1
|
Liu Y, Zheng Y, Zhao X, Dong Z, Zhang M, Fang Y, Wang Y, Wang Z, Liu N, Yan P, Ma Y, Yang F, Zheng Y, Zhang W, Yang J, Sun M. Targeting JAML promotes normalization of tumour blood vessels to antagonize tumour progression via FAK/SRC and VEGF/VEGFR2 signalling pathways. Life Sci 2025; 368:123474. [PMID: 39983824 DOI: 10.1016/j.lfs.2025.123474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 02/06/2025] [Accepted: 02/15/2025] [Indexed: 02/23/2025]
Abstract
BACKGROUND Angiogenesis is a crucial process in tumour growth and metastasis. Junctional adhesion molecule-like protein (JAML) plays an important role in cancer proliferation; however, its expression and role in tumour angiogenesis remains unexplored. METHODS We collected colorectal cancer from Jinan Central Hospital, using immunofluorescence staining to confirm the expression of JAML in vascular endothelial cells of cancer and adjacent tissue. Then we used the endothelial-specific knockout of JAML mice and human umbilical vein endothelial cells (HUVECs) to clarify the role of JAML in vivo and in vitro. RESULT Our findings indicated a significant upregulation of JAML in vascular endothelial cells of colorectal cancer tissues compared to adjacent tissues. Endothelial-specific knockout of JAML effectively inhibited tumour growth through normalization of tumour blood vessels in multiple mice tumour models. The deletion of JAML in endothelial cells facilitated tumour vascular normalization, which was evident from increased pericyte coverage, vessel perfusion and T lymphocytes infiltration, decreased hypoxia, vessel density and leakage in tumour tissues. Further analysis showed that the phosphorylation of FAK/SRC/AKT/ERK pathway and VEGFR2 were suppressed in JAMLendo-/- mice with tumour. CONCLUSION This study concluded that JAML is specifically highly expressed in the vascular endothelial cells of tumour, promoting tumour progression by angiogenesis through the activation of the FAK/SRC/ERK/AKT pathway and VEGF/VEGFR2 pathway. JAML might be a new target for antiangiogenesis and provide valuable insights into the development of novel therapeutic approaches for cancer patients.
Collapse
Affiliation(s)
- Yanan Liu
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, PR China; Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, PR China; Research Center of Translational Medicine, Laboratory Animal Center, Central hospital affiliated to Shandong First Medical University, Jinan, Shandong 250013, PR China
| | - Yawen Zheng
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, PR China
| | - Xinchao Zhao
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, PR China; Department of Clinical Medicine, Shandong First Medical University, Jinan 271016, Shandong, PR China
| | - Zhilin Dong
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, PR China; Department of Clinical Medicine, Shandong First Medical University, Jinan 271016, Shandong, PR China
| | - Mingyan Zhang
- Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, PR China; Research Center of Translational Medicine, Laboratory Animal Center, Central hospital affiliated to Shandong First Medical University, Jinan, Shandong 250013, PR China
| | - Yuying Fang
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, PR China; Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, PR China; Research Center of Translational Medicine, Laboratory Animal Center, Central hospital affiliated to Shandong First Medical University, Jinan, Shandong 250013, PR China
| | - Yufeng Wang
- Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, PR China; Research Center of Translational Medicine, Laboratory Animal Center, Central hospital affiliated to Shandong First Medical University, Jinan, Shandong 250013, PR China
| | - Zewen Wang
- Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, PR China
| | - Ning Liu
- Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, PR China
| | - Peng Yan
- Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, PR China
| | - Yuan Ma
- Department of Pathology, Central Hospital affiliated to Shandong First Medical University, Jinan, Shandong 250013, PR China
| | - Fei Yang
- Department of Pathology, Central Hospital affiliated to Shandong First Medical University, Jinan, Shandong 250013, PR China
| | - Yan Zheng
- Research Center of Translational Medicine, Central Hospital affiliated to Shandong First Medical University, Jinan, Shandong 250013, PR China
| | - Wencheng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Jianmin Yang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Meili Sun
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, PR China; Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, PR China.
