1
|
Doxey AC, Abu Mazen N, Homm M, Chu V, Hunjan M, Lobb B, Lee S, Kurs-Lasky M, Williams JV, MacDonald W, Johnson M, Hirota JA, Shaikh N. Metatranscriptomic profiling reveals pathogen and host response signatures of pediatric acute sinusitis and upper respiratory infection. Genome Med 2025; 17:22. [PMID: 40098147 PMCID: PMC11912616 DOI: 10.1186/s13073-025-01447-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 03/03/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Acute sinusitis (AS) is a frequent cause of antibiotic prescriptions in children. Distinguishing bacterial AS from common viral upper respiratory infections (URIs) is crucial to prevent unnecessary antibiotic use but is challenging with current diagnostic methods. Despite its speed and cost, untargeted RNA sequencing of clinical samples from children with suspected AS has the potential to overcome several limitations of other methods. In addition, RNA-seq may reveal novel host-response biomarkers for development of future diagnostic assays that distinguish bacterial from viral infections. There are however no available RNA-seq datasets of pediatric AS that provide a comprehensive view of both pathogen etiology and host immune response. METHODS Here, we performed untargeted RNA-seq (metatranscriptomics) of nasopharyngeal samples from 221 children with AS and performed a comprehensive analysis of pathogen etiology and the impact of bacterial and viral infections on host immune responses. Accuracy of RNA-seq-based pathogen detection was evaluated by comparison with culture tests for three common bacterial pathogens and qRT-PCR tests for 12 respiratory viruses. Host gene expression patterns were explored to identify potential host responses that distinguish bacterial from viral infections. RESULTS RNA-seq-based pathogen detection showed high concordance with culture or qRT-PCR, showing 87%/81% sensitivity (sens) / specificity (spec) for detecting three AS-associated bacterial pathogens, and 86%/92% (sens/spec) for detecting 12 URI-associated viruses, respectively. RNA-seq also detected an additional 22 pathogens not tested for clinically and identified plausible pathogens in 11/19 (58%) of cases where no organism was detected by culture or qRT-PCR. We reconstructed genomes of 196 viruses across the samples including novel strains of coronaviruses, respiratory syncytial virus, and enterovirus D68, which provide useful genomic data for ongoing pathogen surveillance programs. By analyzing host gene expression, we identified host-response signatures that differentiate bacterial and viral infections, revealing hundreds of candidate gene biomarkers for future diagnostic assays. CONCLUSIONS Our study provides a one-of-kind dataset that profiles the interplay between pathogen infection and host responses in pediatric AS and URI. It reveals bacterial and viral-specific host responses that could enable new diagnostic approaches and demonstrates the potential of untargeted RNA-seq in diagnostic analysis of AS and URI.
Collapse
Affiliation(s)
- Andrew C Doxey
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
- Waterloo Centre for Microbial Research, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
- Cheriton School of Computer Science, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
- Faculty of Health Sciences, Department of Medicine, McMaster University, 1200 Main Street West, ON, Hamilton, L8N 3Z5, Canada.
| | - Nooran Abu Mazen
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
- Waterloo Centre for Microbial Research, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Max Homm
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
- Waterloo Centre for Microbial Research, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Vivian Chu
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
- Waterloo Centre for Microbial Research, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Manjot Hunjan
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
- Waterloo Centre for Microbial Research, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Briallen Lobb
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
- Waterloo Centre for Microbial Research, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Sojin Lee
- Division of General Academic Pediatrics, School of Medicine, University of Pittsburgh, UPMC Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224-1334, USA
| | - Marcia Kurs-Lasky
- Division of General Academic Pediatrics, School of Medicine, University of Pittsburgh, UPMC Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224-1334, USA
| | - John V Williams
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, 1218 Scaife Hall 3550 Terrace Street, Pittsburgh, PA, USA
| | - William MacDonald
- Division of General Academic Pediatrics, School of Medicine, University of Pittsburgh, UPMC Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224-1334, USA
| | - Monika Johnson
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, 1218 Scaife Hall 3550 Terrace Street, Pittsburgh, PA, USA
| | - Jeremy A Hirota
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
- Firestone Institute for Respiratory Health, St. Joseph's Hospital, 50 Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada
- Department of Medicine, University of British Columbia, 2775 Laurel Street Vancouver, British Columbia, V5Z 1M9, Canada
- Faculty of Health Sciences, Department of Medicine, McMaster University, 1200 Main Street West, ON, Hamilton, L8N 3Z5, Canada
| | - Nader Shaikh
- Division of General Academic Pediatrics, School of Medicine, University of Pittsburgh, UPMC Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224-1334, USA.
