1
|
Liu S, Li J, Zhang J, Wan F, Hong Z, Hong Z, Dai B. IKBKE regulates renal cell carcinoma progression and sunitinib resistance through the RRM2-AKT pathway. Int J Biol Sci 2024; 20:6146-6161. [PMID: 39664571 PMCID: PMC11628342 DOI: 10.7150/ijbs.102666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/29/2024] [Indexed: 12/13/2024] Open
Abstract
Tyrosine kinase inhibitors (TKIs), such as sunitinib, have emerged as promising agents in renal cell carcinoma (RCC) treatment, particularly in patients at advanced/metastatic clinical stages. However, acquired resistance to sunitinib is common following prolonged clinical treatment in RCC. Increasing evidence has demonstrated a strong correlation between inhibitor of nuclear factor kappa B kinase subunit epsilon (IKBKE) and cancer progression as well as drug resistance. Here, we found that IKBKE is upregulated in RCC tissues and sunitinib-resistant RCC cells. High IKBKE expression is positively correlated with advanced clinical staging and a poor prognosis in RCC. Silencing IKBKE downregulates ribonucleotide reductase M2 (RRM2) and induces cell cycle arrest at G2/M phase, suppressing RCC progression and enhancing sunitinib sensitivity to RCC cells. Mechanistically, IKBKE interacts with and phosphorylates RRM2 to activate the AKT signaling pathway to promotes RCC progression and sunitinib resistance. Notably, the IKBKE inhibitor CYT387 restores sunitinib sensitivity in RCC cells by downregulating RRM2 expression. Collectively, these results indicate that inhibition of IKBKE restrains RCC progression and enhances sunitinib sensitivity by downregulating RRM2 through the RRM2-AKT pathway, suggesting that IKBKE may be a potential therapeutic target for RCC.
Collapse
Affiliation(s)
- Shiwei Liu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Junhong Li
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Junyu Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Fangning Wan
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Zongyuan Hong
- Laboratory of Quantitative Pharmacology, Wannan Medical College, Wuhu, 241002, China
| | - Zhe Hong
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Bo Dai
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| |
Collapse
|
2
|
Mao Q, Qiao Z, Wang Q, Zhao W, Ju H. Construction and validation of a machine learning-based immune-related prognostic model for glioma. J Cancer Res Clin Oncol 2024; 150:439. [PMID: 39352539 PMCID: PMC11445300 DOI: 10.1007/s00432-024-05970-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Glioma stands as the most prevalent primary brain tumor found within the central nervous system, characterized by high invasiveness and treatment resistance. Although immunotherapy has shown potential in various tumors, it still faces challenges in gliomas. This study seeks to develop and validate a prognostic model for glioma based on immune-related genes, to provide new tools for precision medicine. METHODS Glioma samples were obtained from a database that includes the ImmPort database. Additionally, we incorporated ten machine learning algorithms to assess the model's performance using evaluation metrics like the Harrell concordance index (C-index). The model genes were further studied using GSCA, TISCH2, and HPA databases to understand their role in glioma pathology at the genomic, molecular, and single-cell levels, and validate the biological function of IKBKE in vitro experiments. RESULTS In this study, a total of 199 genes associated with prognosis were identified using univariate Cox analysis. Subsequently, a consensus prognostic model was developed through the application of machine learning algorithms. In which the Lasso + plsRcox algorithm demonstrated the best predictive performance. The model showed a good ability to distinguish two groups in both the training and test sets. Additionally, the model genes were closely related to immunity (oligodendrocytes and macrophages), and mutation burden. The results of in vitro experiments showed that the expression level of the IKBKE gene had a significant effect on the apoptosis and migration of GL261 glioma cells. Western blot analysis showed that down-regulation of IKBKE resulted in increased expression of pro-apoptotic protein Bax and decreased expression of anti-apoptotic protein Bcl-2, which was consistent with increased apoptosis rate. On the contrary, IKBKE overexpression caused a decrease in Bax expression an increase in Bcl-2 expression, and a decrease in apoptosis rate. Tunel results further confirmed that down-regulation of IKBKE promoted apoptosis, while overexpression of IKBKE reduced apoptosis. In addition, cells with down-regulated IKBKE had reduced migration in scratch experiments, while cells with overexpression of IKBKE had increased migration. CONCLUSION This study successfully constructed a glioma prognosis model based on immune-related genes. These findings provide new perspectives for glioma prognosis assessment and immunotherapy.
