aging model. Knockdown of ANXA6 or overexpression of EZH2 inhibited Ang II-induced ROS, inhibited cell senescence, decreased Ang II evoked G1 arrest, and increased cells in G2 phase, while overexpression of ANXA6 played the opposite role. Overexpression of EZH2 inhibited ANXA6 expression by increasing H3K27me3 modification at the ANXA6 promoter. Simultaneous overexpression of EZH2 and the protective effect of EZH2 on cell senescence were partially reversed by ANXA6. Similarly, ANXA6 was highly expressed and EZH2 was lowly expressed in an Ang II-induced AAA animal model. Knockdown of ANXA6 and overexpression of EZH2 alleviated Ang II-induced VSMC senescence and inhibited AAA progression, while simultaneous overexpression of EZH2 and ANXA6 partially reversed the protective effect of EZH2 on AAA. Conclusion EZH2 regulates the ANXA6 promoter H3K27me3 modification, inhibits ANXA6 expression, alleviates Ang II-induced VSMC senescence, and inhibits AAA progression.
Collapse
Affiliation(s)
- Yuejin Li
- Department of General Surgery, The First People's Hospital of Yunnan Province (The Affiliated Hospital of Kunming University of Science and Technology), Kunming, Yunnan 650032, China
| | - Shikui Guo
- Department of General Surgery, The First People's Hospital of Yunnan Province (The Affiliated Hospital of Kunming University of Science and Technology), Kunming, Yunnan 650032, China
| | - Yingpeng Zhao
- Department of Hepatic-Biliary-Pancreatic Surgery, The First Hospital of Kunming (The Calmette Hospital), Kunming, Yunnan 650224, China
| | - Rougang Li
- Department of General Surgery, The First People's Hospital of Yunnan Province (The Affiliated Hospital of Kunming University of Science and Technology), Kunming, Yunnan 650032, China
| | - Yu Li
- Department of General Surgery, The First People's Hospital of Yunnan Province (The Affiliated Hospital of Kunming University of Science and Technology), Kunming, Yunnan 650032, China
| | - Changtao Qiu
- Department of General Surgery, The First People's Hospital of Yunnan Province (The Affiliated Hospital of Kunming University of Science and Technology), Kunming, Yunnan 650032, China
| | - Le Xiao
- Department of General Surgery, The First People's Hospital of Yunnan Province (The Affiliated Hospital of Kunming University of Science and Technology), Kunming, Yunnan 650032, China
| | - Kunmei Gong
- Department of General Surgery, The First People's Hospital of Yunnan Province (The Affiliated Hospital of Kunming University of Science and Technology), Kunming, Yunnan 650032, China
| |
Collapse
|
15
|
Zhong HY, Yuan C, Liu XL, Wang QQ, Li X, Zhao YC, Li X, Liu DD, Zheng TF, Zhang M. Mechanical stretch aggravates vascular smooth muscle cell apoptosis and vascular remodeling by downregulating EZH2. Int J Biochem Cell Biol 2022; 151:106278. [PMID: 35985452 DOI: 10.1016/j.biocel.2022.106278] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Enhancer of zeste homolog 2 (EZH2) was recently found to play an important role in cardiovascular disease. However, the role of EZH2 in vascular remodeling induced by mechanical stretch is poorly understood. The aim of the present work was to investigate the role of EZH2 in regulating smooth muscle cell function through mechanical stretch assays and to explore the underlying mechanisms. METHODS WT C57BL/6 J mice underwent sham surgery or abdominal aortic constriction. The level of EZH2 expression was determined by Western blotting and immunohistochemical staining. We demonstrated the thickness of vascular remodeling by HE staining. JASPAR was used to predict transcription factors that could affect EZH2. Chromatin immunoprecipitation was used to substantiate the DNAprotein interactions. Promoter luciferase assays were performed to demonstrate the activity of the transcription factors. RESULTS We found that in vivo, AAC significantly reduced EZH2 protein levels in the thoracic aorta. Smooth muscle-specific overexpression of EZH2 was sufficient to attenuate the AAC-induced reduction in trimethylation of Lys-27 in histone 3 and thickening of the arterial media. Administration of GSK-J4 (an inhibitor of H3K27me3 demethylase) induced the same effects. In addition, we found that mechanical stretch regulated the expression of EZH2 through the Yes-associated protein (YAP)- transcriptional factor TEA domain 1 (TEAD) pathway. TEAD1 bound directly to the promoter of EZH2, and blocking the YAP-TEAD1 interaction inhibited EZH2 downregulation due to mechanical stretch. CONCLUSION This study reveals that mechanical stretch downregulates EZH2 through the YAP-TEAD1 pathway, thereby aggravating smooth muscle cell apoptosis and vascular remodeling.