| |
Collapse
|
2
|
AbuMazen N, Chu V, Hunjan M, Lobb B, Lee S, Kurs-Lasky M, Williams JV, MacDonald W, Johnson M, Hirota JA, Shaikh N, Doxey AC. Nasopharyngeal metatranscriptomics reveals host-pathogen signatures of pediatric sinusitis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.03.24303663. [PMID: 38496499 PMCID: PMC10942525 DOI: 10.1101/2024.03.03.24303663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Acute sinusitis (AS) is the fifth leading cause of antibiotic prescriptions in children. Distinguishing bacterial AS from common viral upper respiratory infections in children is crucial to prevent unnecessary antibiotic use but is challenging with current diagnostic methods. Despite its speed and cost, untargeted RNA sequencing of clinical samples from children with suspected AS has the potential to overcome several limitations of other methods. However, the utility of sequencing-based approaches in analysis of AS has not been fully explored. Here, we performed RNA-seq of nasopharyngeal samples from 221 children with clinically diagnosed AS to characterize their pathogen and host-response profiles. Results from RNA-seq were compared with those obtained using culture for three common bacterial pathogens and qRT-PCR for 12 respiratory viruses. Metatranscriptomic pathogen detection showed high concordance with culture or qRT-PCR, showing 87%/81% sensitivity (sens) / specificity (spec) for detecting bacteria, and 86%/92% (sens/spec) for viruses, respectively. We also detected an additional 22 pathogens not tested for in the clinical panel, and identified plausible pathogens in 11/19 (58%) of cases where no organism was detected by culture or qRT-PCR. We assembled genomes of 205 viruses across the samples including novel strains of coronaviruses, respiratory syncytial virus (RSV), and enterovirus D68. By analyzing host gene expression, we identified host-response signatures that distinguished bacterial and viral infections and correlated with pathogen abundance. Ultimately, our study demonstrates the potential of untargeted metatranscriptomics for in depth analysis of the etiology of AS, comprehensive host-response profiling, and using these together to work towards optimized patient care.
Collapse
Affiliation(s)
- Nooran AbuMazen
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, Ontario, Canada
| | - Vivian Chu
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, Ontario, Canada
| | - Manjot Hunjan
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, Ontario, Canada
| | - Briallen Lobb
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, Ontario, Canada
| | - Sojin Lee
- University of Pittsburgh School of Medicine, Children’s Hospital of Pittsburgh of UPMC, Division of General Academic Pediatrics
| | - Marcia Kurs-Lasky
- University of Pittsburgh School of Medicine, Children’s Hospital of Pittsburgh of UPMC, Division of General Academic Pediatrics
| | - John V. Williams
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - William MacDonald
- University of Pittsburgh School of Medicine, Children’s Hospital of Pittsburgh of UPMC, Division of General Academic Pediatrics
| | - Monika Johnson
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jeremy A. Hirota
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- Firestone Institute for Respiratory Health, St. Joseph’s Hospital, Hamilton, Ontario, Canada
- University of British Columbia, Department of Medicine, Vancouver, British Columbia, Canada
- McMaster University, Department of Medicine, Hamilton, Ontario, Canada
| | - Nader Shaikh
- University of Pittsburgh School of Medicine, Children’s Hospital of Pittsburgh of UPMC, Division of General Academic Pediatrics
| | - Andrew C. Doxey
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, Ontario, Canada
- Cheriton School of Computer Science, Waterloo, Ontario, Canada
- McMaster University, Department of Medicine, Hamilton, Ontario, Canada
| |
Collapse
|
3
|
Sandi JD, Levy JI, Tapela K, Zeller M, Yeboah JA, Saka DF, Grant DS, Awandare GA, Quashie PK, Andersen KG, Paemka L. Upper Airway Epithelial Tissue Transcriptome Analysis Reveals Immune Signatures Associated with COVID-19 Severity in Ghanaians. J Immunol Res 2024; 2024:6668017. [PMID: 38375062 PMCID: PMC10876312 DOI: 10.1155/2024/6668017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/04/2023] [Accepted: 01/03/2024] [Indexed: 02/21/2024] Open
