1
|
Hidayat MT, Khadijah Maharani SN, Ramadhany ID, Khairani NI, Rahman NA, Permana AD. Controlled release of deferiprone using iron-responsive nanoparticles integrated with dissolving microneedle for novel alternative treatments of β-thalassemia major. Eur J Pharm Biopharm 2025; 210:114702. [PMID: 40139573 DOI: 10.1016/j.ejpb.2025.114702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/16/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
Iron chelating agents (ICs) such as conventional deferiprone are often ineffective when exposed to normal conditions due to their uncontrolled release when treating iron overload in ß-thalassemia major (ß-TM) due to the effects of blood transfusion. Iron deficiency and gastrointestinal side effects are crucial problems that can occur. Therefore, DFP was prepared as nanoparticles (NPs) coated with an iron-responsive (IR) polymer with an average particle size of 354.70 ± 10 nm to control its release. To facilitate optimal delivery, NP-IR-DFP was integrated into a dissolving microneedle (DMN) fabricated with biodegradable and biocompatible poly(vinylpyrrolidone) and poly(vinyl alcohol) polymers. The results showed that the NP-IR-DMN provided excellent insertion and mechanical strength and dissolved quickly after application. In vitro and ex-vivo studies revealed the more controllable release of NP-IR-DFP after integration with the DMN (NP-IR-DMN) for up to 24 h. Most importantly, the developed formula was hemocompatible and did not irritate the skin or cause tissue damage. Furthermore, the in vivo pharmacokinetics were further investigated for 24 h, which revealed short concentration (Cmax of 0.07 ± 0.03 μg/mL) and t1/2 (3.66 ± 0.76 h) under normal conditions and long-term iron overload-modeling conditions with Cmax (2.90 ± 0.14 μg/mL) and t1/2 (10.13 ± 1.00 h). This approach can extend beyond oral delivery by controlling the release of DFP, which can only be released in conditions of iron overload, and has the potential to prevent iron deficiency and excess, thus increasing the efficacy of DFP in β-TM therapy.
Collapse
Affiliation(s)
- Muh Taufik Hidayat
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245 South Sulawesi, Indonesia
| | | | | | - Nur Izzah Khairani
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245 South Sulawesi, Indonesia
| | - Nur Annisa Rahman
- Faculty of Medicine, Hasanuddin University, Makassar 90245 South Sulawesi, Indonesia
| | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245 South Sulawesi, Indonesia.
| |
Collapse
|
2
|
Al-Hammood O, Muhammed Muzher H, Hasan Mousa R, Vahedian Boroujeni V, Noory P, Mirhaj M, Al-Musawi MH, Talib Al-Sudani B, A Mohammed A, Shahriari-Khalaji M, Valizadeh H, Sharifianjazi F, Bazli L, Tavamaishvili K, Mortazavi Moghadam F, Tavakoli M. Deferoxamine-Loaded Trilayer Scaffold Containing Propolis and Sulfated Polysaccharides Promotes In Vivo Wound Healing through Angiogenesis Stimulation. ACS APPLIED MATERIALS & INTERFACES 2025; 17:23484-23498. [PMID: 40197030 DOI: 10.1021/acsami.4c20030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
The skin exhibits a hierarchical structure, and the application of tissue engineering techniques is recommended for the treatment of severe cutaneous injuries. To biologically mimic the structural characteristics of the distinct layers of the skin, the utilization of multilayered scaffolds has become a prominent approach. In the current study, an asymmetric trilayered scaffold was fabricated, consisting of a middle layer (ML) composed of 3D printed poly(vinyl alcohol)-carrageenan (PVA.Crg), a top layer (TL) of nanofibrous polycaprolactone-propolis (PCL.Pp), and a bottom layer (BL) of poly(vinyl alcohol)-fucoidan-deferoxamine (PVA.Fu.Def) nanofibers. It was indicated that the tensile strength and elastic modulus of the trilayer scaffold were significantly higher compared to other samples. The in vitro degradation rate of the studied scaffolds as well as the release of Def from the trilayer scaffold after 7 days were quantified within the range of 36-40 and 91.1%, respectively. The release of Def did not induce cytotoxicity and chicken chorioallantoic membrane assay revealed that the release of Def remarkably enhanced angiogenesis. Furthermore, the in vivo examinations exhibited the fastest re-epithelialization in the group treated with the trilayer scaffold containing Def. The findings of this study suggest the potential application of the fabricated trilayer scaffold as a skin substitute or wound dressing.
Collapse
Affiliation(s)
- Orooba Al-Hammood
- Department of Forensic Science, College of Science, Al-Nahrain University, Baghdad 10072, Iraq
| | - Huda Muhammed Muzher
- Department of Clinical Laboratory Sciences, College of Pharmacy, Mustansiriyah University, Baghdad 10052, Iraq
| | - Ruqaya Hasan Mousa
- Department of Clinical Laboratory Sciences, College of Pharmacy, Mustansiriyah University, Baghdad 10052, Iraq
| | - Vala Vahedian Boroujeni
- Department of Food and Drug Control, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1461884513, Iran
| | - Parastoo Noory
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Marjan Mirhaj
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mastafa H Al-Musawi
- Department of Clinical Laboratory Sciences, College of Pharmacy, Mustansiriyah University, Baghdad 10052, Iraq
| | - Basma Talib Al-Sudani
- Department of Clinical Laboratory Sciences, College of Pharmacy, Mustansiriyah University, Baghdad 10052, Iraq
| | - Ahmed A Mohammed
- Department of Clinical Laboratory Sciences, College of Pharmacy, Mustansiriyah University, Baghdad 10052, Iraq
| | - Mina Shahriari-Khalaji
- Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey 08028, United States
| | - Hamideh Valizadeh
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Fariborz Sharifianjazi
- Center for Advanced Materials and Structures, School of Science and Technology, The University of Georgia, 0171 Tbilisi, Georgia
- Department of Civil Engineering, School of Science and Technology, The University of Georgia, 0171 Tbilisi, Georgia
| | - Leila Bazli
- School of Science and Technology, The University of Georgia, 0171 Tbilisi, Georgia
| | - Ketevan Tavamaishvili
- Georgian American University, School of Medicine, 10 Merab Aleksidze Str., 0160 Tbilisi, Georgia
| | - Fatemeh Mortazavi Moghadam
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Cambridge, Massachusetts 02139, United States
| | - Mohamadreza Tavakoli
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
3
|
Huang X, Lu J, An Y, Xu M, Chen X, Liu C, Zhou X, Shan H, Qian Y, Zhang M. Electrospun PLGA/PCL Nanofiber Film Loaded with LPA Promotes Full-Layer Wound Healing by Regulating the Keratinocyte Pyroptosis. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20756-20767. [PMID: 40152284 DOI: 10.1021/acsami.4c22495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Electrospun nanofibers have a number of qualities that make them a suitable choice for skin wound healing. Lysophosphatidic acid (LPA) stimulates the keratinocytes and fibroblasts to proliferate, differentiate, and migrate and enhances skin wound healing. Here, we developed the electrospun scaffolds contained in polycaprolactone (PCL) and polylactic-co-glycolic acid (PLGA). The scaffolds loaded with LPA nanoparticles retained a porous nanofiber structure and showed better physicochemical properties and biocompatibility. The scaffold continuously releases LPA to quickly initiate cell signaling and maintain long-term anti-inflammatory activity. In this study, we found that PP scaffold with LPA reduces the disordered collagen deposition and the thickness of the newborn epidermis, improves skin healing, and reduces scar formation. Explaining the mechanism of LPA mineralized tissue regeneration in skin wound healing, LPA inhibited the pyroptosis of keratinocyte, a cell death process that induces inflammation and scar formation by inhibiting the expression of TNF-α and β-catenin proteins. Thus, the electrospun PP scaffold with LPA can be potentially developed as a therapeutic avenue to target skin wound healing.
