1
|
Guo B, Shi S, Xiong J, Guo Y, Wang B, Bai L, Qiu Y, Li S, Gao D, Dong Z, Tu Y. Identification of potential biomarkers in cardiovascular calcification based on bioinformatics combined with single-cell RNA-seq and multiple machine learning analysis. Cell Signal 2025; 131:111705. [PMID: 40024421 DOI: 10.1016/j.cellsig.2025.111705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND The molecular and genetic mechanisms underlying vascular calcification remain unclear. This study aimed to determine the differences in calcification marker-related gene expression in macrophages. METHODS The expression profiling datasets GSE104140 and GSE235995 were analysed to identify differentially expressed genes (DEGs) between fibroatheroma with calcification and diffuse intimal thickening. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, Weighted Gene Co-expression Network Analysis (WGCNA), and Gene Set Enrichment Analysis (GSEA) were performed to assess functional characteristics. Hub genes were identified through a protein-protein interaction (PPI) network and machine learning approaches. Single-cell RNA sequencing data (GSE159677) validated the expression of calcification-related genes in macrophages, while Mendelian randomization analysis explored their potential causal relationship with coronary calcification. Further validation was conducted using enzyme-linked immunosorbent assay (ELISA) on coronary calcification samples and immunohistochemistry in ApoE-/- mice. Intravascular ultrasound was performed to assess coronary calcification severity. RESULTS AND CONCLUSIONS Two key biomarkers, ITGAX and MYD88, were identified as diagnostic indicators of cardiovascular calcification. Both biomarkers were significantly upregulated in calcified samples and were strongly associated with immune processes. Single-cell RNA sequencing confirmed their high expression in multiple immune cell types. Additionally, molecular docking analysis revealed that retinoic acid interacted with both biomarkers, suggesting potential therapeutic relevance. Immunohistochemical and ELISA analyses further validated their elevated expression in calcified samples. These findings provide novel insights into the molecular mechanisms of vascular calcification and highlight potential diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Bingchen Guo
- Harbin Medical University, Harbin, China; Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China.
| | - Si Shi
- Harbin Medical University, Harbin, China; Department of Respirology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Jie Xiong
- Harbin Medical University, Harbin, China; Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Yutong Guo
- Harbin Medical University, Harbin, China; Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Bo Wang
- Harbin Medical University, Harbin, China; Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Liyan Bai
- Harbin Medical University, Harbin, China; Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Yi Qiu
- Harbin Medical University, Harbin, China; Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Shucheng Li
- Harbin Medical University, Harbin, China; Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Dianyu Gao
- Harbin Medical University, Harbin, China; Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Zengxiang Dong
- Harbin Medical University, Harbin, China; Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Yingfeng Tu
- Harbin Medical University, Harbin, China; Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China; Department of Cardiology, The Shanxi Provincial People's Hospital, Taiyuan 030000, China.
| |
Collapse
|
2
|
Kajuluri LP, Guo YY, Lee S, Christof M, Malhotra R. Epigenetic Regulation of Human Vascular Calcification. Genes (Basel) 2025; 16:506. [PMID: 40428328 PMCID: PMC12111397 DOI: 10.3390/genes16050506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/29/2025] Open
Abstract
Vascular diseases present a significant threat to human health worldwide. Atherosclerosis is the most prevalent vascular disease, accounting for the majority of morbidity and mortality globally. Vascular calcification is a dynamic pathological process underlying the development of atherosclerotic plaques and involves the phenotypic transformation of vascular smooth muscle cells (VSMCs) into osteogenic cells. Specifically, the phenotypic switch in VSMCs often involves modifications in gene expression due to epigenetic changes, including DNA methylation, histone modification, and non-coding RNAs. Understanding the role of these epigenetic changes in regulating the pathophysiology of vascular calcification, along with the proteins and pathways that mediate these changes, will aid in identifying new therapeutic candidates to enhance vascular health. This review discusses a comprehensive range of epigenetic modifications and their implications for vascular health and the development of vascular calcification.
Collapse
Affiliation(s)
- Lova Prasadareddy Kajuluri
- Cardiovascular Research Center, Heart and Vascular Institute, Mass General Brigham, Boston, MA 02114, USA; (L.P.K.); (Y.Y.G.); (S.L.)
| | - Yugene Young Guo
- Cardiovascular Research Center, Heart and Vascular Institute, Mass General Brigham, Boston, MA 02114, USA; (L.P.K.); (Y.Y.G.); (S.L.)
| | - Sujin Lee
- Cardiovascular Research Center, Heart and Vascular Institute, Mass General Brigham, Boston, MA 02114, USA; (L.P.K.); (Y.Y.G.); (S.L.)
| | - Michael Christof
- School of Arts and Sciences, University of Rochester, Rochester, NY 14627, USA;
| | - Rajeev Malhotra
- Cardiovascular Research Center, Heart and Vascular Institute, Mass General Brigham, Boston, MA 02114, USA; (L.P.K.); (Y.Y.G.); (S.L.)