| |
Collapse
|
2
|
Cui H, Xie L, Lu H, Cheng C, Xue F, Wu Z, Liu L, Qiao L, Zhang C, Zhang W, Yang J. Macrophage junctional adhesion molecule-like (JAML) protein promotes NLRP3 inflammasome activation in the development of atherosclerosis. Cell Death Differ 2025:10.1038/s41418-025-01489-5. [PMID: 40148467 DOI: 10.1038/s41418-025-01489-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 03/12/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025] Open
Abstract
Inflammation plays a crucial role in the progression of atherosclerosis. Junctional adhesion molecule-like protein (JAML), a type-I transmembrane glycoprotein, activates downstream signaling pathways. However, the precise role of macrophage-derived JAML in inflammation and atherosclerosis remains unclear. This study aimed to generate mice with macrophage-specific deletion or overexpression of JAML, with the focus of assessing its impact on macrophage function and elucidating its regulatory mechanism in atherosclerosis. High-throughput data screening was employed to investigate JAML expression in atherosclerosis, and macrophage-specific JAML-knockout and transgenic mice models were utilized to examine the effects of JAML on atherosclerosis. Furthermore, the role of JAML was assessed using Oil Red O staining, RNA-sequencing analysis, and co-immunoprecipitation techniques. Increased JAML expression was observed in macrophages from both mice and patients with atherosclerosis. Macrophage-specific JAML deletion attenuated atherosclerosis and inflammation, whereas macrophage-specific JAML overexpression exacerbated these conditions. Mechanistically, JAML deletion inhibited inflammation by decreasing nuclear translocation of pyruvate kinase M2 (PKM2) and PKM2/p65 complex formation, which consequently suppressed the nuclear factor kappa B (NF-κB) pathway and NLRP3 inflammasome activation. Taken together, these findings demonstrate that macrophage-expressed JAML facilitates the progression of atherosclerosis by activating the NF-κB pathway and NLRP3 inflammasome through nuclear migration and phosphorylation of PKM2. Notably, our study revealed a novel mechanism for the regulation of NLRP3 inflammasome activation in atherosclerosis. Therefore, targeting JAML may be an effective treatment strategy for atherosclerosis, a condition characterized by chronic inflammation.
Collapse
Affiliation(s)
- Huiliang Cui
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Lin Xie
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Hanlin Lu
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Cheng Cheng
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Fei Xue
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Zhenguo Wu
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Li Liu
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Lei Qiao
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Cheng Zhang
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
- Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wencheng Zhang
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| | - Jianmin Yang
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
3
|
Fang Y, Liu Y, Dong Z, Zhao X, Zhang M, Zheng Y, Yang C, Wang Y, Liu N, Yan P, Ma Y, Yang F, Zheng Y, Zhang W, Yang J, Sun M. JAML overexpressed in colorectal cancer promotes tumour proliferation by activating the PI3K-AKT-mTOR signalling pathway. Sci Rep 2024; 14:24514. [PMID: 39424882 PMCID: PMC11489459 DOI: 10.1038/s41598-024-75180-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024] Open
Abstract
The expression and biological function of junctional adhesion molecule-like protein (JAML) in colorectal cancer (CRC) remain unclear. Paraffin tissue samples from 50 cases of CRC were collected to determine the expression of JAML. JAML was overexpressed or knock-down in CRC cells to evaluated the proliferation, migration and invasion in vitro and in vivo. Western-blot and others were applied to explore the mechanisms. The study showed that JAML was highly expressed within cancer tissues in 50% (25/50) of patients with CRC, and was correlated with higher TNM stage (p < 0.05). Patients of JAML-high group had poorer overall survival compared to JAML-low group (p = 0.0362, HR = 0.4295, 95% CI of 0.1908-0.9667). The tumour infiltrating lymphocytes (TILs) was lower in the JAML-high group than in the JAML-low group (p < 0.05). Overexpression of JAML promoted the proliferation, migration, and invasion of CRC by activating the PI3K-AKT-mTOR signalling pathway both in vitro and in vivo. TILs were reduced in JAML-high tumour tissues by decreasing chemokines such as CCL20 and CXCL9/10/11. Our study identified JAML, a potentially ideal target that is specifically highly expressed in CRC tissues, which promoted tumour proliferation, impaired T-lymphocytes infiltration, provided a promising therapeutic strategy for patients with CRC.