Collapse
Affiliation(s)
- Xinqi Huang
- Department of Forensic Sciences, The Affiliated Guangji Hospital, School of Basic Medicine, Suzhou Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Jianghuiwen Lu
- Department of Medical Aesthetic, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215000, Jiangsu, China
| | - Yumei An
- Department of Forensic Sciences, The Affiliated Guangji Hospital, School of Basic Medicine, Suzhou Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Mingyuan Xu
- Department of Forensic Sciences, The Affiliated Guangji Hospital, School of Basic Medicine, Suzhou Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Xueshi Chen
- Department of Forensic Sciences, The Affiliated Guangji Hospital, School of Basic Medicine, Suzhou Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Chao Liu
- Department of Forensic Sciences, The Affiliated Guangji Hospital, School of Basic Medicine, Suzhou Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Xuefeng Zhou
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210000, Jiangsu, China
| | - Haiyan Shan
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215000, Jiangsu, China
| | - Yunzhu Qian
- Department of Stomatology, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou 215123, Jiangsu, China
| | - Mingyang Zhang
- Department of Forensic Sciences, The Affiliated Guangji Hospital, School of Basic Medicine, Suzhou Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| |
Collapse
|
4
|
Su Y, Xu J, Liu W, Shu Y, Ma H, Cheng YY, Liu Y, Pan B, Song K. A gelatin/acrylamide-based hydrogel for smart drug release monitoring and radiation-induced wound repair in breast cancer. Int J Biol Macromol 2024; 283:137845. [PMID: 39579810 DOI: 10.1016/j.ijbiomac.2024.137845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/10/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
Radiotherapy is a common local treatment for breast cancer, and while it is effective in targeting tumor cells, it inevitably causes significant side effects. These include excessive production of reactive oxygen species (ROS), repeated inflammatory, and severe skin ulceration, all of which can hinder the wound healing process. As a result, there is a pressing need for multifunctional medical dressings that can support wound repair following radiotherapy. In this study, we introduced a novel double-network interpenetrating hydrogel (GEMC), which combined gelatin grafted dopamine (GEDA), acrylamide, nano-clay (NC), and curcumin loaded nanoparticles (CCNPs). Unlike traditional single-function hydrogels, the GEMC hydrogel offered a combination of antioxidant properties, tissue adhesion, and real time drug tracking, effectively addressing the multifaceted challenges of wound healing after radiotherapy. The GEMC hydrogel exhibited impressive antioxidant activity and superior mechanical properties, which collectively improve the support and protection of wounded surfaces. Furthermore, GEMC promoted skin regeneration, angiogenesis and reduced inflammatory in a mouse model of radiotherapy-induced skin ulceration. These results highlight the hydrogel's potential to accelerate would healing and enhance the effectiveness of post-radiotherapy wound care, providing a promising new approach to improving the quality of skin recovery following radiotherapy.
Collapse
Affiliation(s)
- Ya Su
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China; Institute of Rehabilitation Medicine, Henan Academy of Innovations in Medical Science, Central Plains Medical Science City, Zhengzhou Airport Area, Henan, China
| | - Jie Xu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Wang Liu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yan Shu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Hailin Ma
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China; Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, China
| | - Yuen Yee Cheng
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Yaqian Liu
- Department of Breast Surgery, The Second Hospital of Dalian Medical University, 467 Zhongshan Road, Shahekou District, Dalian, Liaoning 116023, China.
| | - Bo Pan
- Department of Breast Surgery, The Second Hospital of Dalian Medical University, 467 Zhongshan Road, Shahekou District, Dalian, Liaoning 116023, China.
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China; Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, China.