Abstract
The immunological signatures driving the severity of coronavirus disease 19 (COVID-19) in Ghanaians remain poorly understood. We performed bulk transcriptome sequencing of nasopharyngeal samples from severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-infected Ghanaians with mild and severe COVID-19, as well as healthy controls to characterize immune signatures at the primary SARS-CoV-2 infection site and identify drivers of disease severity. Generally, a heightened antiviral response was observed in SARS-CoV-2-infected Ghanaians compared with uninfected controls. COVID-19 severity was associated with immune suppression, overexpression of proinflammatory cytokines, including CRNN, IL1A, S100A7, and IL23A, and activation of pathways involved in keratinocyte proliferation. SAMD9L was among the differentially regulated interferon-stimulated genes in our mild and severe disease cohorts, suggesting that it may play a critical role in SARS-CoV-2 pathogenesis. By comparing our data with a publicly available dataset from a non-African (Indians) (GSE166530), an elevated expression of antiviral response-related genes was noted in COVID-19-infected Ghanaians. Overall, the study describes immune signatures driving COVID-19 severity in Ghanaians and identifies immune drivers that could serve as potential prognostic markers for future outbreaks or pandemics. It further provides important preliminary evidence suggesting differences in antiviral response at the upper respiratory interface in sub-Saharan Africans (Ghanaians) and non-Africans, which could be contributing to the differences in disease outcomes. Further studies using larger datasets from different populations will expand on these findings.
Collapse
Affiliation(s)
- John Demby Sandi
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology (BCMB), School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Faculty of Laboratory Medicine, College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
- Kenema Government Hospital, Kenema, Sierra Leone
| | - Joshua I. Levy
- Department of Immunology and Microbiology, The Scripps Research Institute, San Diego, California 92037, USA
| | - Kesego Tapela
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology (BCMB), School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Mark Zeller
- Department of Immunology and Microbiology, The Scripps Research Institute, San Diego, California 92037, USA
| | - Joshua Afari Yeboah
- Department of Biochemistry, Cell and Molecular Biology (BCMB), School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Daniel Frimpong Saka
- Department of Biochemistry, Cell and Molecular Biology (BCMB), School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Donald S. Grant
- Faculty of Laboratory Medicine, College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
- Kenema Government Hospital, Kenema, Sierra Leone
| | - Gordon A. Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology (BCMB), School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Peter K. Quashie
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology (BCMB), School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Kristian G. Andersen
- Department of Immunology and Microbiology, The Scripps Research Institute, San Diego, California 92037, USA
| | - Lily Paemka
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology (BCMB), School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
4
|
Pita-Martínez C, Goez-Sanz C, Virseda-Berdices A, Gonzalez-Praetorius A, Mazario-Martín E, Rodriguez-Mesa M, Amigot-Sánchez R, Matías V, Resino S, Martínez I. Low peripheral blood chemokine (C-C motif) ligand 5 and tumor necrosis factor α gene expression is associated with unfavorable progression of respiratory syncytial virus bronchiolitis in infants. Int J Infect Dis 2024; 138:97-101. [PMID: 38008352 DOI: 10.1016/j.ijid.2023.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/24/2023] [Accepted: 11/18/2023] [Indexed: 11/28/2023] Open
Abstract
