1
|
Zhang L, Song YH, Liu J, Zhao YX, Zhou RR, Xu JC, He J, Lu YL, Gan WJ, Lu XS, Li M, Zhou P, Wang L, Han QZ. Hepatitis B Virus Increases SphK1-S1P Synthesis by Promoting the Availability of the Transcription Factor USF1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1499-1507. [PMID: 39400236 PMCID: PMC11533153 DOI: 10.4049/jimmunol.2400088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024]
Abstract
Hepatitis B virus (HBV) is the most common chronic viral infection globally, affecting ∼360 million people and causing about 1 million deaths annually due to end-stage liver disease or hepatocellular carcinoma. Current antiviral treatments rarely achieve a functional cure for chronic hepatitis B, highlighting the need for improved monitoring and intervention strategies. This study explores the role of the sphingosine kinase 1 (SphK1)-sphingosine-1-phosphate (S1P) axis in HBV-related liver injury. We investigated the association between serum S1P concentration and HBV DNA levels in chronic hepatitis B patients, finding a significant positive correlation. Additionally, SphK1 was elevated in liver tissues of HBV-positive hepatocellular carcinoma patients, particularly in HBsAg-positive regions. HBV infection models in HepG2-sodium taurocholate cotransporting polypeptide cells confirmed that HBV enhances SphK1 expression and S1P production. Inhibition of HBV replication through antiviral agents and the CRISPR-Cas9 system reduced SphK1 and S1P levels. Further, we identified the transcription factor USF1 as a key regulator of SphK1 expression during HBV infection. USF1 binds to the SphK1 promoter, increasing its transcriptional activity, and is upregulated in response to HBV infection. In vivo studies in mice demonstrated that HBV exposure promotes the expression of USF1 and SphK1-S1P. These findings suggest that the SphK1-S1P axis, regulated by HBV-induced USF1, could serve as a potential biomarker and therapeutic target for HBV-related liver injury.
Collapse
Affiliation(s)
- Lu Zhang
- Center of Clinical Laboratory and Translational Medicine, Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, People’s Republic of China
- Department of Laboratory Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ya-Hui Song
- Center of Clinical Laboratory and Translational Medicine, Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, People’s Republic of China
| | - Juan Liu
- Center of Clinical Laboratory and Translational Medicine, Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, People’s Republic of China
| | - Yin-Xia Zhao
- Central Laboratory, Shanghai Xuhui Central Hospital/Zhongshan–Xuhui Hospital, Fudan University, Shanghai, China
| | - Ruo-Ran Zhou
- Suzhou Medical College, Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Jun-Chi Xu
- Fifth People’s Hospital of Suzhou, Suzhou, People’s Republic of China
| | - Jun He
- Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - You-Li Lu
- Central Laboratory, Shanghai Xuhui Central Hospital/Zhongshan–Xuhui Hospital, Fudan University, Shanghai, China
| | - Wen-Juan Gan
- Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, People’s Republic of China
| | - Xing-Sheng Lu
- Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, People’s Republic of China
| | - Min Li
- Institute of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Peng Zhou
- Center of Clinical Laboratory and Translational Medicine, Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, People’s Republic of China
| | - Lin Wang
- Center of Clinical Laboratory and Translational Medicine, Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, People’s Republic of China
| | - Qing-Zhen Han
- Center of Clinical Laboratory and Translational Medicine, Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, People’s Republic of China
| |
Collapse
|
2
|
Feng L, He B, Xia J, Wang Z. Untargeted and Targeted Lipidomics Unveil Dynamic Lipid Metabolism Alterations in Type 2 Diabetes. Metabolites 2024; 14:610. [PMID: 39590846 PMCID: PMC11596168 DOI: 10.3390/metabo14110610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a complex metabolic disorder with a growing body of evidence suggesting the central role of lipid metabolism in its pathogenesis. However, the dynamic changes in lipid metabolism across different stages of T2DM remain understudied. OBJECTIVE This study aimed to elucidate the temporal alterations in lipid metabolism in T2DM using an integrated lipidomics approach. METHOD Serum samples from 155 subjects were analyzed using LC-MS-based lipidomics, including untargeted and targeted approaches. RESULTS We identified significant alterations in 44 lipid metabolites in newly diagnosed T2DM patients and 29 in high-risk individuals, compared with healthy controls. Key metabolic pathways such as sphingomyelin, phosphatidylcholine, and sterol ester metabolism were disrupted, highlighting the involvement of insulin resistance and oxidative stress in T2DM progression. Moreover, 13 lipid metabolites exhibited diagnostic potential for T2DN, showing consistent trends of increase or decrease as the disease progressed. CONCLUSION Our findings underscore the importance of lipid metabolism in T2D development and identify potential lipid biomarkers for early diagnosis and monitoring of disease progression, which contribute to paving the way for novel therapeutic strategies.