| |
Collapse
|
5
|
Al-Musawi MH, Turki S, Al-Naymi HAS, Sameer Al-salman S, Boroujeni VV, Alizadeh M, Sattar M, Sharifianjazi F, Bazli L, Pajooh AMD, Shahriari-Khalaji M, Najafinezhad A, Moghadam FM, Mirhaj M, Tavakoli M. Localized delivery of healing stimulator medicines for enhanced wound treatment. J Drug Deliv Sci Technol 2024; 101:106212. [DOI: 10.1016/j.jddst.2024.106212] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Yao WD, Zhou JN, Tang C, Zhang JL, Chen ZY, Li Y, Gong XJ, Qu MY, Zeng Q, Jia YL, Wang HY, Fan T, Ren J, Guo LL, Xi JF, Pei XT, Han Y, Yue W. Hydrogel Microneedle Patches Loaded with Stem Cell Mitochondria-Enriched Microvesicles Boost the Chronic Wound Healing. ACS NANO 2024; 18:26733-26750. [PMID: 39238258 PMCID: PMC11447894 DOI: 10.1021/acsnano.4c06921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Rescuing or compensating mitochondrial function represents a promising therapeutic avenue for radiation-induced chronic wounds. Adult stem cell efficacies are primarily dependent on the paracrine secretion of mitochondria-containing extracellular vesicles (EVs). However, effective therapeutic strategies addressing the quantity of mitochondria and mitochondria-delivery system are lacking. Thus, in this study, we aimed to design an effective hydrogel microneedle patch (MNP) loaded with stem cell-derived mitochondria-rich EVs to gradually release and deliver mitochondria into the wound tissues and boost wound healing. We, first, used metformin to enhance mitochondrial biogenesis and thereby increasing the secretion of mitochondria-containing EVs (termed "Met-EVs") in adipose-derived stem cells. To verify the therapeutic effects of Met-EVs, we established an in vitro and an in vivo model of X-ray-induced mitochondrial dysfunction. The Met-EVs ameliorated the mitochondrial dysfunction by rescuing mitochondrial membrane potential, increasing adenosine 5'-triphosphate levels, and decreasing reactive oxygen species production by transferring active mitochondria. To sustain the release of EVs into damaged tissues, we constructed a Met-EVs@Decellularized Adipose Matrix (DAM)/Hyaluronic Acid Methacrylic Acid (HAMA)-MNP. Met-EVs@DAM/HAMA-MNP can load and gradually release Met-EVs and their contained mitochondria into wound tissues to alleviate mitochondrial dysfunction. Moreover, we found Met-EVs@DAM/HAMA-MNP can markedly promote macrophage polarization toward the M2 subtype with anti-inflammatory and regenerative functions, which can, in turn, enhance the healing process in mice with skin wounds combined radiation injuries. Collectively, we successfully fabricated a delivery system for EVs, Met-EVs@DAM/HAMA-MNP, to effectively deliver stem cell-derived mitochondria-rich EVs. The effectiveness of this system has been demonstrated, holding great potential for chronic wound treatments in clinic.
Collapse
Affiliation(s)
- Wen-De Yao
- School
of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
- Department
of Plastic and Reconstructive Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Street, Beijing 100853, China
- Beijing
Institute of Radiation Medicine, Beijing 100850, China
| | - Jun-Nian Zhou
- Beijing
Institute of Radiation Medicine, Beijing 100850, China
| | - Chao Tang
- Beijing
Institute of Radiation Medicine, Beijing 100850, China
| | - Ju-Lei Zhang
- Department
of Plastic and Reconstructive Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Street, Beijing 100853, China
- Beijing
Institute of Radiation Medicine, Beijing 100850, China
| | - Zhao-Yang Chen
- Department
of Plastic and Reconstructive Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Street, Beijing 100853, China
- Beijing
Institute of Radiation Medicine, Beijing 100850, China
| | - Yan Li
- Department
of Plastic and Reconstructive Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Street, Beijing 100853, China
- Beijing
Institute of Radiation Medicine, Beijing 100850, China
| | - Xiao-Jing Gong
- Department
of Plastic and Reconstructive Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Street, Beijing 100853, China
- Beijing
Institute of Radiation Medicine, Beijing 100850, China
| | - Ming-Yi Qu
- Beijing
Institute of Radiation Medicine, Beijing 100850, China
| | - Quan Zeng
- Beijing
Institute of Radiation Medicine, Beijing 100850, China
| | - Ya-Li Jia
- Beijing
Institute of Radiation Medicine, Beijing 100850, China
| | - Hai-Yang Wang
- Beijing
Institute of Radiation Medicine, Beijing 100850, China
| | - Tao Fan
- Beijing
Institute of Radiation Medicine, Beijing 100850, China
| | - Jing Ren
- Department
of Plastic and Reconstructive Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Street, Beijing 100853, China
| | - Ling-Li Guo
- Department
of Plastic and Reconstructive Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Street, Beijing 100853, China
| | - Jia-Fei Xi
- Beijing
Institute of Radiation Medicine, Beijing 100850, China
| | - Xue-Tao Pei
- Beijing
Institute of Radiation Medicine, Beijing 100850, China
| | - Yan Han
- School
of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
- Department
of Plastic and Reconstructive Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Street, Beijing 100853, China
| | - Wen Yue
- Beijing
Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
7
|
Guo JL, Lopez DM, Mascharak S, Foster DS, Khan A, Davitt MF, Nguyen AT, Burcham AR, Chinta MS, Guardino NJ, Griffin M, Miller E, Januszyk M, Raghavan SS, Longacre TA, Delitto DJ, Norton JA, Longaker MT. Hematoxylin and Eosin Architecture Uncovers Clinically Divergent Niches in Pancreatic Cancer. Tissue Eng Part A 2024; 30:605-613. [PMID: 38874979 DOI: 10.1089/ten.tea.2024.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) represents one of the only cancers with an increasing incidence rate and is often associated with intra- and peri-tumoral scarring, referred to as desmoplasia. This scarring is highly heterogeneous in extracellular matrix (ECM) architecture and plays complex roles in both tumor biology and clinical outcomes that are not yet fully understood. Using hematoxylin and eosin (H&E), a routine histological stain utilized in existing clinical workflows, we quantified ECM architecture in 85 patient samples to assess relationships between desmoplastic architecture and clinical outcomes such as survival time and disease recurrence. By utilizing unsupervised machine learning to summarize a latent space across 147 local (e.g., fiber length, solidity) and global (e.g., fiber branching, porosity) H&E-based features, we identified a continuum of histological architectures that were associated with differences in both survival and recurrence. Furthermore, we mapped H&E architectures to a CO-Detection by indEXing (CODEX) reference atlas, revealing localized cell- and protein-based niches associated with outcome-positive versus outcome-negative scarring in the tumor microenvironment. Overall, our study utilizes standard H&E staining to uncover clinically relevant associations between desmoplastic organization and PDAC outcomes, offering a translatable pipeline to support prognostic decision-making and a blueprint of spatial-biological factors for modeling by tissue engineering methods.