Collapse
Affiliation(s)
- Yuying Fang
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
- Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, 250013, Shandong, People's Republic of China
- Research Center of Translational Medicine, Laboratory Animal Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
| | - Yanan Liu
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
- Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, 250013, Shandong, People's Republic of China
- Research Center of Translational Medicine, Laboratory Animal Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
| | - Zhilin Dong
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
- Department of Clinical Medicine, Shandong First Medical University, Jinan, 271016, Shandong, People's Republic of China
| | - Xinchao Zhao
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
- Department of Clinical Medicine, Shandong First Medical University, Jinan, 271016, Shandong, People's Republic of China
| | - Mingyan Zhang
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
- Research Center of Translational Medicine, Laboratory Animal Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
| | - Yawen Zheng
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
| | - Chunsheng Yang
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
| | - Yufeng Wang
- Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, 250013, Shandong, People's Republic of China
- Research Center of Translational Medicine, Laboratory Animal Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
| | - Ning Liu
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
| | - Peng Yan
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
| | - Yuan Ma
- Department of Pathology, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
| | - Fei Yang
- Department of Pathology, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
| | - Yan Zheng
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
| | - Wencheng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Jianmin Yang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Meili Sun
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China.
- Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, 250013, Shandong, People's Republic of China.
| |
Collapse
|
4
|
Yu N, Wu Y, Wei Q, Li X, Li M, Wu W. m 6A modification of CDC5L promotes lung adenocarcinoma progression through transcriptionally regulating WNT7B expression. Am J Cancer Res 2024; 14:3565-3583. [PMID: 39113868 PMCID: PMC11301290 DOI: 10.62347/qhfa9669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/25/2024] [Indexed: 08/10/2024] Open
Abstract
Cell division cycle 5-like (CDC5L) protein is implicated in the development of various cancers. However, its role in the progression of lung adenocarcinoma (LUAD) remains uncertain. Our findings revealed frequent upregulation of CDC5L in LUAD, which correlated with poorer overall survival rates and advanced clinical stages. In vitro experiments demonstrated that CDC5L overexpression stimulated the proliferation, migration, and invasion of LUAD cells, whereas CDC5L knockdown exerted suppressive effects on these cellular processes. Furthermore, silencing CDC5L significantly inhibited tumor growth and metastasis in a xenograft mouse model. Mechanistically, CDC5L activates the Wnt/β-catenin signaling pathway by transcriptionally regulating WNT7B, thereby promoting LUAD progression. Besides, METTL14-mediated m6A modification contributed to CDC5L upregulation in an IGF2BP2-dependent manner. Collectively, our study uncovers a novel molecular mechanism by which the m6A-induced CDC5L functions as an oncogene in LUAD by activating the Wnt/β-catenin pathway through transcriptional regulation of WNT7B, suggesting that CDC5L may serve as a promising prognostic marker and therapeutic target for LUAD.