Collapse
Affiliation(s)
- Li Feng
- School of Agroforestry and Medicine, The Open University of China, Beijing 100039, China;
| | - Bingshu He
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China;
| | - Jianzhen Xia
- School Hospital, Minzu University of China, Beijing 100081, China;
| | - Zhonghua Wang
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China;
| |
Collapse
|
3
|
Xia M, Li W, Lin H, Zeng H, Ma S, Wu Q, Ma H, Li X, Pan B, Gao J, Hu Y, Liu Y, Wang S, Gao X. DNA methylation age acceleration contributes to the development and prediction of non-alcoholic fatty liver disease. GeroScience 2024; 46:3525-3542. [PMID: 37605101 PMCID: PMC11226581 DOI: 10.1007/s11357-023-00903-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/06/2023] [Indexed: 08/23/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is prevalent in the aging society. Despite body weight reduction, the prevalence of NAFLD has been increasing with aging for unknown reasons. Here, we investigate the association of DNA methylation age acceleration, a hallmark of aging, with risk of NAFLD. Genome-wide DNA methylation profiles were measured in 95 participants who developed type 2 diabetes during 4-year follow-up, and 356 randomly sampled participants from Shanghai Changfeng Study. DNA methylation age was calculated using the Horvath's method, and liver fat content (LFC) was measured using a quantitative ultrasound method. Subjects with highest tertile of DNA methylation age acceleration (≥ 9.5 years) had significantly higher LFC (7.2% vs 3.1%, P = 0.008) but lower body fat percentage (29.7% vs 33.0%, P = 0.032) than those with lowest tertile of DNA methylation age acceleration (< 4.0 years). After adjustment for age, sex, alcohol drinking, cigarette smoking, BMI, waist circumference, and different type blood cell counts, the risk of NAFLD was still significantly increased in the highest tertile group (OR, 4.55; 95% CI, 1.06-19.61). Even in subjects with similar LFC at baseline, DNA methylation age acceleration was associated with higher increase in LFC (4.0 ± 10.7% vs 0.9 ± 9.5%, P = 0.004) after a median of 4-year follow-up. Further analysis found that 6 CpGs of Horvath age predictors were associated with longitudinal changes in LFC after multivariate adjustment and located on genes that might lead to fat redistribution from peripheral adipose to liver. Combination of the key CpG methylation related to liver fat content with conventional risk factors improves the performance for NAFLD prediction.
Collapse
Affiliation(s)
- Mingfeng Xia
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan Institute for Metabolic Diseases, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
- Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Wenran Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Rd, Shanghai, 200031, China
| | - Huandong Lin
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan Institute for Metabolic Diseases, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
- Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Hailuan Zeng
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan Institute for Metabolic Diseases, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
- Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Shuai Ma
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan Institute for Metabolic Diseases, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
- Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Qi Wu
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan Institute for Metabolic Diseases, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
- Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Hui Ma
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaoming Li
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan Institute for Metabolic Diseases, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
- Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Baishen Pan
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jian Gao
- Department of Nutrition, Zhongshan Hospital of Fudan University, Shanghai, 200032, China
| | - Yu Hu
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yun Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Sijia Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Rd, Shanghai, 200031, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan Institute for Metabolic Diseases, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China.
- Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
4
|
Li W, Xia M, Zeng H, Lin H, Teschendorff AE, Gao X, Wang S. Longitudinal analysis of epigenome-wide DNA methylation reveals novel loci associated with BMI change in East Asians. Clin Epigenetics 2024; 16:70. [PMID: 38802969 PMCID: PMC11131215 DOI: 10.1186/s13148-024-01679-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/11/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Obesity is a global public health concern linked to chronic diseases such as cardiovascular disease and type 2 diabetes (T2D). Emerging evidence suggests that epigenetic modifications, particularly DNA methylation, may contribute to obesity. However, the molecular mechanism underlying the longitudinal change of BMI has not been well-explored, especially in East Asian populations. METHODS This study performed a longitudinal epigenome-wide association analysis of DNA methylation to uncover novel loci associated with BMI change in 533 individuals across two Chinese cohorts with repeated DNA methylation and BMI measurements over four years. RESULTS We identified three novel CpG sites (cg14671384, cg25540824, and cg10848724) significantly associated with BMI change. Two of the identified CpG sites were located in regions previously associated with body shape and basal metabolic rate. Annotation of the top 20 BMI change-associated CpGs revealed strong connections to obesity and T2D. Notably, these CpGs exhibited active regulatory roles and located in genes with high expression in the liver and digestive tract, suggesting a potential regulatory pathway from genome to phenotypes of energy metabolism and absorption via DNA methylation. Cross-sectional and longitudinal EWAS comparisons indicated different mechanisms between CpGs related to BMI and BMI change. CONCLUSION This study enhances our understanding of the epigenetic dynamics underlying BMI change and emphasizes the value of longitudinal analyses in deciphering the complex interplay between epigenetics and obesity.