| |
Collapse
|
3
|
Bai HY, Lv XR, Gu HB, Li H, Shan BS. Involvement of miRNA-204 carried by the exosomes of macrophages in the AT2 receptor-mediated improvement of vascular calcification. Cell Mol Life Sci 2025; 82:165. [PMID: 40249512 PMCID: PMC12008085 DOI: 10.1007/s00018-025-05703-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/12/2025] [Accepted: 04/07/2025] [Indexed: 04/19/2025]
Abstract
BACKGROUND Vascular calcification (VC) always has poor cardiovascular outcomes, but it is still difficult to control. Exosomes secreted from activated macrophages can affect VC through microRNAs (miRNAs). Research has suggested that miRNA-204 inhibits VC. We previously demonstrated that angiotensin II type 2 receptor (AT2R) plays an important role in VC; however, its underlying mechanisms are not yet clear. METHODS AND RESULTS Rat aortic smooth muscle cells (RASMCs) and rat alveolar macrophages were cocultured with or without the phosphate and/or AT2R agonist compound 21 (C21). Calcium deposition was assessed by alizarin red staining. Protein expression was assessed by immunofluorescence staining and immunoblot analysis. The level of microRNA-204 was detected via qPCR, and its target mRNA was tested via a luciferase activity assay. C21 treatment improved the additional calcification of RASMCs cocultured with macrophages more than it did those cultured alone. The expression of miRNA-204-5p in exosomes secreted from macrophages markedly increased after C21 treatment. The decrease in the degree of calcification of RASMCs cocultured with macrophages and the expression of BMP-2, OCN, Wnt3a, β-catenin and RUNX2 induced by C21 treatment were significantly weakened after transfection with the miRNA-204-5p inhibitor. RUNX2 mRNA was the target of miRNA-204-5p in RASMCs cocultured with macrophages after C21 treatment. CONCLUSIONS Our results suggested that miRNA-204-5p in exosomes secreted from macrophages was at least partly involved in the AT2 receptor-mediated improvement in VC induced by phosphate through targeting RUNX2 mRNA, inhibiting the Wnt/β-catenin signalling pathway and decreasing the expression of calcification-related proteins.
Collapse
MESH Headings
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Animals
- Vascular Calcification/metabolism
- Vascular Calcification/genetics
- Vascular Calcification/pathology
- Exosomes/metabolism
- Exosomes/genetics
- Rats
- Receptor, Angiotensin, Type 2/metabolism
- Receptor, Angiotensin, Type 2/genetics
- Coculture Techniques
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Cells, Cultured
- Male
- Rats, Sprague-Dawley
- Macrophages/metabolism
- Macrophages, Alveolar/metabolism
Collapse
Affiliation(s)
- Hui-Yu Bai
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiao-Rui Lv
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hai-Bo Gu
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hui Li
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Bao-Shuai Shan
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China.
| |
Collapse
|
4
|
Cao H, Gao H, Li Y, Li L, Liu S, Jin T, Wang Y, Gong Y, Yuan S, Dong W. Zinc finger DHHC-type palmitoyltransferase 13-mediated S-palmitoylation of GNA13 from Sertoli cell-derived extracellular vesicles inhibits autophagy in spermatogonial stem cells. Cell Commun Signal 2025; 23:178. [PMID: 40205436 PMCID: PMC11983822 DOI: 10.1186/s12964-025-02177-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/26/2025] [Indexed: 04/11/2025] Open
Abstract
Extracellular vesicles (EVs) originating from testicular somatic cells act as pivotal intermediaries in cell signaling crosstalk between spermatogenic cells and the testicular microenvironment. The intricate balance between palmitoylation and depalmitoylation governs the positioning of protein cargos on the membrane, thereby influencing cellular activities by concentrating these proteins in EVs for delivery to recipient cells. Here, we reveal that GNA13 undergoes specific S-palmitoylation at Cys14 and Cys18 residues in Sertoli cells (SCs), a modification essential for its localization to the plasma membrane. We identify DHHC13, a member of the zinc finger DHHC-type palmitoyltransferase family that catalyzes protein S-palmitoylation, as the enzyme responsible for this critical post-translational modification. Additionally, GNA13 palmitoylation is indispensable for its selective enrichment in EVs emanating from SCs. Intriguingly, we discovered the presence of palmitoylated GNA13 in SC-derived EVs significantly downregulates autophagy levels in spermatogonial stem cells (SSCs), and the inhibition of GNA13 palmitoylation attenuates its interaction with ARHGEF12 which leads to diminished RhoA activity and consequent elevation of autophagy in SSCs. Our results illuminate the crucial role of DHHC13-mediated GNA13 S-palmitoylation in modulating autophagy levels in SSCs through SCs-derived EVs, suggesting that PM-GNA13-EV may serve as a potential candidate for further exploration in addressing fertility-related challenges during spermatogenesis.