Collapse
Affiliation(s)
- Jason L Guo
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - David M Lopez
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Shamik Mascharak
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Deshka S Foster
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Anum Khan
- Cell Sciences Imaging Facility, Stanford University, Stanford, California, USA
| | - Michael F Davitt
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Alan T Nguyen
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Austin R Burcham
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Malini S Chinta
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Nicholas J Guardino
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Michelle Griffin
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Elisabeth Miller
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Michael Januszyk
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Shyam S Raghavan
- Department of Pathology, University of Colorado Anschutz Medical Center, Aurora, Colorado, USA
| | - Teri A Longacre
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Daniel J Delitto
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Jeffrey A Norton
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Michael T Longaker
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
8
|
Zhao J, Li T, Yue Y, Li X, Xie Z, Zhang H, Tian X. Advancements in employing two-dimensional nanomaterials for enhancing skin wound healing: a review of current practice. J Nanobiotechnology 2024; 22:520. [PMID: 39210430 PMCID: PMC11363430 DOI: 10.1186/s12951-024-02803-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
The two-dimensional nanomaterials are characterized by their ultra-thin structure, diverse chemical functional groups, and remarkable anisotropic properties. Since its discovery in 2004, graphene has attracted significant scientific interest due to its potential applications in various fields, including electronics, energy systems, and biomedicine. In medicine, graphene is used for designing smart drug delivery systems, especially for antibiotics, and biosensing. Skin trauma is a prevalent dermatological condition that increasingly contributes to morbidities and mortalities, thus representing a significant health burden. During tissue damage, rapid skin repair is crucial to prevent blood loss and infection. Therefore, drugs used for skin trauma must possess antimicrobial and anti-inflammatory properties. Two-dimensional (2D) nanomaterials possess remarkable physical, chemical, optical, and biological characteristics due to their uniform shape, increased surface area, and surface charge. Graphene and its derivatives, transition-metal dichalcogenides (TMDs), black phosphorous (BP), hexagonal boron nitride (h-BN), MXene, and metal-organic frameworks (MOFs) are among the commonly used 2D nanomaterials. Moreover, they exhibit antibacterial and anti-inflammatory properties. This review presents a comprehensive discussion of the clinical approaches employed for wound healing treatment and explores the applications of commonly used 2D nanomaterials to enhance wound healing outcomes.
Collapse
Affiliation(s)
- Jiaqi Zhao
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Tianjiao Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Yajuan Yue
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Xina Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Zhongjian Xie
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518000, China
| | - Han Zhang
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518000, China.
| | - Xing Tian
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China.
| |
Collapse
|
9
|
Wang H, Mu G, Cai X, Zhang X, Mao R, Jia H, Luo H, Liu J, Zhao C, Wang Z, Yang C. Glucopeptide Superstructure Hydrogel Promotes Surgical Wound Healing Following Neoadjuvant Radiotherapy by Producing NO and Anticellular Senescence. Adv Healthc Mater 2024; 13:e2400406. [PMID: 38683036 DOI: 10.1002/adhm.202400406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/26/2024] [Indexed: 05/01/2024]
Abstract
Neoadjuvant radiotherapy, a preoperative intervention regimen for reducing the stage of primary tumors and surgical margins, has gained increasing attention in the past decade. However, radiation-induced skin damage during neoadjuvant radiotherapy exacerbates surgical injury, remarkably increasing the risk of refractory wounds and compromising the therapeutic effects. Radiation impedes wound healing by increasing the production of reactive oxygen species and inducing cell apoptosis and senescence. Here, a self-assembling peptide (R-peptide) and hyaluronic-acid (HA)-based and cordycepin-loaded superstructure hydrogel is prepared for surgical incision healing after neoadjuvant radiotherapy. Results show that i) R-peptide coassembles with HA to form biomimetic fiber bundle microstructure, in which R-peptide drives the assembly of single fiber through π-π stacking and other forces and HA, as a single fiber adhesive, facilitates bunching through electrostatic interactions. ii) The biomimetic superstructure contributes to the adhesion and proliferation of cells in the surgical wound. iii) Aldehyde-modified HA provides dynamic covalent binding sites for cordycepin to achieve responsive release, inhibiting radiation-induced cellular senescence. iv) Arginine in the peptides provides antioxidant capacity and a substrate for the endogenous production of nitric oxide to promote wound healing and angiogenesis of surgical wounds after neoadjuvant radiotherapy.
Collapse
Affiliation(s)
- Hang Wang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Ganen Mu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Xiaoyao Cai
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Xiaoguang Zhang
- Tianjin Center for Medical Devices Evaluation and Inspection, Tianjin, 300191, P. R. China
| | - Ruiqi Mao
- Tianjin Center for Medical Devices Evaluation and Inspection, Tianjin, 300191, P. R. China
| | - Haixue Jia
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Hongjing Luo
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Jianfeng Liu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Cuicui Zhao
- Tianjin Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy (Tianjin), Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, P. R. China
| | - Zhongyan Wang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Cuihong Yang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| |
Collapse
|
10
|
Berry CE, Kendig CB, An N, Fazilat AZ, Churukian AA, Griffin M, Pan PM, Longaker MT, Dixon SJ, Wan DC. Role of ferroptosis in radiation-induced soft tissue injury. Cell Death Discov 2024; 10:313. [PMID: 38969638 PMCID: PMC11226648 DOI: 10.1038/s41420-024-02003-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/09/2024] [Accepted: 05/02/2024] [Indexed: 07/07/2024] Open
Abstract
Ionizing radiation has been pivotal in cancer therapy since its discovery. Despite its therapeutic benefits, IR causes significant acute and chronic complications due to DNA damage and the generation of reactive oxygen species, which harm nucleic acids, lipids, and proteins. While cancer cells are more vulnerable to ionizing radiation due to their inefficiency in repairing damage, healthy cells in the irradiated area also suffer. Various types of cell death occur, including apoptosis, necrosis, pyroptosis, autophagy-dependent cell death, immunogenic cell death, and ferroptosis. Ferroptosis, driven by iron-dependent lipid peroxide accumulation, has been recognized as crucial in radiation therapy's therapeutic effects and complications, with extensive research across various tissues. This review aims to summarize the pathways involved in radiation-related ferroptosis, findings in different organs, and drugs targeting ferroptosis to mitigate its harmful effects.