Collapse
Affiliation(s)
- Wenran Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mingfeng Xia
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
- Department of Endocrinology and Metabolism, Wusong Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hailuan Zeng
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Huandong Lin
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Andrew E Teschendorff
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China.
- Human Phenome Institute, Fudan University, Shanghai, China.
| | - Sijia Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- Taizhou Institute of Health Sciences, Fudan University, Taizhou, Jiangsu, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
5
|
Yu G, Sun M, Zhang T, Xu H, Wang J, Ye W, Wang P, Zhang S, Zhang C, Sun Y. Lanhuashen stimulates the positive cross-regulation mediated by the S1P axis to ameliorate the disorder of glucolipid metabolism induced by the high sucrose diet in Drosophila melanogaster. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117248. [PMID: 37804923 DOI: 10.1016/j.jep.2023.117248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/11/2023] [Accepted: 09/28/2023] [Indexed: 10/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Herba Wanlenbergiae, named 'Lanhuashen' (LHS) in Chinese, is derived from the dried herba of Wahlenbergia marginata (Thunb.) A.DC. It is an abundant resource that has been used in traditional Chinese medicine (TCM) for over 600 years. LHS has the effects of enriching consumptive disease and relieving deficient heat, consistent with the therapy for type 2 diabetes mellitus (T2DM) in TCM. As the basic remedy of Yulan Jiangtang capsules, a listed Chinese medicine specifically for treating T2DM, LHS is a potential candidate for an anti-T2DM drug. However, due to the lack of pharmacodynamic studies and chemical component analysis, the application and development of LHS as a treatment for T2DM have been hindered. AIM OF THE STUDY To evaluate the regulation of the disorder of glucolipid metabolism using LHS extracts and its therapeutic potential in T2DM. MATERIALS AND METHODS Chemical components in LHS extracts were analysed using UPLC-Q Exactive-Orbitrap-MS. Subsequently, high sucrose diet (HSD)-induced Drosophila melanogaster were used as suitable models for T2DM in vivo. Behavioural and biochemical tests were performed to evaluate the regulation of the disorder of glucolipid metabolism using LHS in T2DM flies. Furthermore, integrative metabolomic and transcriptomic analysis was applied to reveal the specific effects of LHS extracts on metabolites and genes. Meanwhile, bioinformatic analysis was carried out to predict the targeted transcription factors (TFs) and potentially effective components of LHS extracts. RESULTS We redefined the chemical profile of LHS with 76 identified chemical components, including 65 chemical components for the first time. As indicated by decreased trehalose, glucose and triglyceride levels and increased total protein levels, LHS extracts were perceived to alleviate the disorder of glucolipid metabolism in HSD-induced T2DM fruit flies. Integrative metabolomic and transcriptomic analysis revealed that LHS extracts eliminated the accumulation of sphingolipids and subsequently stimulated the positive cross-regulation mediated by the sphingosine 1-phosphate (S1P) axis, resulting in the activation of the phosphatidylinositol-3-kinase (PI3K)-protein kinase B (Akt) signalling pathway and inhibition of lysosome-mediated apoptosis. Bioinformatic analysis revealed that the upstream TFs, transcriptional enhancer factor TEF-5 (TEAD3) and peroxisome proliferator-activated receptor alpha (PPARA), were the potential targets of atractylenolide III, dihydrokaempferol and syringaldehyde, the potentially effective components of LHS extracts. Therefore, this TF network was plausibly the basis for the efficacy. CONCLUSIONS LHS extracts broadly modulated TF-dependent gene expression and subsequently stimulated the positive cross-regulation mediated by the S1P axis to ameliorate the disorder of glucolipid metabolism. Our study provides critical evidence considering LHS as a potential drug candidate for T2DM, inspiring the discovery and development of innovative therapeutic agents based on the cross-regulation mediated by the S1P axis for treating T2DM and related complications.