Collapse
Affiliation(s)
- Heran Cao
- College of Animal Science and Technology, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, P. R. China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Huihui Gao
- College of Animal Science and Technology, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, P. R. China
- Department of Obstetrics and Gynecology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yan Li
- College of Animal Science and Technology, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, P. R. China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Long Li
- College of Animal Science and Technology, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, P. R. China
| | - Shujuan Liu
- College of Animal Science and Technology, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, P. R. China
| | - Tianqi Jin
- College of Animal Science and Technology, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, P. R. China
| | - Yang Wang
- College of Animal Science and Technology, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, P. R. China
| | - Ye Gong
- College of Animal Science and Technology, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, P. R. China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, P. R. China.
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
5
|
Guo X, Liu S, Wu X, Yang R, Ren Q, Zhou Y, Shi K, Yuan L, Zhang N, Liu S. Alleviating vascular calcification with Bushen Huoxue formula in rats with chronic kidney disease by inhibiting the PTEN/PI3K/AKT signaling pathway through exosomal microRNA-32. J Pharm Pharmacol 2025; 77:550-563. [PMID: 39440885 DOI: 10.1093/jpp/rgae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 08/29/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Vascular calcification (VC) significantly raises cardiovascular mortality in chronic kidney disease (CKD) patients. VC is characterized by the phenotypic transformation of vascular smooth muscle cells (VSMCs) to osteoblast-like cells, mediated by exosomes derived from calcified VSMCs and the exosomal microRNAs (miRNA) which may trigger some signals to recipient VSMCs. Bushen Huoxue (BSHX) formula has demonstrated its clinical efficacy in CKD and its protective role in CKD-VC rats has also been observed. However, little is known about its underlying mechanism. METHODS To establish a VC model, aortic VSMCs from rats were induced to osteogenic differentiation by high-level phosphate (HP) in vitro. The expression of exosome and calcification makers were analyzed by western blot, including CD9, CD63, α-SMA, BMP-2, and Runx2, respectively. Differential expression of exosomal miRNAs in normal and HP-induced VSMCs were identified by using whole miRNA microarray technology. GO and KEGG analyses were performed to determine the significant enrichment of functions and signaling pathways in the target genes. In vivo, the CKD-VC rat model was established by administering adenine gavage combined with a high phosphorus diet. The rats were divided into normal control, model, low-dose BSHX, medium-dose BSHX, high-dose BSHX groups, and sevelamer groups. The blood biochemical parameters were measured. Renal histopathology and aortic calcification were observed. Western blot detected the levels of the calcification markers. Quantitative real-time PCR (qPCR) assay detected exosomal microRNA-32 (miR-32) mRNA expression in the aorta, the most differentially expressed exosomal miRNA previously identified. Phosphatase and tensin homolog located on chromosome ten (PTEN)/phosphatidylinositol-3 kinase (PI3K)/protein kinase B (AKT) signaling pathway components were also tested by western blot. RESULTS Exosomal miRNA-32 and PI3K/AKT signaling pathways were highly differentially expressed between normal and HP-induced VSMCs. In vivo, BSHX improved blood biochemical parameters, renal histopathology, and aortic calcification in CKD-VC rats. BSHX increased the expression level of α-SMA and decreased the level of BMP-2 and Runx2. BSHX also lowered the expression level of exosomal miR-32 mRNA, enhanced PTEN expression, therefore, reduced p-PI3K and p-AKT levels in the aorta. CONCLUSION BSHX alleviated VC in CKD rats by downregulating exosomal miR-32 expression in the aorta, thereby promoting PTEN expression and inhibiting the PI3K/AKT signaling pathway.
Collapse
MESH Headings
- Animals
- Vascular Calcification/drug therapy
- Vascular Calcification/metabolism
- Vascular Calcification/genetics
- MicroRNAs/metabolism
- MicroRNAs/genetics
- Renal Insufficiency, Chronic/drug therapy
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/complications
- Exosomes/metabolism
- Exosomes/drug effects
- Signal Transduction/drug effects
- Male
- Drugs, Chinese Herbal/pharmacology
- Rats
- Proto-Oncogene Proteins c-akt/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Rats, Sprague-Dawley
- PTEN Phosphohydrolase/metabolism
- Disease Models, Animal
- Phosphatidylinositol 3-Kinases/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Cells, Cultured
Collapse
Affiliation(s)
- Xingyun Guo
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Fever Outpatient Clinic, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing 100700, China
| | - Shiwei Liu
- Department of Nephrology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Xiaoyi Wu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Ronglu Yang
- Department of Traditional Chinese Medicine, The First Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Qiuyue Ren
- Department of Endocrinology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450003, China
| | - Yanyan Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100007, China
| | - Kaifeng Shi
- Department of Nephrology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Lisha Yuan
- Department of Nephrology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Ning Zhang
- Department of Nephrology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Shiyi Liu
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| |
Collapse
|
6
|
Jang B, Zhang D, Ma Z, Yang X, Liu L, Xing H, Feng L, Song J, Zhao X, Song X, Zhang H. MicroRNAs in vascular smooth muscle cells: Mechanisms, therapeutic potential, and advances in delivery systems. Life Sci 2025; 364:123424. [PMID: 39889924 DOI: 10.1016/j.lfs.2025.123424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
Vascular smooth muscle cells (VSMCs) are essential players in a wide range of physiological processes, and their phenotypic transitions are critical in the development of vascular diseases such as atherosclerosis (AS), restenosis, aortic dissection/aneurysm (AAD), chronic kidney disease (CKD), and diabetes mellitus (DM). MicroRNAs (miRNAs), a class of short non-coding RNAs, regulates key cellular functions like proliferation, migration, and apoptosis by modulating gene expression. Numerous studies have shown that various miRNAs play pivotal roles in the pathophysiological processes of VSMCs, with VSMC phenotype switching being a key factor. To harness miRNAs as therapeutic tools, researchers have focused on developing efficient delivery vectors, including exosomes, nanoparticles, and viral vectors. Recently, the exploration of miRNA characteristics and delivery mechanisms has led to the emergence of innovative systems, such as scaffold-based localized delivery methods, platelet-like fusion lipid nanoparticles(PLPs), liposome-exosome hybrid carriers, and stimulus-responsive delivery systems like miRNA micelles. These cutting-edge delivery systems not only enhance our understanding of miRNA's role in disease but also offer promising new strategies for gene therapy, paving the way for more precise and effective treatments in the future.