Collapse
Affiliation(s)
- Charlotte E Berry
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Carter B Kendig
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicholas An
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexander Z Fazilat
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Andrew A Churukian
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michelle Griffin
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Phoebe M Pan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael T Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Derrick C Wan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
11
|
Kameni LE, Griffin M, Berry CE, Shariatzadeh S, Downer MA, Valencia C, Fazilat AZ, Nazerali R, Momeni A, Januszyk M, Longaker MT, Wan DC. Single-cell transcriptional analysis of irradiated skin reveals changes in fibroblast subpopulations and variability in caveolin expression. Radiat Oncol 2024; 19:82. [PMID: 38926892 PMCID: PMC11200992 DOI: 10.1186/s13014-024-02472-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Radiation-induced fibrosis (RIF) is an important late complication of radiation therapy, and the resulting damaging effects of RIF can significantly impact reconstructive outcomes. There is currently a paucity of effective treatment options available, likely due to the continuing knowledge gap surrounding the cellular mechanisms involved. In this study, detailed analyses of irradiated and non-irradiated human skin samples were performed incorporating histological and single-cell transcriptional analysis to identify novel features guiding development of skin fibrosis following radiation injury. METHODS Paired irradiated and contralateral non-irradiated skin samples were obtained from six female patients undergoing post-oncologic breast reconstruction. Skin samples underwent histological evaluation, immunohistochemistry, and biomechanical testing. Single-cell RNA sequencing was performed using the 10X single cell platform. Cells were separated into clusters using Seurat in R. The SingleR classifier was applied to ascribe cell type identities to each cluster. Differentially expressed genes characteristic to each cluster were then determined using non-parametric testing. RESULTS Comparing irradiated and non-irradiated skin, epidermal atrophy, dermal thickening, and evidence of thick, disorganized collagen deposition within the extracellular matrix of irradiated skin were readily appreciated on histology. These histologic features were associated with stiffness that was higher in irradiated skin. Single-cell RNA sequencing revealed six predominant cell types. Focusing on fibroblasts/stromal lineage cells, five distinct transcriptional clusters (Clusters 0-4) were identified. Interestingly, while all clusters were noted to express Cav1, Cluster 2 was the only one to also express Cav2. Immunohistochemistry demonstrated increased expression of Cav2 in irradiated skin, whereas Cav1 was more readily identified in non-irradiated skin, suggesting Cav1 and Cav2 may act antagonistically to modulate fibrotic cellular responses. CONCLUSION In response to radiation therapy, specific changes to fibroblast subpopulations and enhanced Cav2 expression may contribute to fibrosis. Altogether, this study introduces a novel pathway of caveolin involvement which may contribute to fibrotic development following radiation injury.
Collapse
Affiliation(s)
- Lionel E Kameni
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Michelle Griffin
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Charlotte E Berry
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Siavash Shariatzadeh
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Mauricio A Downer
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Caleb Valencia
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexander Z Fazilat
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Rahim Nazerali
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Arash Momeni
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Januszyk
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, 257 Campus Drive, GK 102, Stanford, CA, 94305-5148, USA.
| | - Michael T Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Derrick C Wan
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, 257 Campus Drive, GK 102, Stanford, CA, 94305-5148, USA.
| |
Collapse
|
12
|
Perrault D, Chen K, Nazerali R, Wan D. Deferoxamine Intradermal Delivery Patch for Treatment of a Radiation Therapy Associated Breast Wound. ANNALS OF CASE REPORTS 2024; 9:1844. [PMID: 39885938 PMCID: PMC11781592 DOI: 10.29011/2574-7754.101844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Purpose Radiation therapy is used in over 60% of cancer patients and can lead to radiation dermatitis, radiation induced fibrosis, hyperpigmentation, telangiectasias, fat necrosis, and poor wound healing. Deferoxamine (DFO) is an iron-chelating agent that has been used systemically to treat iron overload conditions and more recently been studied to treat radiation fibrosis. Through iron chelation, DFO stabilizes hypoxia inducible factor-1α, driving downstream upregulation of angiogenic factors, and reduces formation of reactive oxygen species, thereby offering a potential therapy for radiation associated chronic wounds. The purpose of this work was to describe treatment of a refractory wound following radiation treatment that had failed conventional therapy. Methods The patient is a 71-year-old female with inflammatory breast cancer that developed a radiation related wound after mastectomy, chemotherapy, and radiation therapy. The wound did not show any signs of improvement with five months of wound care and risk factor modification. The patient was offered treatment with a topical Deferoxamine Intradermal Delivery Patch through the FDA single patient investigative new drug pathway. Results After two weeks of treatment, the wound healed. Additionally, serum was collected at cessation of therapy and 5 weeks after, with both samples showing no significant systemically detectible level of the drug to be present. Subjectively the patient reported improvement in appearance and quality of the skin. Conclusion Topical deferoxamine is a promising therapy for radiation wounds. Although this report is limited to a single patient experience, we believe this work is important in describing the first in-human use of topical deferoxamine to heal a radiation therapy associated wound.
Collapse
Affiliation(s)
- David Perrault
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
- Division of Plastic and Reconstructive Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Kellen Chen
- Department of Surgery, University of Arizona, Tuscon, AZ 85721, USA
| | - Rahim Nazerali
- Division of Plastic and Reconstructive Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Derrick Wan
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
- Division of Plastic and Reconstructive Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
13
|
Berry CE, Abbas DB, Lintel HA, Churukian AA, Griffin M, Guo JL, Cotterell AC, Parker JBL, Downer MA, Longaker MT, Wan DC. Adipose-Derived Stromal Cell-Based Therapies for Radiation-Induced Fibrosis. Adv Wound Care (New Rochelle) 2024; 13:235-252. [PMID: 36345216 PMCID: PMC11304913 DOI: 10.1089/wound.2022.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Significance: Half of all cancer patients receive radiation therapy as a component of their treatment regimen, and the most common resulting complication is radiation-induced fibrosis (RIF) of the skin and soft tissue. This thickening of the dermis paired with decreased vascularity results in functional limitations and esthetic concerns and poses unique challenges when considering surgical exploration or reconstruction. Existing therapeutic options for RIF of the skin are limited both in scope and efficacy. Cell-based therapies have emerged as a promising means of utilizing regenerative cell populations to improve both functional and esthetic outcomes, and even as prophylaxis for RIF. Recent Advances: As one of the leading areas of cell-based therapy research, adipose-derived stromal cells (ADSCs) demonstrate significant therapeutic potential in the treatment of RIF. The introduction of the ADSC-augmented fat graft has shown clinical utility. Recent research dedicated to characterizing specific ADSC subpopulations points toward further granularity in understanding of the mechanisms driving the well-established clinical outcomes seen with fat grafting therapy. Critical Issues: Various animal models of RIF demonstrated improved clinical outcomes following treatment with cell-based therapies, but the cellular and molecular basis underlying these effects remains poorly understood. Future Directions: Recent literature has focused on improving the efficacy of cell-based therapies, most notably through (1) augmentation of fat grafts with platelet-rich plasma and (2) the modification of expressed RNA through epitranscriptomics. For the latter, new and promising gene targets continue to be identified which have the potential to reverse the effects of fibrosis by increasing angiogenesis, decreasing inflammation, and promoting adipogenesis.