OBJECTIVES We aimed to analyze whether the expression of inflammatory and antiviral genes in respiratory syncytial virus (RSV)-infected infants' peripheral blood is associated with bronchiolitis progression. METHODS We conducted a prospective study on 117 infants between 2015 and 2023. The expression levels of nine genes were quantified by quantitative polymerase chain reaction. Infants were classified according to their clinical evolution during hospital admission: (i) non-progression (n = 74), when the RSV bronchiolitis severity remained stable or improved; (ii) unfavorable progression (n = 43), when the RSV bronchiolitis severity increased. The association analysis was performed by logistic regression, adjusted by age, gender, prematurity, and RSV bronchiolitis severity in the emergency room. RESULTS Infants were 57.3% male, and the median age of the study population was 61 days. Thirty-five infants (30.7%) were admitted to the intensive care unit after hospital admission. Univariate logistic models showed that tumor necrosis factor (TNFα) and chemokine (C-C motif) ligand (CCL5) gene expression at baseline were inversely associated with unfavorable progression, which was confirmed by multivariate analyses: TNFα (adjusted odds ratio = 0.8 [95% confidence interval = 0.64-0.99], P-value = 0.038) and CCL5 (adjusted odds ratio = 0.76 [95% confidence interval = 0.62-0.93], P-value = 0.007). CONCLUSIONS An inadequate immune response to RSV, characterized by reduced gene expression levels of CCL5 and TNFα in peripheral blood, was associated with an unfavorable progression of RSV bronchiolitis.
Collapse
Affiliation(s)
- Carlos Pita-Martínez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Carmen Goez-Sanz
- Gerencia de Atención Primaria Valladolid Oeste, Centro de Salud Delicias II, Valladolid, Spain; Servicio de Pediatría, Hospital clínico Universitario de Valladolid, Valladolid, Spain
| | - Ana Virseda-Berdices
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain; Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | | | | | | | - Rafael Amigot-Sánchez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Vanesa Matías
- Servicio de Pediatría, Hospital clínico Universitario de Valladolid, Valladolid, Spain
| | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain; Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Isidoro Martínez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain; Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
5
|
Chiu KHY, Yip CCY, Poon RWS, Leung KH, Li X, Hung IFN, To KKW, Cheng VCC, Yuen KY. Correlations of Myeloperoxidase (MPO), Adenosine deaminase (ADA), C-C motif chemokine 22 (CCL22), Tumour necrosis factor alpha (TNFα) and Interleukin-6 (IL-6) mRNA expression in the nasopharyngeal specimens with the diagnosis and severity of SARS-CoV-2 infections. Emerg Microbes Infect 2023; 12:2157338. [PMID: 36482706 PMCID: PMC9809351 DOI: 10.1080/22221751.2022.2157338] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytokine dynamics in patients with coronavirus disease 2019 (COVID-19) have been studied in blood but seldomly in respiratory specimens. We studied different cell markers and cytokines in fresh nasopharyngeal swab specimens for the diagnosis and for stratifying the severity of COVID-19. This was a retrospective case-control study comparing Myeloperoxidase (MPO), Adenosine deaminase (ADA), C-C motif chemokine ligand 22 (CCL22), Tumour necrosis factor alpha (TNFα) and Interleukin-6 (IL-6) mRNA expression in 490 (327 patients and 163 control) nasopharyngeal specimens from 317 (154 COVID-19 and 163 control) hospitalized patients. Of the 154 COVID-19 cases, 46 died. Both total and normalized MPO, ADA, CCL22, TNFα, and IL-6 mRNA expression levels were significantly higher in the nasopharyngeal specimens of infected patients when compared with controls, with ADA showing better performance (OR 5.703, 95% CI 3.424-9.500, p < 0.001). Receiver operating characteristics (ROC) curve showed that the cut-off value of normalized ADA mRNA level at 2.37 × 10-3 had a sensitivity of 81.8% and specificity of 83.4%. While patients with severe COVID-19 had more respiratory symptoms, and elevated lactate dehydrogenase, multivariate analysis showed that severe COVID-19 patients had lower CCL22 mRNA (OR 0.211, 95% CI 0.060-0.746, p = 0.016) in nasopharyngeal specimens, while lymphocyte count, C-reactive protein, and viral load in nasopharyngeal specimens did not correlate with disease severity. In summary, ADA appears to be a better biomarker to differentiate between infected and uninfected patients, while CCL22 has the potential in stratifying the severity of COVID-19.