Collapse
Affiliation(s)
- Nanding Yu
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union HospitalFuzhou 350001, Fujian, China
- Department of Geriatric Medicine, Fujian Medical University Union HospitalFuzhou 350001, Fujian, China
| | - Yingxiao Wu
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union HospitalFuzhou 350001, Fujian, China
- Department of Geriatric Medicine, Fujian Medical University Union HospitalFuzhou 350001, Fujian, China
| | - Qiongying Wei
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union HospitalFuzhou 350001, Fujian, China
- Department of Geriatric Medicine, Fujian Medical University Union HospitalFuzhou 350001, Fujian, China
| | - Xiaoping Li
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union HospitalFuzhou 350001, Fujian, China
- Department of Geriatric Medicine, Fujian Medical University Union HospitalFuzhou 350001, Fujian, China
| | - Mengling Li
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union HospitalFuzhou 350001, Fujian, China
- Department of Geriatric Medicine, Fujian Medical University Union HospitalFuzhou 350001, Fujian, China
| | - Weidong Wu
- Department of Thoracic Surgery, Fujian Medical University Union HospitalFuzhou 350001, Fujian, China
- Fujian Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical UniversityFuzhou 350122, Fujian, China
| |
Collapse
|
5
|
Zhang Z, Westover D, Tang Z, Liu Y, Sun J, Sun Y, Zhang R, Wang X, Zhou S, Hesilaiti N, Xia Q, Du Z. Wnt/β-catenin signaling in the development and therapeutic resistance of non-small cell lung cancer. J Transl Med 2024; 22:565. [PMID: 38872189 PMCID: PMC11170811 DOI: 10.1186/s12967-024-05380-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024] Open
Abstract
Wnt/β-catenin signaling is a critical pathway that influences development and therapeutic response of non-small cell lung cancer (NSCLC). In recent years, many Wnt regulators, including proteins, miRNAs, lncRNAs, and circRNAs, have been found to promote or inhibit signaling by acting on Wnt proteins, receptors, signal transducers and transcriptional effectors. The identification of these regulators and their underlying molecular mechanisms provides important implications for how to target this pathway therapeutically. In this review, we summarize recent studies of Wnt regulators in the development and therapeutic response of NSCLC.
Collapse
Affiliation(s)
- Zixu Zhang
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - David Westover
- High-Throughput Analytics, Analytical Research and Development, Merck & Co. Inc., Rahway, NJ, USA
| | - Zhantong Tang
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Yue Liu
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Jinghan Sun
- School of Life Science and Technology, Southeast University, Nanjing, 210018, China
| | - Yunxi Sun
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Runqing Zhang
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Xingyue Wang
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Shihui Zhou
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Nigaerayi Hesilaiti
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Qi Xia
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Zhenfang Du
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China.
| |
Collapse
|
6
|
Cheng S, Li M, Li C, Dai Y, Zhuo J, Wang J, Qian J, Hao Z. JAML inhibits colorectal carcinogenesis by modulating the tumor immune microenvironment. In Vitro Cell Dev Biol Anim 2024; 60:382-396. [PMID: 38625487 DOI: 10.1007/s11626-024-00881-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/09/2024] [Indexed: 04/17/2024]
Abstract
It is necessary to explore new targets for the treatment of colon adenocarcinoma (COAD) according to the tumor microenvironment. The expression levels of JAML and CXADR were analyzed by bioinformatics analysis and validation of clinical samples. JAML over-expression CD8+ T cell line was constructed, and the proliferation activity was detected by MTT. The production of inflammatory factors was detected by ELISA. The expression of immune checkpoint PD-1 and TIM-3 was detected by Western blot. The apoptosis level was detected by flow cytometry and apoptosis markers. The AOM/DSS mouse model of colorectal cancer was constructed. The expression levels of JAML, CXADR and PD-1 were detected by PCR and Western blot, and the proportion of CD8+ T cells and exhausted T cells were detected by flow cytometry. The expression levels of JAML and CXADR were significantly decreased in colon cancer tissues. Overexpression of JAML can promote the proliferation of T cells, secrete a variety of inflammatory factors. Overexpression of CXADR can reduce the proliferation of colorectal cancer cells, promote apoptosis, and down-regulate the migration and invasion ability of tumor cells. Both JAML agonists and PD-L1 inhibitors can effectively treat colorectal cancer, and the combined use of JAML agonists and PD-L1 inhibitors can enhance the effect. JAML can promote the proliferation and toxicity of CD8+ T cells and down-regulate the expression of immune checkpoints in colon cancer. CXADR can inhibit the proliferation of cancer cells and promote the apoptosis. JAML agonist can effectively treat colorectal cancer by regulating CD8+ T cells.