Collapse
Affiliation(s)
- Charlotte E. Berry
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Darren B. Abbas
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Hendrik A. Lintel
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Andrew A. Churukian
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Michelle Griffin
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Jason L. Guo
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Asha C. Cotterell
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Jennifer B. Laufey Parker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Mauricio A. Downer
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Michael T. Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Derrick C. Wan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
14
|
Berry CE, Abbas DB, Griffin M, Lintel H, Guo J, Kameni L, Churukian AA, Fazilat AZ, Chen K, Gurtner GC, Longaker MT, Momeni A, Wan DC. Deferoxamine topical cream superior to patch in rescuing radiation-induced fibrosis of unwounded and wounded skin. J Cell Mol Med 2024; 28:e18306. [PMID: 38613357 PMCID: PMC11015393 DOI: 10.1111/jcmm.18306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Topical patch delivery of deferoxamine (DFO) has been studied as a treatment for this fibrotic transformation in irradiated tissue. Efficacy of a novel cream formulation of DFO was studied as a RIF therapeutic in unwounded and excisionally wounded irradiated skin. C57BL/6J mice underwent 30 Gy of radiation to the dorsum followed by 4 weeks of recovery. In a first experiment, mice were separated into six conditions: DFO 50 mg cream (D50), DFO 100 mg cream (D100), soluble DFO injections (DI), DFO 1 mg patch (DP), control cream (Vehicle), and irradiated untreated skin (IR). In a second experiment, excisional wounds were created on the irradiated dorsum of mice and then divided into four treatment groups: DFO 100 mg Cream (W-D100), DFO 1 mg patch (W-DP), control cream (W-Vehicle), and irradiated untreated wounds (W-IR). Laser Doppler perfusion scans, biomechanical testing, and histological analysis were performed. In irradiated skin, D100 improved perfusion compared to D50 or DP. Both D100 and DP enhanced dermal characteristics, including thickness, collagen density and 8-isoprostane staining compared to untreated irradiated skin. D100 outperformed DP in CD31 staining, indicating higher vascular density. Extracellular matrix features of D100 and DP resembled normal skin more closely than DI or control. In radiated excisional wounds, D100 facilitated faster wound healing and increased perfusion compared to DP. The 100 mg DFO cream formulation rescued RIF of unwounded irradiated skin and improved excisional wound healing in murine skin relative to patch delivery of DFO.
Collapse
Affiliation(s)
- Charlotte E. Berry
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of SurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Darren B. Abbas
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of SurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Michelle Griffin
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of SurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Hendrik Lintel
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of SurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Jason Guo
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of SurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Lionel Kameni
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of SurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Andrew A. Churukian
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of SurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Alexander Z. Fazilat
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of SurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Kellen Chen
- Department of SurgeryThe University of Arizona College of MedicineTucsonArizonaUSA
| | - Geoffrey C. Gurtner
- Department of SurgeryThe University of Arizona College of MedicineTucsonArizonaUSA
| | - Michael T. Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of SurgeryStanford University School of MedicineStanfordCaliforniaUSA
- Institute for Stem Cell Biology and Regenerative MedicineStanford UniversityStanfordCaliforniaUSA
| | - Arash Momeni
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of SurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Derrick C. Wan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of SurgeryStanford University School of MedicineStanfordCaliforniaUSA
| |
Collapse
|
15
|
Cotterell A, Griffin M, Downer MA, Parker JB, Wan D, Longaker MT. Understanding wound healing in obesity. World J Exp Med 2024; 14:86898. [PMID: 38590299 PMCID: PMC10999071 DOI: 10.5493/wjem.v14.i1.86898] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/30/2023] [Accepted: 01/11/2024] [Indexed: 03/19/2024] Open
Abstract
Obesity has become more prevalent in the global population. It is associated with the development of several diseases including diabetes mellitus, coronary heart disease, and metabolic syndrome. There are a multitude of factors impacted by obesity that may contribute to poor wound healing outcomes. With millions worldwide classified as obese, it is imperative to understand wound healing in these patients. Despite advances in the understanding of wound healing in both healthy and diabetic populations, much is unknown about wound healing in obese patients. This review examines the impact of obesity on wound healing and several animal models that may be used to broaden our understanding in this area. As a growing portion of the population identifies as obese, understanding the underlying mechanisms and how to overcome poor wound healing is of the utmost importance.
Collapse
Affiliation(s)
- Asha Cotterell
- Division of Plastic and Reconstructive Surgery, Stanford University, Palo Alto, CA 94301, United States
| | - Michelle Griffin
- Division of Plastic and Reconstructive Surgery, Stanford University, Palo Alto, CA 94301, United States
| | - Mauricio A Downer
- Stanford University School of Medicine, Stanford University School of Medicine, Palo Alto, CA 94301, United States
| | - Jennifer B Parker
- Stanford University School of Medicine, Stanford University School of Medicine, Palo Alto, CA 94301, United States
| | - Derrick Wan
- Department of Surgery, Stanford University School of Medicine, Hagey Laboratory for Pediatric Regenerative Medicine, Palo Alto, CA 94301, United States
| | - Michael T Longaker
- Department of Surgery, Stanford University School of Medicine, Hagey Laboratory for Pediatric Regenerative Medicine, Palo Alto, CA 94301, United States
| |
Collapse
|
16
|
Cao G, Yin S, Ma J, Lu Y, Song R, Wu Z, Liu C, Liu J, Wu P, Sun R, Chen A, Wang Y. YAP promotes the healing of ischemic wounds by reducing ferroptosis in skin fibroblasts through inhibition of ferritinophagy. Heliyon 2024; 10:e24602. [PMID: 38298641 PMCID: PMC10828694 DOI: 10.1016/j.heliyon.2024.e24602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 02/02/2024] Open
Abstract
The impaired healing of chronic wounds is often attributed to the ischemic and hypoxic microenvironment, leading to increased cell death. Ferroptosis, a novel form of cell death unveiled in recent years, could potentially be linked with the process of wound healing. In this study, we explored the significance and mechanism of ferroptosis in ischemic wounds. Using transmission electron microscopy, Western blot, flow cytometry, immunofluorescence, and glutathione (GSH) assay, we observed that the death of primary mouse skin fibroblasts induced by oxygen and glucose deprivation (OGD) was associated with ferroptosis. Specifically, we observed elevated intracellular Fe2+ and lipid peroxidation levels and decreased GSH levels in vitro, indicative of ferroptosis. Importantly, we found that ferroptosis in OGD-treated skin fibroblasts was dependent on autophagy, as the autophagy inhibitor chloroquine phosphate (CHQ) significantly reduced ferroptosis induced by OGD. Moreover, our study revealed that NCOA4-mediated ferritinophagy significantly contributed to the occurrence of ferroptosis induced by OGD in skin fibroblasts. Additionally, we identified the involvement of YAP in the regulation of ferritinophagy, with YAP suppressing NCOA4 expression in OGD-treated skin fibroblasts, thereby reducing ferroptosis. Furthermore, in ischemic wound models in mice, both inhibitors of ferroptosis and autophagy promoted wound healing, while a YAP inhibitor, verteporfin, delayed wound healing. In conclusion, these findings indicate that ferroptosis, regulated by YAP through ferritinophagy inhibition, presents a novel mechanism responsible for the delayed healing of ischemic wounds. Understanding this process could offer promising therapeutic targets to improve wound healing in ischemic conditions.