Collapse
Affiliation(s)
- Boeun Jang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Dongfeng Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Zhao Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Xueyao Yang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Libo Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Haoran Xing
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Lanxin Feng
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Jianqiao Song
- Sun yat sen university, Zhongshan school of medicine, China
| | - Xin Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, Beijing 100029, China.
| | - Xiantao Song
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, Beijing 100029, China.
| | - Hongjia Zhang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, Beijing 100029, China
| |
Collapse
|
7
|
Chen C, Liang Z, He Y, Gao Y, Ouyang S, Wang L, Liu J, Cao J. Bacteroides Fragilis Exacerbates T2D Vascular Calcification by Secreting Extracellular Vesicles to Induce M2 Macrophages. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410495. [PMID: 39665119 PMCID: PMC11791993 DOI: 10.1002/advs.202410495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/27/2024] [Indexed: 12/13/2024]
Abstract
Vascular calcification (VC) in type 2 diabetes (T2D) poses a serious threat to the life and health of patients. However, its pathogenesis remains unclear, resulting in a lack of effective treatment for the root cause. It is found that both intestinal Bacteroides fragilis (BF) and peripheral M2 monocytes/macrophages are significantly elevated in patients with T2D VC. M2 macrophages are identified as a significant risk factor for T2D VC. Both BF and their extracellular vesicles (EV) promote T2D VC and facilitate macrophage M2 polarization. Macrophages clearance significantly antagonized BF EV-induced T2D VC in mice. Mechanistically, EV-rich double-stranded DNA (dsDNA) activates stimulator of interferon response cGAMP interactor 1 (Sting), promotes myocyte enhancer factor 2D (Mef2d) phosphorylation, upregulates tribbles pseudokinase 1 (Trib1) expression, and induces macrophage M2 polarization. Concurrently, Mef2d activated by the EV targets and upregulates the expression of pro-calcification factor Serpine1, thereby exacerbating T2D VC. Clinical studies have shown that Serpine1 is significantly elevated in the peripheral blood of patients with T2D VC and is closely associated with T2D VC. In summary, this study reveals that intestinal BF promotes Trib1 expression through the EV-Sting-Mef2d pathway to induce macrophage M2 polarization and upregulates serpin family E member 1 (Serpine1) expression, thereby aggravating T2D VC. The findings provide a new theoretical and experimental bases for optimizing the strategies for prevention and treatment of T2D VC.
Collapse
Affiliation(s)
- Cong Chen
- The First Affiliated HospitalDepartment of Laboratory MedicineHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
- School of Pharmaceutical ScienceHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| | - Zhengfeng Liang
- The First Affiliated HospitalInstitute of Endocrinology and metabolismCenter for Clinical Research in DiabetesHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| | - Yuqi He
- The First Affiliated HospitalDepartment of Laboratory MedicineHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| | - Yan Gao
- The First Affiliated HospitalInstitute of Endocrinology and metabolismCenter for Clinical Research in DiabetesHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| | - Shuhui Ouyang
- The First Affiliated HospitalInstitute of Endocrinology and metabolismCenter for Clinical Research in DiabetesHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| | - Lili Wang
- School of Pharmaceutical ScienceHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| | - Jianghua Liu
- The First Affiliated HospitalInstitute of Endocrinology and metabolismCenter for Clinical Research in DiabetesHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| | - Jingsong Cao
- The First Affiliated HospitalInstitute of Endocrinology and metabolismCenter for Clinical Research in DiabetesHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| |
Collapse
|
8
|
Rao G, Peng B, Zhang G, Fu X, Tian J, Tian Y. MicroRNAs in diabetic macroangiopathy. Cardiovasc Diabetol 2024; 23:344. [PMID: 39285459 PMCID: PMC11406791 DOI: 10.1186/s12933-024-02405-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
Diabetic macroangiopathy is a leading cause of diabetes-related mortality worldwide. Both genetic and environmental factors, through a multitude of underlying molecular mechanisms, contribute to the pathogenesis of diabetic macroangiopathy. MicroRNAs (miRNAs), a class of non-coding RNAs known for their functional diversity and expression specificity, are increasingly recognized for their roles in the initiation and progression of diabetes and diabetic macroangiopathy. In this review, we will describe the biogenesis of miRNAs, and summarize their functions in diabetic macroangiopathy, including atherosclerosis, peripheral artery disease, coronary artery disease, and cerebrovascular disease, which are anticipated to provide new insights into future perspectives of miRNAs in basic, translational and clinical research, ultimately advancing the diagnosis, prevention, and treatment of diabetic macroangiopathy.