Collapse
Affiliation(s)
- Shiliang Cheng
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Shandong University, 250031, Jinan, People's Republic of China.
| | - Meng Li
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Shandong University, 250031, Jinan, People's Republic of China
| | - Chunguang Li
- Emergency Medicine Department, Shandong Provincial Third Hospital, Shandong University, Jinan, People's Republic of China
| | - Yonggang Dai
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Shandong University, 250031, Jinan, People's Republic of China
| | - Jinhua Zhuo
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Shandong University, 250031, Jinan, People's Republic of China
| | - Jue Wang
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Shandong University, 250031, Jinan, People's Republic of China
| | - Jingrong Qian
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Shandong University, 250031, Jinan, People's Republic of China
| | - Zhihao Hao
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Shandong University, 250031, Jinan, People's Republic of China
| |
Collapse
|
7
|
Guan X, Liang J, Xiang Y, Li T, Zhong X. BARX1 repressed FOXF1 expression and activated Wnt/β-catenin signaling pathway to drive lung adenocarcinoma. Int J Biol Macromol 2024; 261:129717. [PMID: 38290639 DOI: 10.1016/j.ijbiomac.2024.129717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/01/2024] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND Underlying molecular mechanisms of BARX homeobox 1 (BARX1) in lung adenocarcinoma (LUAD) remain elusive. METHODS Abnormally expressed genes in LUAD tissues were analyzed by RNA-sequencing. CCK-8, colony formation, transwell, and wound healing assays examined proliferation, colony formation, invasion, and migration of LUAD cells, respectively. Electrophoretic mobility shift assay and chromatin immunoprecipitation assay examined the interaction between BARX1 and Forkhead Box F1 (FOXF1). Xenograft mouse model of LUAD was constructed to monitor the growth and metastasis of tumor. RESULTS BARX1 was upregulated, FOXF1 was downregulated in LUAD tissues and cells. There was a negative correlation between BARX1 and FOXF1 expression. BARX1 deficiency limited malignant phenotypes of LUAD cells, including proliferation, invasion, migration and EMT. In vivo, BARX1 knockdown suppressed tumor growth and metastasis in A549-drove xenograft mouse model. BARX1 interacted with FOXF1 promoter and repressed FOXF1 expression. Upregulation of BARX1 promoted the expression of Wnt5a, β-catenin, and phosphorylated-glycogen synthase kinase-3 beta (p-GSK3β), whereas inhibited FOXF1, p-β-catenin, and GSK3β in LUAD cells. BARX1 knockdown caused an opposite result. Rescue assays uncovered that FOXF1 reversed the impact of BARX1 on malignant phenotypes and Wnt/β-catenin of LUAD cells. CONCLUSION BARX1 repressed FOXF1 expression and activated Wnt/β-catenin signaling pathway to drive lung adenocarcinoma.
Collapse
Affiliation(s)
- Xiaojiao Guan
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jie Liang
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yifan Xiang
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Xinwen Zhong
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
8
|
Wu Q, Wang YB, Che XW, Wang H, Wang W. Junctional adhesion molecule-like protein as a novel target for kaempferol to ameliorate lung adenocarcinoma. JOURNAL OF INTEGRATIVE MEDICINE 2023; 21:268-276. [PMID: 37069006 DOI: 10.1016/j.joim.2023.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/27/2023] [Indexed: 04/19/2023]
Abstract
OBJECTIVE Although there have been improvements in targeted therapy and immunotherapy, the majority of lung adenocarcinoma (LUAD) patients still lack effective therapies. Consequently, it is urgent to screen for new diagnosis biomarkers and pharmacological targets. Junctional adhesion molecule-like protein (JAML) was considered to be an oncogenic protein and may be a novel therapeutic target in LUAD. Kaempferol is a natural flavonoid that exhibits antitumor activities in LUAD. However, the effect of kaempferol on JAML is still unknown. METHODS Small interfering RNA was used to knockdown JAML expression. The cell viability was determined using the cell counting kit-8 assay. The proliferation of LUAD cells was evaluated using the 5-ethynyl-2'-deoxyuridine incorporation assay. The migration and invasion of LUAD cells were evaluated by transwell assays. Molecular mechanisms were explored by Western blotting. RESULTS JAML knockdown suppressed proliferation, migration and invasion of LUAD cells, and JAML deficiency restrained epithelial-mesenchymal transition (EMT) via inactivating the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway. Using a PI3K activator (740Y-P), rescue experiments showed that phenotypes to JAML knockdown in LUAD cells were dependent on the PI3K/AKT/mTOR pathway. Kaempferol also inhibited proliferation, migration and invasion of A549 and H1299 cells and partially suppressed EMT through the PI3K/AKT/mTOR pathway. Knockdown of JAML ameliorated the inhibitory effect of kaempferol on LUAD cells. Kaempferol exerted anticancer effects by targeting JAML. CONCLUSION JAML is a novel target for kaempferol against LUAD cells. Please cite this article as: Wu Q, Wang YB, Che XW, Wang H, Wang W. Junctional adhesion molecule-like protein as a novel target for kaempferol to ameliorate lung adenocarcinoma. J Integr Med. 2023; Epub ahead of print.