Collapse
Affiliation(s)
- Guoqi Cao
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250012, PR China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong, 250014, PR China
| | - Siyuan Yin
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong, 250014, PR China
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, PR China
| | - Jiaxu Ma
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong, 250014, PR China
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, PR China
| | - Yongpan Lu
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong, 250014, PR China
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, PR China
| | - Ru Song
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong, 250014, PR China
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, PR China
| | - Zhenjie Wu
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong, 250014, PR China
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, PR China
| | - Chunyan Liu
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong, 250014, PR China
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, PR China
| | - Jian Liu
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong, 250014, PR China
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, PR China
| | - Peng Wu
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong, 250014, PR China
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, PR China
| | - Rui Sun
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250012, PR China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong, 250014, PR China
| | - Aoyu Chen
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong, 250014, PR China
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, PR China
| | - Yibing Wang
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250012, PR China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong, 250014, PR China
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, PR China
| |
Collapse
|
17
|
Tang L, Zhang Z, Lei S, Zhou J, Liu Y, Yu X, Wang J, Wan D, Shi J, Wang S. A temperature and pH dual-responsive injectable self-healing hydrogel prepared by chitosan oligosaccharide and aldehyde hyaluronic acid for promoting diabetic foot ulcer healing. Int J Biol Macromol 2023; 253:127213. [PMID: 37793511 DOI: 10.1016/j.ijbiomac.2023.127213] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/26/2023] [Accepted: 10/01/2023] [Indexed: 10/06/2023]
Abstract
Chronic wound, such as skin defect after burn, pressure ulcer, and diabetic foot ulcer is very difficult to cure. Its pathological process is often accompanied with local temperature rise, pH decrease, and other phenomena. Owing to their outstanding hydrophilic, biocompatibility, and responsive properties, hydrogels could accelerate the healing process. In this study, we chose chitosan oligosaccharide (COS) grafted with Pluronic F127 (F127-COS). Aldehyde hyaluronic acid (A-HA) oxidized by NaIO4. And added boric acid (BA) to prepare a thermosensitive and pH-responsive injectable self-healing F127-COS/A-HA/COS/BA (FCAB) hydrogel, loaded with drug deferoxamine (DFO) in order to have an accurate release and promote angiogenesis of diabetic foot ulcer. In vitro experiments had verified that the FCAB hydrogel system loaded with DFO (FCAB/D) could promote migration and angiogenesis of HUVEC. A diabetes rat back wound model further confirmed its role in promoting angiogenesis in wound repair process. The results showed that the FCAB/D hydrogel exhibited unique physicochemical properties, excellent biocompatibility, and significantly enhanced therapeutic effects for diabetic foot ulcer.
Collapse
Affiliation(s)
- Lizong Tang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; Institute of Disaster and Emergency Medicine, Tianjin University, Weijin Road 92, Tianjin 300072, China
| | - Zeyu Zhang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shaojin Lei
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jie Zhou
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yufei Liu
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xinyi Yu
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jie Wang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Dongdong Wan
- Department of Orthopedic Surgery, Tianjin First Central Hospital, Nankai University, Tianjin 3000192, China.
| | - Jie Shi
- Institute of Disaster and Emergency Medicine, Tianjin University, Weijin Road 92, Tianjin 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China.
| | - Shufang Wang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
18
|
Ramadoss T, Weimer DS, Mayrovitz HN. Topical Iron Chelator Therapy: Current Status and Future Prospects. Cureus 2023; 15:e47720. [PMID: 38022031 PMCID: PMC10675985 DOI: 10.7759/cureus.47720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Systemic iron chelation therapy has long been used for iron overload, providing a role in returning iron levels to proper homeostatic concentrations. Recently, topical iron chelation therapy has emerged as a potential strategy for treating skin damage. This narrative review explores the current status and future prospects of topical iron chelation therapy for treating ultraviolet (UV) and non-UV skin damage, as well as its potential application in wound healing. The review was conducted through a literature search across PubMed, Web of Science, and EMBASE databases, spanning publications from 1990 to 2023. The selection of articles was focused on primary research studies, either experimental or clinical, that explored the implications and formulations of topical iron chelators used alone or in conjunction with another therapeutic agent. The search strategy employed a combination of terms, including "topical iron chelation", "topical deferoxamine", "UV", "wound healing", "skin inflammation", "radiation-induced fibrosis", and "skin cancer". Relevant studies, including methods, intervention strategies, measured outcomes, and findings, are summarized. The review also considered the potential challenges in translating research findings into clinical practice. Results indicate that topical iron chelators, such as deferoxamine, are effective in mitigating UV-induced skin damage, reducing tumorigenesis, and decreasing oxidative damage. In addition, the use of these agents in radiation-induced fibrosis has been shown to significantly increase skin elasticity and reduce dermal fibrosis. Several studies also highlight the use of topical iron chelators in difficult-to-treat chronic wounds, such as diabetic neuropathic ulcers and sickle cell ulcers. In conclusion, topical iron chelation therapy represents a novel and promising approach for skin protection and wound healing. Its potential makes it a promising area of future research.