Collapse
Affiliation(s)
- Guocheng Rao
- Department of Endocrinology and Metabolism, Department of Biotherapy, Center for Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, Sichuan, China
| | - Boqiang Peng
- Department of General Surgery and Gastric Cancer Center and Laboratory of Gastric Cancer, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Guixiang Zhang
- Department of General Surgery and Gastric Cancer Center and Laboratory of Gastric Cancer, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xianghui Fu
- Department of Endocrinology and Metabolism, Department of Biotherapy, Center for Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, Sichuan, China.
| | - Jingyan Tian
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yan Tian
- Department of Endocrinology and Metabolism, Department of Biotherapy, Center for Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
9
|
Zisser L, Binder CJ. Extracellular Vesicles as Mediators in Atherosclerotic Cardiovascular Disease. J Lipid Atheroscler 2024; 13:232-261. [PMID: 39355407 PMCID: PMC11439751 DOI: 10.12997/jla.2024.13.3.232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 10/03/2024] Open
Abstract
Atherosclerosis is a chronic inflammatory disease of the arterial intima, characterized by accumulation of lipoproteins and accompanying inflammation, leading to the formation of plaques that eventually trigger occlusive thrombotic events, such as myocardial infarction and ischemic stroke. Although many aspects of plaque development have been elucidated, the role of extracellular vesicles (EVs), which are lipid bilayer-delimited vesicles released by cells as mediators of intercellular communication, has only recently come into focus of atherosclerosis research. EVs comprise several subtypes that may be differentiated by their size, mode of biogenesis, or surface marker expression and cargo. The functional effects of EVs in atherosclerosis depend on their cellular origin and the specific pathophysiological context. EVs have been suggested to play a role in all stages of plaque formation. In this review, we highlight the known mechanisms by which EVs modulate atherogenesis and outline current limitations and challenges in the field.
Collapse
Affiliation(s)
- Lucia Zisser
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Gao C, Wan Q, Yan J, Zhu Y, Tian L, Wei J, Feng B, Niu L, Jiao K. Exploring the Link Between Autophagy-Lysosomal Dysfunction and Early Heterotopic Ossification in Tendons. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400790. [PMID: 38741381 PMCID: PMC11267276 DOI: 10.1002/advs.202400790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/26/2024] [Indexed: 05/16/2024]
Abstract
Heterotopic ossification (HO), the pathological formation of bone within soft tissues such as tendon and muscle, is a notable complication resulting from severe injury. While soft tissue injury is necessary for HO development, the specific molecular pathology responsible for trauma-induced HO remains a mystery. The previous study detected abnormal autophagy function in the early stages of tendon HO. Nevertheless, it remains to be determined whether autophagy governs the process of HO generation. Here, trauma-induced tendon HO model is used to investigate the relationship between autophagy and tendon calcification. In the early stages of tenotomy, it is observed that autophagic flux is significantly impaired and that blocking autophagic flux promoted the development of more rampant calcification. Moreover, Gt(ROSA)26sor transgenic mouse model experiments disclosed lysosomal acid dysfunction as chief reason behind impaired autophagic flux. Stimulating V-ATPase activity reinstated both lysosomal acid functioning and autophagic flux, thereby reversing tendon HO. This present study demonstrates that autophagy-lysosomal dysfunction triggers HO in the stages of tendon injury, with potential therapeutic targeting implications for HO.