Collapse
Affiliation(s)
- Gengyuan Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Mo Sun
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Tonghua Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Haoran Xu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Jiaqi Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Wanting Ye
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Peng Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Shiyun Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Chenning Zhang
- Department of Pharmacy, Xiangyang No. 1 People's Hospital Affiliated to Hubei University of Medicine, Xiangyang 441000, China.
| | - Yikun Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
6
|
Li S, Chen Y, Zhang L, Li R, Kang N, Hou J, Wang J, Bao Y, Jiang F, Zhu R, Wang C, Zhang L. An environment-wide association study for the identification of non-invasive factors for type 2 diabetes mellitus: Analysis based on the Henan Rural Cohort study. Diabetes Res Clin Pract 2023; 204:110917. [PMID: 37748711 DOI: 10.1016/j.diabres.2023.110917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023]
Abstract
AIM To explore the influencing factors of Type 2 diabetes mellitus (T2DM) in the rural population of Henan Province and evaluate the predictive ability of non-invasive factors to T2DM. METHODS A total of 30,020 participants from the Henan Rural Cohort Study in China were included in this study. The dataset was randomly divided into a training set and a testing set with a 50:50 split for validation purposes. We used logistic regression analysis to investigate the association between 56 factors and T2DM in the training set (false discovery rate < 5 %) and significant factors were further validated in the testing set (P < 0.05). Gradient Boosting Machine (GBM) model was used to determine the ability of the non-invasive variables to classify T2DM individuals accurately and the importance ranking of these variables. RESULTS The overall population prevalence of T2DM was 9.10 %. After adjusting for age, sex, educational level, marital status, and body measure index (BMI), we identified 13 non-invasive variables and 6 blood biochemical indexes associated with T2DM in the training and testing dataset. The top three factors according to the GBM importance ranking were pulse pressure (PP), urine glucose (UGLU), and waist-to-hip ratio (WHR). The GBM model achieved a receiver operating characteristic (AUC) curve of 0.837 with non-invasive variables and 0.847 for the full model. CONCLUSIONS Our findings demonstrate that non-invasive variables that can be easily measured and quickly obtained may be used to predict T2DM risk in rural populations in Henan Province.
Collapse
Affiliation(s)
- Shuoyi Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Ying Chen
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Liying Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Ruiying Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Ning Kang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Jing Wang
- China-Australia Joint Research Center for Infectious Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China
| | - Yining Bao
- China-Australia Joint Research Center for Infectious Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China
| | - Feng Jiang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Ruifang Zhu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| | - Lei Zhang
- China-Australia Joint Research Center for Infectious Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China; Artificial Intelligence and Modelling in Epidemiology Program, Melbourne Sexual Health Centre, Alfred Health, Melbourne, Australia; Central Clinical School, Faculty of Medicine, Monash University, Melbourne, Australia.
| |
Collapse
|
7
|
Di Pietro P, Izzo C, Abate AC, Iesu P, Rusciano MR, Venturini E, Visco V, Sommella E, Ciccarelli M, Carrizzo A, Vecchione C. The Dark Side of Sphingolipids: Searching for Potential Cardiovascular Biomarkers. Biomolecules 2023; 13:168. [PMID: 36671552 PMCID: PMC9855992 DOI: 10.3390/biom13010168] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/31/2022] [Accepted: 01/11/2023] [Indexed: 01/14/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death and illness in Europe and worldwide, responsible for a staggering 47% of deaths in Europe. Over the past few years, there has been increasing evidence pointing to bioactive sphingolipids as drivers of CVDs. Among them, most studies place emphasis on the cardiovascular effect of ceramides and sphingosine-1-phosphate (S1P), reporting correlation between their aberrant expression and CVD risk factors. In experimental in vivo models, pharmacological inhibition of de novo ceramide synthesis averts the development of diabetes, atherosclerosis, hypertension and heart failure. In humans, levels of circulating sphingolipids have been suggested as prognostic indicators for a broad spectrum of diseases. This article provides a comprehensive review of sphingolipids' contribution to cardiovascular, cerebrovascular and metabolic diseases, focusing on the latest experimental and clinical findings. Cumulatively, these studies indicate that monitoring sphingolipid level alterations could allow for better assessment of cardiovascular disease progression and/or severity, and also suggest them as a potential target for future therapeutic intervention. Some approaches may include the down-regulation of specific sphingolipid species levels in the circulation, by inhibiting critical enzymes that catalyze ceramide metabolism, such as ceramidases, sphingomyelinases and sphingosine kinases. Therefore, manipulation of the sphingolipid pathway may be a promising strategy for the treatment of cardio- and cerebrovascular diseases.