Collapse
Affiliation(s)
- Qian Wu
- Department of Pulmonary and Critical Care Medicine, the Second Hospital of Shandong University, Jinan 250033, Shandong Province, China
| | - Yong-Bin Wang
- Department of Pulmonary and Critical Care Medicine, the Second Hospital of Shandong University, Jinan 250033, Shandong Province, China
| | - Xiao-Wen Che
- Department of Pulmonary and Critical Care Medicine, the Second Hospital of Shandong University, Jinan 250033, Shandong Province, China
| | - Hui Wang
- Department of Pulmonary and Critical Care Medicine, the Second Hospital of Shandong University, Jinan 250033, Shandong Province, China
| | - Wei Wang
- Department of Pulmonary and Critical Care Medicine, the Second Hospital of Shandong University, Jinan 250033, Shandong Province, China.
| |
Collapse
|
9
|
Li H, Gao L, Kang X, Wang X, Yu Y, Zhang Y, Chen H. RPS24 Is Associated with a Poor Prognosis and Immune Infiltration in Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:ijms24010806. [PMID: 36614249 PMCID: PMC9820840 DOI: 10.3390/ijms24010806] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver malignancy, with increased mortality and morbidity. Accumulating evidence suggested that 40S ribosomal protein S24 (RPS24) is related to malignant outcomes and progression. However, the role of RPS24 remains unclear in HCC. The mRNA and protein expression pattern of RPS24 in HCC was explored and confirmed based on the bioinformatics analysis and histological examination. The correlation between RPS24 expression and clinicopathological features, diagnostic value, prognosis, methylation status, and survival were evaluated. Then, we divided the HCC cohort into two groups based on the expression of RPS24, and performed the functional enrichment and immune cells infiltration analysis of RPS24. Furthermore, in vivo and in vitro experiments were performed to investigate the effect of RPS24 on HCC cells. RPS24 was observed to be elevated in HCC samples. RPS24 overexpression or RPS24 promoter methylation contributed to an unfavorable prognosis for HCC patients. The genes in the high RPS24 expression group were mainly enriched in DNA replication, cell cycle E2F targets, and the G2M checkpoint pathway. Moreover, the expression level of RPS24 was significantly related to immune infiltration and immunotherapy response. Our experiments also demonstrated that RPS24 knockdown suppressed the growth of HCC cells and tumor proliferation of the xenograft model. Therefore, RPS24 can be a potential adverse biomarker of HCC prognosis acting through facilitating cell proliferation and the formation of an immunosuppressive microenvironment in HCC. Targeting RPS24 may offer a promising therapeutic option for HCC management.
Collapse
Affiliation(s)
- Haiyuan Li
- Second Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Lei Gao
- Second Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Xiaojuan Kang
- Second Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Xueyan Wang
- Second Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Yang Yu
- Second Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Yaqing Zhang
- Second Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Hao Chen
- Second Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
- Correspondence:
| |
Collapse
|