Collapse
Affiliation(s)
- Kelvin Hei-Yeung Chiu
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Cyril Chik-Yan Yip
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China,State Key Laboratory for Emerging Infectious Disease, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Rosana Wing-Shan Poon
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China,State Key Laboratory for Emerging Infectious Disease, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Kit-Hang Leung
- State Key Laboratory for Emerging Infectious Disease, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China,Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Xin Li
- State Key Laboratory for Emerging Infectious Disease, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China,Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Ivan Fan-Ngai Hung
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China,Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Kelvin Kai-Wang To
- State Key Laboratory for Emerging Infectious Disease, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China,Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China,Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China,Centre for Virology, Vaccinology and Therapeutics, , Hong Kong Science and Technology Park, Pak Shek Kok, Hong Kong Special Administrative Region, China
| | - Vincent Chi-Chung Cheng
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Kwok-Yung Yuen
- State Key Laboratory for Emerging Infectious Disease, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China,Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China,Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China,Centre for Virology, Vaccinology and Therapeutics, , Hong Kong Science and Technology Park, Pak Shek Kok, Hong Kong Special Administrative Region, China, Kwok-Yung Yuen
| |
Collapse
|
6
|
Bay P, Rodriguez C, Caruso S, Demontant V, Boizeau L, Soulier A, Woerther PL, Mekontso-Dessap A, Pawlotsky JM, de Prost N, Fourati S. Omicron induced distinct immune respiratory transcriptomics signatures compared to pre-existing variants in critically ill COVID-19 patients. J Med Virol 2023; 95:e29268. [PMID: 38050838 DOI: 10.1002/jmv.29268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/27/2023] [Accepted: 11/10/2023] [Indexed: 12/07/2023]
Abstract
Severe coronavirus disease 2019 (COVID-19) is related to dysregulated immune responses. We aimed to explore the effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants on the immune response by nasopharyngeal transcriptomic in critically-ill patients. This prospective monocentric study included COVID-19 patients requiring intensive care unit (ICU) admission between March 2020 and 2022. Patients were classified according to VOC (ancestral, Alpha, Delta, and Omicron). Eighty-eight patients with severe COVID-19 were included after matching (on prespecified clinical criteria). Profiling of gene expression markers of innate and adaptive immune responses were investigated by respiratory transcriptomics at ICU admission. Eighty-eight patients were included in the study after matching (ancestral [n = 24], Alpha [n = 24], Delta [n = 22], and Omicron [n = 18] variants). Respiratory transcriptomic analysis revealed distinct innate and adaptive immune profiling between variants. In comparison with the ancestral variant, there was a reduced expression of neutrophil degranulation, T cell activation, cytokines signalling pathways in patients infected with Alpha and Delta variants. In contrast, there was a higher expression of neutrophil degranulation, T and B cells activation, and inflammatory interleukins pathways in patients infected with Omicron. To conclude, Omicron induced distinct immune respiratory transcriptomics signatures compared to pre-existing variants in patients with severe COVID-19, pointing to an evolving pathophysiology of severe COVID-19 in the Omicron era.