Collapse
Affiliation(s)
- Paola Di Pietro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Carmine Izzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Angela Carmelita Abate
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Paola Iesu
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Maria Rosaria Rusciano
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | | | - Valeria Visco
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Eduardo Sommella
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Albino Carrizzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
- Vascular Physiopathology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Carmine Vecchione
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
- Vascular Physiopathology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy
| |
Collapse
|
8
|
Manfredi JM, Jacob SI, Boger BL, Norton EM. A one-health approach to identifying and mitigating the impact of endocrine disorders on human and equine athletes. Am J Vet Res 2022; 84:ajvr.22.11.0194. [PMID: 36563063 DOI: 10.2460/ajvr.22.11.0194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Endocrinopathies affect multiple species in ever-increasing percentages of their populations, creating an opportunity to apply one-health approaches to determining creative preventative measures and therapies in athletes. Obesity and alterations in insulin and glucose dynamics are medical concerns that play a role in whole-body health and homeostasis in both horses and humans. The role and impact of endocrine disorders on the musculoskeletal, cardiovascular, and reproductive systems are of particular interest to the athlete. Elucidation of both physiologic and pathophysiologic mechanisms involved in disease processes, starting in utero, is important for development of prevention and treatment strategies for the health and well-being of all species. This review focuses on the unrecognized effects of endocrine disorders associated with the origins of metabolic disease; inflammation at the intersection of endocrine disease and related diseases in the musculoskeletal, cardiovascular, and reproductive systems; novel interventions; and diagnostics that are informed via multiomic and one-health approaches. Readers interested in further details on specific equine performance conditions associated with endocrine disease are invited to read the companion Currents in One Health by Manfredi et al, JAVMA, February 2023.
Collapse
Affiliation(s)
- Jane M Manfredi
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI
| | - Sarah I Jacob
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI
| | - Brooke L Boger
- Comparative Medicine and Integrative Biology, Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI
| | - Elaine M Norton
- Department of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, The University of Arizona, Tucson, AZ
| |
Collapse
|
9
|
Boi R, Ebefors K, Henricsson M, Borén J, Nyström J. Modified lipid metabolism and cytosolic phospholipase A2 activation in mesangial cells under pro-inflammatory conditions. Sci Rep 2022; 12:7322. [PMID: 35513427 PMCID: PMC9072365 DOI: 10.1038/s41598-022-10907-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/08/2022] [Indexed: 02/07/2023] Open
Abstract
Diabetic kidney disease is a consequence of hyperglycemia and other complex events driven by early glomerular hemodynamic changes and a progressive expansion of the mesangium. The molecular mechanisms behind the pathophysiological alterations of the mesangium are yet to be elucidated. This study aimed at investigating whether lipid signaling might be the missing link. Stimulation of human mesangial cells with high glucose primed the inflammasome-driven interleukin 1 beta (IL-1β) secretion, which in turn stimulated platelet-derived growth factor (PDGF-BB) release. Finally, PDGF-BB increased IL-1β secretion synergistically. Both IL-1β and PDGF-BB stimulation triggered the formation of phosphorylated sphingoid bases, as shown by lipidomics, and activated cytosolic phospholipase cPLA2, sphingosine kinase 1, cyclooxygenase 2, and autotaxin. This led to the release of arachidonic acid and lysophosphatidylcholine, activating the secretion of vasodilatory prostaglandins and proliferative lysophosphatidic acids. Blocking cPLA2 release of arachidonic acid reduced mesangial cells proliferation and prostaglandin secretion. Validation was performed in silico using the Nephroseq database and a glomerular transcriptomic database. In conclusion, hyperglycemia primes glomerular inflammatory and proliferative stimuli triggering lipid metabolism modifications in human mesangial cells. The upregulation of cPLA2 was critical in this setting. Its inhibition reduced mesangial secretion of prostaglandins and proliferation, making it a potential therapeutical target.
Collapse
Affiliation(s)
- Roberto Boi
- Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, 40530, Gothenburg, Sweden
| | - Kerstin Ebefors
- Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, 40530, Gothenburg, Sweden
| | - Marcus Henricsson
- Institute of Medicine, Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jan Borén
- Institute of Medicine, Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jenny Nyström
- Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, 40530, Gothenburg, Sweden.
| |
Collapse
|