Collapse
Affiliation(s)
- Tanya Ramadoss
- Medical School, Nova Southeastern University Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, USA
| | - Derek S Weimer
- Medical School, Nova Southeastern University Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, USA
| | - Harvey N Mayrovitz
- Medical Education, Nova Southeastern University Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, USA
| |
Collapse
|
19
|
Ma H, Siu WS, Leung PC. The Potential of MSC-Based Cell-Free Therapy in Wound Healing-A Thorough Literature Review. Int J Mol Sci 2023; 24:ijms24119356. [PMID: 37298306 DOI: 10.3390/ijms24119356] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
A wound is an interruption of the normal anatomic structure and function of the skin, which is critical in protecting against foreign pathogens, regulating body temperature and water balance. Wound healing is a complex process involving various phases, including coagulation, inflammation, angiogenesis, re-epithelialization, and re-modeling. Factors such as infection, ischemia, and chronic diseases such as diabetes can compromise wound healing, leading to chronic and refractory ulcers. Mesenchymal stem cells (MSCs) have been used to treat various wound models due to their paracrine activity (secretome) and extracellular vehicles (exosomes) that contain several molecules, including long non-coding RNAs (lncRNAs), micro-RNAs (miRNAs), proteins, and lipids. Studies have shown that MSCs-based cell-free therapy using secretome and exosomes has great potential in regenerative medicine compared to MSCs, as there are fewer safety concerns. This review provides an overview of the pathophysiology of cutaneous wounds and the potential of MSCs-based cell-free therapy in each phase of wound healing. It also discusses clinical studies of MSCs-based cell-free therapies.
Collapse
Affiliation(s)
- Hui Ma
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Wing-Sum Siu
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Ping-Chung Leung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
20
|
Fischer KS, Litmanovich B, Sivaraj D, Kussie HC, Hahn WW, Hostler AC, Chen K, Gurtner GC. Protocol for the Splinted, Human-like Excisional Wound Model in Mice. Bio Protoc 2023; 13:e4606. [PMID: 36816987 PMCID: PMC9909311 DOI: 10.21769/bioprotoc.4606] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/22/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023] Open
Abstract
While wound healing in humans occurs primarily through re-epithelization, in rodents it also occurs through contraction of the panniculus carnosus, an underlying muscle layer that humans do not possess. Murine experimental models are by far the most convenient and inexpensive research model to study wound healing, as they offer great variability in genetic alterations and disease models. To overcome the obstacle of contraction biasing wound healing kinetics, our group invented the splinted excisional wound model. While other rodent wound healing models have been used in the past, the splinted excisional wound model has persisted as the most used model in the field of wound healing. Here, we present a detailed protocol of updated and refined techniques necessary to utilize this model, generate results with high validity, and accurately analyze the collected data. This model is simple to conduct and provides an easy, standardizable, and replicable model of human-like wound healing.
Collapse
Affiliation(s)
- Katharina S. Fischer
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, 85724, USA
| | - Ben Litmanovich
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, 85724, USA
| | - Dharshan Sivaraj
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, 85724, USA,Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Hudson C. Kussie
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, 85724, USA
| | - William W. Hahn
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, 85724, USA
| | - Andrew C. Hostler
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, 85724, USA
| | - Kellen Chen
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, 85724, USA,*For correspondence: ;
| | - Geoffrey C. Gurtner
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, 85724, USA,*For correspondence: ;
| |
Collapse
|
21
|
Parker JB, Griffin MF, Downer MA, Akras D, Berry CE, Cotterell AC, Gurtner GC, Longaker MT, Wan DC. Chelating the valley of death: Deferoxamine's path from bench to wound clinic. Front Med (Lausanne) 2023; 10:1015711. [PMID: 36873870 PMCID: PMC9975168 DOI: 10.3389/fmed.2023.1015711] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/18/2023] [Indexed: 02/17/2023] Open
Abstract
There is undisputable benefit in translating basic science research concretely into clinical practice, and yet, the vast majority of therapies and treatments fail to achieve approval. The rift between basic research and approved treatment continues to grow, and in cases where a drug is granted approval, the average time from initiation of human trials to regulatory marketing authorization spans almost a decade. Albeit with these hurdles, recent research with deferoxamine (DFO) bodes significant promise as a potential treatment for chronic, radiation-induced soft tissue injury. DFO was originally approved by the Food and Drug Administration (FDA) in 1968 for the treatment of iron overload. However, investigators more recently have posited that its angiogenic and antioxidant properties could be beneficial in treating the hypovascular and reactive-oxygen species-rich tissues seen in chronic wounds and radiation-induced fibrosis (RIF). Small animal experiments of various chronic wound and RIF models confirmed that treatment with DFO improved blood flow and collagen ultrastructure. With a well-established safety profile, and now a strong foundation of basic scientific research that supports its potential use in chronic wounds and RIF, we believe that the next steps required for DFO to achieve FDA marketing approval will include large animal studies and, if those prove successful, human clinical trials. Though these milestones remain, the extensive research thus far leaves hope for DFO to bridge the gap between bench and wound clinic in the near future.
Collapse
Affiliation(s)
- Jennifer B Parker
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Michelle F Griffin
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Mauricio A Downer
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Deena Akras
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Charlotte E Berry
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Asha C Cotterell
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Geoffrey C Gurtner
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, United States
| | - Michael T Longaker
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Derrick C Wan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
22
|
Tong S, Li Q, Liu Q, Song B, Wu J. Recent advances of the nanocomposite hydrogel as a local drug delivery for diabetic ulcers. Front Bioeng Biotechnol 2022; 10:1039495. [PMID: 36267448 PMCID: PMC9577098 DOI: 10.3389/fbioe.2022.1039495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic ulcer is a serious complication of diabetes. Compared with that of healthy people, the skin of patients with a diabetic ulcer is more easily damaged and difficult to heal. Without early intervention, the disease will become increasingly serious, often leading to amputation or even death. Most current treatment methods cannot achieve a good wound healing effect. Numerous studies have shown that a nanocomposite hydrogel serves as an ideal drug delivery method to promote the healing of a diabetic ulcer because of its better drug loading capacity and stability. Nanocomposite hydrogels can be loaded with one or more drugs for application to chronic ulcer wounds to promote rapid wound healing. Therefore, this paper reviews the latest progress of delivery systems based on nanocomposite hydrogels in promoting diabetic ulcer healing. Through a review of the recent literature, we put forward the shortcomings and improvement strategies of nanocomposite hydrogels in the treatment of diabetic ulcers.
Collapse
Affiliation(s)
- Sen Tong
- School of Basic Medical, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Qingyu Li
- School of Medicine, Jianghan University, Wuhan, China
| | - Qiaoyan Liu
- School of Basic Medical, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Bo Song
- School of Basic Medical, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- *Correspondence: Bo Song, ; Junzi Wu,
| | - Junzi Wu
- School of Basic Medical, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- *Correspondence: Bo Song, ; Junzi Wu,
| |
Collapse
|