Collapse
Affiliation(s)
- Pierre Bay
- Service de Médecine Intensive Réanimation, DMU Médecine, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France
- GRC CARMAS, Faculté de Santé de Créteil, Université Paris-Est-Créteil (UPEC), Créteil, France
- Équipe Virus, Hépatologie, Cancer, INSERM U955, Université Paris-Est-Créteil (UPEC), Créteil, France
| | - Christophe Rodriguez
- Équipe Virus, Hépatologie, Cancer, INSERM U955, Université Paris-Est-Créteil (UPEC), Créteil, France
- Département de Microbiologie, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France
- Plateforme de Génomique, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
| | - Stefano Caruso
- Équipe Virus, Hépatologie, Cancer, INSERM U955, Université Paris-Est-Créteil (UPEC), Créteil, France
- Département de Pathologie, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France
| | - Vanessa Demontant
- Plateforme de Génomique, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
| | - Laure Boizeau
- Plateforme de Génomique, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
| | - Alexandre Soulier
- Équipe Virus, Hépatologie, Cancer, INSERM U955, Université Paris-Est-Créteil (UPEC), Créteil, France
- Département de Microbiologie, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France
| | - Paul L Woerther
- Département de Microbiologie, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France
- EA 7380 Dynamic, Université Paris-Est-Créteil (UPEC), École Nationale Vétérinaire d'Alfort, USC Anses, Créteil, France
| | - Armand Mekontso-Dessap
- Service de Médecine Intensive Réanimation, DMU Médecine, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France
- GRC CARMAS, Faculté de Santé de Créteil, Université Paris-Est-Créteil (UPEC), Créteil, France
| | - Jean-Michel Pawlotsky
- Équipe Virus, Hépatologie, Cancer, INSERM U955, Université Paris-Est-Créteil (UPEC), Créteil, France
- Département de Microbiologie, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France
- Plateforme de Génomique, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
| | - Nicolas de Prost
- Service de Médecine Intensive Réanimation, DMU Médecine, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France
- GRC CARMAS, Faculté de Santé de Créteil, Université Paris-Est-Créteil (UPEC), Créteil, France
| | - Slim Fourati
- Équipe Virus, Hépatologie, Cancer, INSERM U955, Université Paris-Est-Créteil (UPEC), Créteil, France
- Département de Microbiologie, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France
| |
Collapse
|
7
|
Alturaiki W. Considerations for Novel COVID-19 Mucosal Vaccine Development. Vaccines (Basel) 2022; 10:1173. [PMID: 35893822 PMCID: PMC9329946 DOI: 10.3390/vaccines10081173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 01/27/2023] Open
Abstract
Mucosal surfaces are the first contact sites of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Most SARS-CoV-2 vaccines induce specific IgG responses but provide limited mucosal immunity. Cytokine B-cell activation factor (BAFF) and A proliferation-inducing ligand (APRIL) in the tumor necrosis factor (TNF) superfamily play key immunological functions during B cell development and antibody production. Furthermore, homeostatic chemokines, such as C-X-C motif chemokine ligand 13 (CXCL13), chemokine (C-C motif) ligand 19 (CCL19), and CCL21, can induce B- and T-cell responses to infection and promote the formation of inducible bronchus-associated lymphoid tissues (iBALT), where specific local immune responses and memory cells are generated. We reviewed the role of BAFF, APRIL, CXCL13, CCL19, and CCL21 in the activation of local B-cell responses and antibody production, and the formation of iBALT in the lung following viral respiratory infections. We speculate that mucosal vaccines may offer more efficient protection against SARS-CoV-2 infection than systematic vaccines and hypothesize that a novel SARS-CoV-2 mRNA mucosal vaccine using BAFF/APRIL or CXCL13 as immunostimulants combined with the spike protein-encoding mRNA may enhance the efficiency of the local immune response and prevent the early stages of SARS-CoV-2 replication and the rapid viral clearance from the airways.