Collapse
Affiliation(s)
- Hong-Yu Zhong
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Chong Yuan
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Xiao-Lin Liu
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Qian-Qian Wang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Xiao Li
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Ya-Chao Zhao
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Xuan Li
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Dong-Dong Liu
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Teng-Fei Zheng
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.
| | - Mei Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.
| |
Collapse
|
16
|
Wang H, Yin J, Gu X, Shao W, Jia Z, Chen H, Xia W. Immune Regulator Retinoic Acid-Inducible Gene I (RIG-I) in the Pathogenesis of Cardiovascular Disease. Front Immunol 2022; 13:893204. [PMID: 35693778 PMCID: PMC9178270 DOI: 10.3389/fimmu.2022.893204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/28/2022] [Indexed: 11/24/2022] Open
Abstract
Retinoic acid-inducible gene I (RIG-I) is a cytosolic pattern recognition receptor that contains two CARD domains, an RNA helicase domain, and a C-terminal domain. RIG-I initiates antiviral innate immunity by recognizing exogenous viral RNAs/DNAs. However, some studies have reported that RIG-I activation leads to damage in various organs and tissues in diverse circumstances. Recent studies have shown that RIG-I is involved in cancer, lupus nephritis, immunoglobulin A nephropathy, Crohn's disease, and atherosclerosis. These reports indicate that RIG-I not only participates in antiviral signaling pathways but also exerts an influence on non-viral infectious diseases. RIG-I is widely expressed in immune and non-immune cells including smooth muscle cells, endothelial cells, and cardiomyocytes. A succinct overview of RIG-I and its signaling pathways, with respect to the cardiovascular system, will aid in the development of novel therapeutics for cardiovascular diseases. In this review, we summarize the structure, activation, signaling pathways, and role of RIG-I in cardiovascular diseases.
Collapse
Affiliation(s)
- Hao Wang
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Yin
- Department of Cardiology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyan Gu
- School of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Wenhui Shao
- School of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Hongbing Chen
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Weiwei Xia
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
Wu Y, Jiang D, Zhang H, Yin F, Guo P, Zhang X, Bian C, Chen C, Li S, Yin Y, Böckler D, Zhang J, Han Y. N1-Methyladenosine (m1A) Regulation Associated With the Pathogenesis of Abdominal Aortic Aneurysm Through YTHDF3 Modulating Macrophage Polarization. Front Cardiovasc Med 2022; 9:883155. [PMID: 35620523 PMCID: PMC9127271 DOI: 10.3389/fcvm.2022.883155] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/20/2022] [Indexed: 11/30/2022] Open
Abstract
Objectives This study aimed to identify key AAA-related m1A RNA methylation regulators and their association with immune infiltration in AAA. Furthermore, we aimed to explore the mechanism that m1A regulators modulate the functions of certain immune cells as well as the downstream target genes, participating in the progression of AAA. Methods Based on the gene expression profiles of the GSE47472 and GSE98278 datasets, differential expression analysis focusing on m1A regulators was performed on the combined dataset to identify differentially expressed m1A regulatory genes (DEMRGs). Additionally, CIBERSORT tool was utilized in the analysis of the immune infiltration landscape and its correlation with DEMRGs. Moreover, we validated the expression levels of DEMRGs in human AAA tissues by real-time quantitative PCR (RT-qPCR). Immunofluorescence (IF) staining was also applied in the validation of cellular localization of YTHDF3 in AAA tissues. Furthermore, we established LPS/IFN-γ induced M1 macrophages and ythdf3 knockdown macrophages in vitro, to explore the relationship between YTHDF3 and macrophage polarization. At last, RNA