Collapse
Affiliation(s)
- Chang‐He Gao
- Department of StomatologyTangdu HospitalState Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologySchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
- Department of StomatologyThe Third Affiliated Hospital of Xinxiang Medical UniversityXinxiangHenan453000P. R. China
| | - Qian‐Qian Wan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologySchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| | - Jan‐Fei Yan
- Department of StomatologyTangdu HospitalState Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologySchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| | - Yi‐Na Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologySchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| | - Lei Tian
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologySchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| | - Jian‐Hua Wei
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologySchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| | - Bin Feng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologySchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| | - Li‐Na Niu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologySchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| | - Kai Jiao
- Department of StomatologyTangdu HospitalState Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| |
Collapse
|
11
|
Chen C, Liang Z, He Y, Li A, Gao Y, Pan Q, Cao J. Pravastatin promotes type 2 diabetes vascular calcification through activating intestinal Bacteroides fragilis to induce macrophage M1 polarization. J Diabetes 2024; 16:e13514. [PMID: 38112268 PMCID: PMC11128749 DOI: 10.1111/1753-0407.13514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/20/2023] [Accepted: 11/18/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Pravastatin is an oral lipid-lowering drug, commonly used by patients with diabetes that is positively correlated with the occurrence of vascular calcification (VC), but the mechanism is unclear. METHODS In this study, 16S rRNA sequencing and qRT-PCR wereused to detect the differential gut bacteria. Metabolomics and ELISA were used to analyze the differential metabolites. qRT-PCR and western blotting (WB) were used to detect genes expression. Flow cytometry was used to analyze macrophage phenotype. Immunohistochemistry was used to analyze aortic calcification. RESULTS We found that gut Bacteroides fragilis (BF) increased significantly in patients who took pravastatin or type 2 diabetes (T2D) mice treated with pravastatin. In vitro experiments showed that pravastatin had little effect on BF but significantly promoted BF proliferation in vivo. Further analysis showed that ArsR was an important gene for pravastatin to regulate the activation of BF, and overexpression of ArsR significantly promoted the secretion of 3,4,5-trimethoxycinnamic acid (TMCA). Importantly, pravastatin significantly promoted BF secretion of TMCA and significantly increased TMCA secretion in T2D patients or T2D mice. TMCA had little effect on vascular smooth muscle cell calcification but significantly promoted macrophage M1 polarization, which we had demonstrated that M1 macrophages promoted T2D VC. In vivo studies found that pravastatin significantly upregulated TMCA levels in the feces and serum of T2D mice transplanted with BF and promoted the macrophage M1 polarization in bone marrow and the osteoblastic differentiation of aortic cells. Similar results were obtained in T2D mice after intravenous infusion of TMCA. CONCLUSIONS Promoting intestinal BF to secrete TMCA, which leads to macrophage M1 polarization, is an important mechanism by which pravastatin promotes calcification, and the result will be used for the optimization of clinical medication strategies of pravastatin supplying a theoretical basis and experimental basis.
Collapse
Affiliation(s)
- Cong Chen
- The First Affiliated Hospital, Department of Laboratory Medicine, Hengyang Medical SchoolUniversity of South ChinaHengyangChina
| | - Zheng‐Feng Liang
- The First Affiliated Hospital, Institute of Endocrinology and metabolism, Center for Clinical Research in Diabetes, Hengyang Medical SchoolUniversity of South ChinaHengyangChina
| | - Yu‐Qi He
- The First Affiliated Hospital, Department of Laboratory Medicine, Hengyang Medical SchoolUniversity of South ChinaHengyangChina
| | - An‐Qi Li
- The First Affiliated Hospital, Institute of Endocrinology and metabolism, Center for Clinical Research in Diabetes, Hengyang Medical SchoolUniversity of South ChinaHengyangChina
| | - Yan Gao
- The First Affiliated Hospital, Institute of Endocrinology and metabolism, Center for Clinical Research in Diabetes, Hengyang Medical SchoolUniversity of South ChinaHengyangChina
| | - Qun‐Wen Pan
- Guangdong Key Laboratory of Age‐Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical UniversityZhanjiangChina
| | - Jing‐Song Cao
- The First Affiliated Hospital, Institute of Endocrinology and metabolism, Center for Clinical Research in Diabetes, Hengyang Medical SchoolUniversity of South ChinaHengyangChina
| |
Collapse
|
12
|
Li D, Fan C, Li X, Zhao L. The role of macrophage polarization in vascular calcification. Biochem Biophys Res Commun 2024; 710:149863. [PMID: 38579535 DOI: 10.1016/j.bbrc.2024.149863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024]
Abstract
Vascular calcification is an important factor in the high morbidity and mortality of Cardiovascular and cerebrovascular diseases. Vascular damage caused by calcification of the intima or media impairs the physiological function of the vascular wall. Inflammation is a central factor in the development of vascular calcification. Macrophages are the main inflammatory cells. Dynamic changes of macrophages with different phenotypes play an important role in the occurrence, progression and stability of calcification. This review focuses on macrophage polarization and the relationship between macrophages of different phenotypes and calcification environment, as well as the mechanism of interaction, it is considered that macrophages can promote vascular calcification by releasing inflammatory mediators and promoting the osteogenic transdifferentiation of smooth muscle cells and so on. In addition, several therapeutic strategies aimed at macrophage polarization for vascular calcification are described, which are of great significance for targeted treatment of vascular calcification.