Collapse
Affiliation(s)
- Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| |
Collapse
|
8
|
Hirsch C, Park YS, Piechotta V, Chai KL, Estcourt LJ, Monsef I, Salomon S, Wood EM, So-Osman C, McQuilten Z, Spinner CD, Malin JJ, Stegemann M, Skoetz N, Kreuzberger N. SARS-CoV-2-neutralising monoclonal antibodies to prevent COVID-19. Cochrane Database Syst Rev 2022; 6:CD014945. [PMID: 35713300 PMCID: PMC9205158 DOI: 10.1002/14651858.cd014945.pub2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Monoclonal antibodies (mAbs) are laboratory-produced molecules derived from the B cells of an infected host. They are being investigated as potential prophylaxis to prevent coronavirus disease 2019 (COVID-19). OBJECTIVES To assess the effects of SARS-CoV-2-neutralising mAbs, including mAb fragments, to prevent infection with SARS-CoV-2 causing COVID-19; and to maintain the currency of the evidence, using a living systematic review approach. SEARCH METHODS We searched the Cochrane COVID-19 Study Register, MEDLINE, Embase, and three other databases on 27 April 2022. We checked references, searched citations, and contacted study authors to identify additional studies. SELECTION CRITERIA We included randomised controlled trials (RCTs) that evaluated SARS-CoV-2-neutralising mAbs, including mAb fragments, alone or combined, versus an active comparator, placebo, or no intervention, for pre-exposure prophylaxis (PrEP) and postexposure prophylaxis (PEP) of COVID-19. We excluded studies of SARS-CoV-2-neutralising mAbs to treat COVID-19, as these are part of another review. DATA COLLECTION AND ANALYSIS Two review authors independently assessed search results, extracted data, and assessed risk of bias using Cochrane RoB 2. Prioritised outcomes were infection with SARS-CoV-2, development of clinical COVID-19 symptoms, all-cause mortality, admission to hospital, quality of life, adverse events (AEs), and serious adverse events (SAEs). We rated the certainty of evidence using GRADE. MAIN RESULTS We included four RCTs of 9749 participants who were previously uninfected and unvaccinated at baseline. Median age was 42 to 76 years. Around 20% to 77.5% of participants in the PrEP studies and 35% to 100% in the PEP studies had at least one risk factor for severe COVID-19. At baseline, 72.8% to 82.2% were SARS-CoV-2 antibody seronegative. We identified four ongoing studies, and two studies awaiting classification. Pre-exposure prophylaxis Tixagevimab/cilgavimab versus placebo One study evaluated tixagevimab/cilgavimab versus placebo in participants exposed to SARS-CoV-2 wild-type, Alpha, Beta, and Delta variant. About 39.3% of participants were censored for efficacy due to unblinding and 13.8% due to vaccination. Within six months, tixagevimab/cilgavimab probably decreases infection with SARS-CoV-2 (risk ratio (RR) 0.45, 95% confidence interval (CI) 0.29 to 0.70; 4685 participants; moderate-certainty evidence), decreases development of clinical COVID-19 symptoms (RR 0.18, 95% CI 0.09 to 0.35; 5172 participants; high-certainty evidence), and may decrease admission to hospital (RR 0.03, 95% CI 0 to 0.59; 5197 participants; low-certainty evidence). Tixagevimab/cilgavimab may result in little to no difference on mortality within six months, all-grade AEs, and SAEs (low-certainty evidence). Quality of life was not reported. Casirivimab/imdevimab versus placebo One study evaluated casirivimab/imdevimab versus placebo in participants who may have been exposed to SARS-CoV-2 wild-type, Alpha, and Delta variant. About 36.5% of participants opted for SARS-CoV-2 vaccination and had a mean of 66.1 days between last dose of intervention and vaccination. Within six months, casirivimab/imdevimab may decrease infection with SARS-CoV-2 (RR 0.01, 95% CI 0 to 0.14; 825 seronegative participants; low-certainty evidence) and may decrease development of clinical COVID-19 symptoms (RR 0.02, 95% CI 0 to 0.27; 969 participants; low-certainty evidence). We are uncertain whether casirivimab/imdevimab affects mortality regardless of the SARS-CoV-2 antibody serostatus. Casirivimab/imdevimab may increase all-grade AEs slightly (RR 1.14, 95% CI 0.98 to 1.31; 969 participants; low-certainty evidence). The evidence is very uncertain about the effects on grade 3 to 4 AEs and SAEs within six