Collapse
Affiliation(s)
- Qi Mao
- Department of Neurosurgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Zhi Qiao
- Department of Neurosurgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Qiang Wang
- Department of Neurosurgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Wei Zhao
- Department of Neurosurgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Haitao Ju
- Department of Neurosurgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China.
| |
Collapse
|
3
|
Zhu W, Dong X, Tian N, Feng Z, Zhou W, Song W. CSTB accelerates the progression of hepatocellular carcinoma via the ERK/AKT/mTOR signaling pathway. Heliyon 2024; 10:e23506. [PMID: 38187282 PMCID: PMC10770458 DOI: 10.1016/j.heliyon.2023.e23506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/14/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a significant contributor to global cancer-related deaths, leading to high mortality rates. However, the pathogenesis of HCC remains unclear. In this research, by the bioinformatics data analysis, we found that elevated CSTB expression correlated with advanced disease and predicted diminished overall survival (OS) in HCC patients. We subsequently verified the oncogenic role of CSTB as well as the potential underlying mechanisms in HCC through a series of in vitro experiments, such as CCK-8 assays, cloning assays, flow cytometry, Transwell assays, and western blotting. Our findings illustrated that the silencing of CSTB effectively suppressed cellular proliferation by inducing cell cycle arrest in the G2 phase and impaired HCC cell invasion and migration by stimulating epithelial-mesenchymal transition (EMT). Additionally, we analyzed the pathways enriched in HCC using RNA sequencing and found that the ERK/AKT/mTOR signaling pathway was related to increased CSTB expression in HCC. Finally, we confirmed the tumorigenic role of CSTB via in vivo experiments. Thus, our findings revealed that silencing CSTB inhibited the HCC progression via the ERK/AKT/mTOR signaling pathway, highlighting new perspectives for investigating the mechanisms of HCC.
Collapse
Affiliation(s)
- Weiyi Zhu
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiangjun Dong
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Na Tian
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zijuan Feng
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Weihui Zhou
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Weihong Song
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325001, China
| |
Collapse
|
4
|
Cuda CM. I Kappa B-Kliev-ε That the Inhibitor of NF-κB Kinase Subunit ε (IKBKε) May Hold the Key to Treating NPSLE! Arthritis Rheumatol 2023; 75:349-351. [PMID: 36161541 PMCID: PMC9998332 DOI: 10.1002/art.42371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 01/26/2023]
Affiliation(s)
- Carla M Cuda
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University
| |
Collapse
|
5
|
Verrier ER, Ligat G, Heydmann L, Doernbrack K, Miller J, Maglott-Roth A, Jühling F, El Saghire H, Heuschkel MJ, Fujiwara N, Hsieh SY, Hoshida Y, Root DE, Felli E, Pessaux P, Mukherji A, Mailly L, Schuster C, Brino L, Nassal M, Baumert TF. Cell-based cccDNA reporter assay combined with functional genomics identifies YBX1 as HBV cccDNA host factor and antiviral candidate target. Gut 2022; 72:gutjnl-2020-323665. [PMID: 36591611 PMCID: PMC10423543 DOI: 10.1136/gutjnl-2020-323665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 11/24/2022] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Chronic hepatitis B virus (HBV) infection is a leading cause of liver disease and hepatocellular carcinoma. A key feature of HBV replication is the synthesis of the covalently close circular (ccc)DNA, not targeted by current treatments and whose elimination would be crucial for viral cure. To date, little is known about cccDNA formation. One major challenge to address this urgent question is the absence of robust models for the study of cccDNA biology. DESIGN We established a cell-based HBV cccDNA reporter assay and performed a loss-of-function screen targeting 239 genes encoding the human DNA damage response machinery. RESULTS Overcoming the limitations of current models, the reporter assay enables to quantity cccDNA levels using a robust ELISA as a readout. A loss-of-function screen identified 27 candidate cccDNA host factors, including Y box binding protein 1 (YBX1), a DNA binding protein regulating transcription and translation. Validation studies in authentic infection models revealed a robust decrease in HBV cccDNA levels following silencing, providing proof-of-concept for the importance of YBX1 in the early steps of the HBV life cycle. In patients, YBX1 expression robustly correlates with both HBV load and liver disease progression. CONCLUSION Our cell-based reporter assay enables the discovery of HBV cccDNA host factors including YBX1 and is suitable for the characterisation of cccDNA-related host factors, antiviral targets and compounds.