Collapse
Affiliation(s)
- Dan Li
- The Second Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, China
| | - Chu Fan
- Department of Cardiology, Beijing AnZhen Hospital, Capital Medical University, Beijing City, China
| | - Xuepeng Li
- Department of Cardiology, Beijing AnZhen Hospital, Capital Medical University, Beijing City, China
| | - Lin Zhao
- The Second Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, China; Department of Cardiology, Beijing AnZhen Hospital, Capital Medical University, Beijing City, China.
| |
Collapse
|
13
|
Zhang C, Shi Y, Liu C, Sudesh SM, Hu Z, Li P, Liu Q, Ma Y, Shi A, Cai H. Therapeutic strategies targeting mechanisms of macrophages in diabetic heart disease. Cardiovasc Diabetol 2024; 23:169. [PMID: 38750502 PMCID: PMC11097480 DOI: 10.1186/s12933-024-02273-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 05/08/2024] [Indexed: 05/18/2024] Open
Abstract
Diabetic heart disease (DHD) is a serious complication in patients with diabetes. Despite numerous studies on the pathogenic mechanisms and therapeutic targets of DHD, effective means of prevention and treatment are still lacking. The pathogenic mechanisms of DHD include cardiac inflammation, insulin resistance, myocardial fibrosis, and oxidative stress. Macrophages, the primary cells of the human innate immune system, contribute significantly to these pathological processes, playing an important role in human disease and health. Therefore, drugs targeting macrophages hold great promise for the treatment of DHD. In this review, we examine how macrophages contribute to the development of DHD and which drugs could potentially be used to target macrophages in the treatment of DHD.
Collapse
Affiliation(s)
- Chaoyue Zhang
- Cardiovascular Clinical Medical Center, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yunke Shi
- Cardiovascular Clinical Medical Center, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Changzhi Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shivon Mirza Sudesh
- Faculty of Medicine, St. George University of London, London, UK
- University of Nicosia Medical School, University of Nicosia, Nicosia, Cyprus
| | - Zhao Hu
- Department of Geriatric Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Pengyang Li
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Qi Liu
- Wafic Said Molecular Cardiology Research Laboratory, The Texas Heart Institute, Houston, TX, USA
| | - Yiming Ma
- Cardiovascular Clinical Medical Center, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ao Shi
- Faculty of Medicine, St. George University of London, London, UK.
- University of Nicosia Medical School, University of Nicosia, Nicosia, Cyprus.
| | - Hongyan Cai
- Cardiovascular Clinical Medical Center, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
14
|
Chen C, Cao J, Gao Y, Xie X, Zhao Z, Yuan Q, He Y, Zu X, Liu J. High glucose promotes macrophage M1 polarization through miR-32/Mef2d/cAMP signaling pathway. Genes Dis 2024; 11:539-541. [PMID: 37692480 PMCID: PMC10491914 DOI: 10.1016/j.gendis.2023.03.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/07/2023] [Accepted: 03/29/2023] [Indexed: 09/12/2023] Open
Affiliation(s)
- Cong Chen
- The First Affiliated Hospital, Department of Laboratory Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jingsong Cao
- The First Affiliated Hospital, Institute of Endocrinology and Metabolism; Center for Clinical Research in Diabetes, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yan Gao
- The First Affiliated Hospital, Institute of Endocrinology and Metabolism; Center for Clinical Research in Diabetes, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaoping Xie
- The First Affiliated Hospital, Department of Laboratory Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhibo Zhao
- The First Affiliated Hospital, Institute of Endocrinology and Metabolism; Center for Clinical Research in Diabetes, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Qing Yuan
- The First Affiliated Hospital, Institute of Endocrinology and Metabolism; Center for Clinical Research in Diabetes, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yuqi He
- The First Affiliated Hospital, Department of Laboratory Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xuyu Zu
- The First Affiliated Hospital, Institute of Oncology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jianghua Liu
- The First Affiliated Hospital, Institute of Endocrinology and Metabolism; Center for Clinical Research in Diabetes, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
15
|
Wang H, Jayasankar N, Thamaraikani T, Viktor P, Mohany M, Al-Rejaie SS, Alammar HK, Anad E, Alhili F, Hussein SF, Amin AH, Lakshmaiya N, Ahsan M, Bahrami A, Akhavan-Sigari R. Quercetin modulates expression of serum exosomal long noncoding RNA NEAT1 to regulate the miR-129-5p/BDNF axis and attenuate cognitive impairment in diabetic mice. Life Sci 2024; 340:122449. [PMID: 38253310 DOI: 10.1016/j.lfs.2024.122449] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
AIMS Cognitive impairment poses a considerable health challenge in the context of type 2 diabetes mellitus (T2DM), emphasizing the need for effective interventions. This study delves into the therapeutic efficacy of quercetin, a natural flavonoid, in mitigating cognitive impairment induced by T2DM in murine models. MATERIALS AND METHODS Serum exosome samples were obtained from both T2DM-related and healthy mice for transcriptome sequencing, enabling the identification of differentially expressed mRNAs and long noncoding RNAs (lncRNAs). Subsequent experiments were conducted to ascertain the binding affinity between mmu-miR-129-5p, NEAT1 and BDNF. The structural characteristics and dimensions of isolated exosomes were scrutinized, and the expression levels of exosome-associated proteins were quantified. Primary mouse hippocampal neurons were cultured for in vitro validation, assessing the expression of pertinent genes as well as neuronal vitality, proliferation, and apoptosis capabilities. For in vivo validation, a T2DM mouse model was established, and quercetin treatment was administered. Changes in various parameters, cognitive ability, and the expression of insulin-related proteins, along with pivotal signaling pathways, were monitored. KEY FINDINGS Analysis of serum exosomes from T2DM mice revealed dysregulation of NEAT1, mmu-miR-129-5p, and BDNF. In vitro investigations demonstrated that NEAT1 upregulated BDNF expression by inhibiting mmu-miR-129-5p. Overexpression of mmu-miR-129-5p or silencing NEAT1 resulted in the downregulation of insulin-related protein expression, enhanced apoptosis, and suppressed neuronal proliferation. In vivo studies validated that quercetin treatment significantly ameliorated T2DM-related cognitive impairment in mice. SIGNIFICANCE These findings suggest that quercetin holds promise in inhibiting hippocampal neuron apoptosis and improving T2DM-related cognitive impairment by modulating the NEAT1/miR-129-5p/BDNF pathway within serum exosomes.