months. Admission to hospital and quality of life were not reported. Postexposure prophylaxis Bamlanivimab versus placebo One study evaluated bamlanivimab versus placebo in participants who may have been exposed to SARS-CoV-2 wild-type. Bamlanivimab probably decreases infection with SARS-CoV-2 versus placebo by day 29 (RR 0.76, 95% CI 0.59 to 0.98; 966 participants; moderate-certainty evidence), may result in little to no difference on all-cause mortality by day 60 (R 0.83, 95% CI 0.25 to 2.70; 966 participants; low-certainty evidence), may increase all-grade AEs by week eight (RR 1.12, 95% CI 0.86 to 1.46; 966 participants; low-certainty evidence), and may increase slightly SAEs (RR 1.46, 95% CI 0.73 to 2.91; 966 participants; low-certainty evidence). Development of clinical COVID-19 symptoms, admission to hospital within 30 days, and quality of life were not reported. Casirivimab/imdevimab versus placebo One study evaluated casirivimab/imdevimab versus placebo in participants who may have been exposed to SARS-CoV-2 wild-type, Alpha, and potentially, but less likely to Delta variant. Within 30 days, casirivimab/imdevimab decreases infection with SARS-CoV-2 (RR 0.34, 95% CI 0.23 to 0.48; 1505 participants; high-certainty evidence), development of clinical COVID-19 symptoms (broad-term definition) (RR 0.19, 95% CI 0.10 to 0.35; 1505 participants; high-certainty evidence), may result in little to no difference on mortality (RR 3.00, 95% CI 0.12 to 73.43; 1505 participants; low-certainty evidence), and may result in little to no difference in admission to hospital. Casirivimab/imdevimab may slightly decrease grade 3 to 4 AEs (RR 0.50, 95% CI 0.24 to 1.02; 2617 participants; low-certainty evidence), decreases all-grade AEs (RR 0.70, 95% CI 0.61 to 0.80; 2617 participants; high-certainty evidence), and may result in little to no difference on SAEs in participants regardless of SARS-CoV-2 antibody serostatus. Quality of life was not reported. AUTHORS' CONCLUSIONS For PrEP, there is a decrease in development of clinical COVID-19 symptoms (high certainty), infection with SARS-CoV-2 (moderate certainty), and admission to hospital (low certainty) with tixagevimab/cilgavimab. There is low certainty of a decrease in infection with SARS-CoV-2, and development of clinical COVID-19 symptoms; and a higher rate for all-grade AEs with casirivimab/imdevimab. For PEP, there is moderate certainty of a decrease in infection with SARS-CoV-2 and low certainty for a higher rate for all-grade AEs with bamlanivimab. There is high certainty of a decrease in infection with SARS-CoV-2, development of clinical COVID-19 symptoms, and a higher rate for all-grade AEs with casirivimab/imdevimab. Although there is high-to-moderate certainty evidence for some outcomes, it is insufficient to draw meaningful conclusions. These findings only apply to people unvaccinated against COVID-19. They are only applicable to the variants prevailing during the study and not other variants (e.g. Omicron). In vitro, tixagevimab/cilgavimab is effective against Omicron, but there are no clinical data. Bamlanivimab and casirivimab/imdevimab are ineffective against Omicron in vitro. Further studies are needed and publication of four ongoing studies may resolve the uncertainties.
Collapse
Affiliation(s)
- Caroline Hirsch
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Yun Soo Park
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Vanessa Piechotta
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Khai Li Chai
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Lise J Estcourt
- Haematology/Transfusion Medicine, NHS Blood and Transplant, Oxford, UK
| | - Ina Monsef
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Susanne Salomon
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Erica M Wood
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | | | - Zoe McQuilten
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | | | - Jakob J Malin
- Department I for Internal Medicine, Division of Infectious Diseases, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Miriam Stegemann
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nicole Skoetz
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Nina Kreuzberger
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|