Collapse
Affiliation(s)
- Eloi R Verrier
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMRS 1110, Strasbourg, France
| | - Gaëtan Ligat
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMRS 1110, Strasbourg, France
| | - Laura Heydmann
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMRS 1110, Strasbourg, France
| | - Katharina Doernbrack
- Department of Internal Medicine II/Molecular Biology, University Hospital Freiburg, Freiburg, Germany
| | - Julija Miller
- Department of Internal Medicine II/Molecular Biology, University Hospital Freiburg, Freiburg, Germany
| | | | - Frank Jühling
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMRS 1110, Strasbourg, France
| | - Houssein El Saghire
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMRS 1110, Strasbourg, France
| | - Margaux J Heuschkel
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMRS 1110, Strasbourg, France
| | - Naoto Fujiwara
- Department of Internal Medicine, Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sen-Yung Hsieh
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yujin Hoshida
- Department of Internal Medicine, Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - David E Root
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
| | - Emanuele Felli
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMRS 1110, Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| | - Patrick Pessaux
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMRS 1110, Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| | - Atish Mukherji
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMRS 1110, Strasbourg, France
| | - Laurent Mailly
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMRS 1110, Strasbourg, France
| | - Catherine Schuster
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMRS 1110, Strasbourg, France
| | - Laurent Brino
- IGBMC, Plateforme de Criblage Haut-débit, Illkirch, France
| | - Michael Nassal
- Department of Internal Medicine II/Molecular Biology, University Hospital Freiburg, Freiburg, Germany
| | - Thomas F Baumert
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMRS 1110, Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| |
Collapse
|
6
|
Xiao QA, He Q, Li L, Song Y, Chen YR, Zeng J, Xia X. Role of IKKε in the Metabolic Diseases: Physiology, Pathophysiology, and Pharmacology. Front Pharmacol 2022; 13:888588. [PMID: 35662709 PMCID: PMC9162805 DOI: 10.3389/fphar.2022.888588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
IKKε (inhibitor of nuclear factor kappa-B kinase ε) is a member of the noncanonical NF-κB pathway. It participates in the inflammatory response and innate immunity against bacteria. In recent decades, IKKε has been closely associated with metabolic regulation. Inhibition of the IKKε pathway can improve fat deposition in the liver, reduce subcutaneous fat inflammation, and improve liver gluconeogenesis in obesity. IKKε is expected to be a new therapeutic target for metabolic diseases such as nonalcoholic fatty liver disease, diabetes, and obesity. Herein, we summarize the structural characterization, physiological function, and pathological role of IKKε in metabolic diseases and small molecule inhibitors of IKKε.
Collapse
Affiliation(s)
- Qing-Ao Xiao
- Department of Endocrinology, The People's Hospital of China Three Gorges University/the First People's Hospital of Yichang, Yichang, China.,Third-grade Pharmacological Laboratory on Traditional Chinese MedicineState Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
| | - Qian He
- Department of Endocrinology, The People's Hospital of China Three Gorges University/the First People's Hospital of Yichang, Yichang, China.,National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lun Li
- The Institute of Infection and Inflammation, China Three Gorges University, Yichang, China.,Department of Microbiology and Immunology, Medical College, China Three Gorges University, Yichang, China
| | - Yinhong Song
- The Institute of Infection and Inflammation, China Three Gorges University, Yichang, China.,Department of Microbiology and Immunology, Medical College, China Three Gorges University, Yichang, China
| | - Yue-Ran Chen
- Third-grade Pharmacological Laboratory on Traditional Chinese MedicineState Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China.,Department of Physiology and Pathophysiology, Medical College, China Three Gorges University, Yichang, China
| | - Jun Zeng
- Department of Endocrinology, The People's Hospital of China Three Gorges University/the First People's Hospital of Yichang, Yichang, China
| | - Xuan Xia
- Third-grade Pharmacological Laboratory on Traditional Chinese MedicineState Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China.,Department of Physiology and Pathophysiology, Medical College, China Three Gorges University, Yichang, China
| |
Collapse
|