immunoprecipitation-sequencing (RIP-Seq) combined with PPI network analysis was used to predict the target genes of YTHDF3 in AAA progression. Results Eight DEMRGs were identified in our study, including YTHDC1, YTHDF1-3, RRP8, TRMT61A as up-regulated genes and FTO, ALKBH1 as down-regulated genes. The immune infiltration analysis showed these DEMRGs were positively correlated with activated mast cells, plasma cells and M1 macrophages in AAA. RT-qPCR analysis also verified the up-regulated expression levels of YTHDC1, YTHDF1, and YTHDF3 in human AAA tissues. Besides, IF staining result in AAA adventitia indicated the localization of YTHDF3 in macrophages. Moreover, our in-vitro experiments found that the knockdown of ythdf3 in M0 macrophages inhibits macrophage M1 polarization but promotes macrophage M2 polarization. Eventually, 30 key AAA-related target genes of YTHDF3 were predicted, including CD44, mTOR, ITGB1, STAT3, etc. Conclusion Our study reveals that m1A regulation is significantly associated with the pathogenesis of human AAA. The m1A “reader,” YTHDF3, may participate in the modulating of macrophage polarization that promotes aortic inflammation, and influence AAA progression by regulating the expression of its target genes.
Collapse
Affiliation(s)
- Yihao Wu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Deying Jiang
- Department of Vascular Surgery, Dalian Municipal Central Hospital, Dalian, China
| | - Hao Zhang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Fanxing Yin
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Panpan Guo
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Xiaoxu Zhang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Ce Bian
- Department of Cardiovascular Surgery, The General Hospital of the PLA Rocket Force, Beijing, China
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, QLD, Australia
| | - Shuixin Li
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Yuhan Yin
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Dittmar Böckler
- Department of Vascular and Endovascular Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Jian Zhang
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Jian Zhang
| | - Yanshuo Han
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
- Yanshuo Han ; orcid.org/0000-0002-4897-2998
| |
Collapse
|
18
|
Zhao J, Xu L, Dong Z, Zhang Y, Cao J, Yao J, Xing J. The LncRNA DUXAP10 Could Function as a Promising Oncogene in Human Cancer. Front Cell Dev Biol 2022; 10:832388. [PMID: 35186937 PMCID: PMC8850700 DOI: 10.3389/fcell.2022.832388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer is one of the most prevalent and deadliest diseases globally, with an increasing morbidity of approximately 14 million new cancer cases per year. Identifying novel diagnostic and prognostic biomarkers for cancers is important for developing cancer therapeutic strategies and lowering mortality rates. Long noncoding RNAs (lncRNAs) represent a group of noncoding RNAs of more than 200 nucleotides that have been shown to participate in the development of human cancers. The novel lncRNA DUXAP10 was newly reported to be abnormally overexpressed in several cancers and positively correlated with poor clinical characteristics of cancer patients. Multiple studies have found that DUXAP10 widely regulates vital biological functions related to the development and progression of cancers, including cell proliferation, apoptosis, invasion, migration, and stemness, through different molecular mechanisms. The aim of this review was to recapitulate current findings regarding the roles of DUXAP10 in cancers and evaluate the potential of DUXAP10 as a novel biomarker for cancer diagnosis, treatment, and prognostic assessment.
Collapse
Affiliation(s)
- Junjie Zhao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lixia Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zihui Dong
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yize Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junhua Cao
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Yao
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiyuan Xing
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Jiyuan Xing,
| |
Collapse
|