Collapse
Affiliation(s)
- Hui Wang
- Department of Plastic Surgery, The Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu 322000, China
| | - Narayanan Jayasankar
- Department of Pharmacology, SRM Institute of Science and Technology, SRM College of Pharmacy, Kattankulathur 603203, Tamil Nadu, India
| | - Tamilanban Thamaraikani
- Department of Pharmacology, SRM Institute of Science and Technology, SRM College of Pharmacy, Kattankulathur 603203, Tamil Nadu, India
| | - Patrik Viktor
- Keleti Károly Faculty of Business and Management, Óbuda University, Tavaszmező, H-1084 Budapest, Hungary
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Enaam Anad
- Department of Medical Laboratory Technics, Al-Noor University College, Nineveh, Iraq
| | - Farah Alhili
- Medical Technical College, Al-Farahidi University, Iraq
| | - Sinan F Hussein
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Ali H Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Natrayan Lakshmaiya
- Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - Muhammad Ahsan
- Department of Measurements and Control Systems, Silesian University of Technology, Gliwice, Poland; Joint Doctoral School, Silesian University of Technology, Akademicka 2A, Gliwice, Poland.
| | - Abolfazl Bahrami
- Biomedical Center for Systems Biology Science Munich, Ludwig-Maximilians-University, Munich, Germany.
| | - Reza Akhavan-Sigari
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw, Poland; Department of Neurosurgery, University Medical Center Tuebingen, Germany
| |
Collapse
|
16
|
Kumar MA, Baba SK, Sadida HQ, Marzooqi SA, Jerobin J, Altemani FH, Algehainy N, Alanazi MA, Abou-Samra AB, Kumar R, Al-Shabeeb Akil AS, Macha MA, Mir R, Bhat AA. Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduct Target Ther 2024; 9:27. [PMID: 38311623 PMCID: PMC10838959 DOI: 10.1038/s41392-024-01735-1] [Citation(s) in RCA: 166] [Impact Index Per Article: 166.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 02/06/2024] Open
Abstract
Extracellular vesicles (EVs) are nano-sized, membranous structures secreted into the extracellular space. They exhibit diverse sizes, contents, and surface markers and are ubiquitously released from cells under normal and pathological conditions. Human serum is a rich source of these EVs, though their isolation from serum proteins and non-EV lipid particles poses challenges. These vesicles transport various cellular components such as proteins, mRNAs, miRNAs, DNA, and lipids across distances, influencing numerous physiological and pathological events, including those within the tumor microenvironment (TME). Their pivotal roles in cellular communication make EVs promising candidates for therapeutic agents, drug delivery systems, and disease biomarkers. Especially in cancer diagnostics, EV detection can pave the way for early identification and offers potential as diagnostic biomarkers. Moreover, various EV subtypes are emerging as targeted drug delivery tools, highlighting their potential clinical significance. The need for non-invasive biomarkers to monitor biological processes for diagnostic and therapeutic purposes remains unfulfilled. Tapping into the unique composition of EVs could unlock advanced diagnostic and therapeutic avenues in the future. In this review, we discuss in detail the roles of EVs across various conditions, including cancers (encompassing head and neck, lung, gastric, breast, and hepatocellular carcinoma), neurodegenerative disorders, diabetes, viral infections, autoimmune and renal diseases, emphasizing the potential advancements in molecular diagnostics and drug delivery.
Collapse
Affiliation(s)
- Mudasir A Kumar
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Sadaf K Baba
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Sara Al Marzooqi
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Jayakumar Jerobin
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Faisal H Altemani
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Naseh Algehainy
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammad A Alanazi
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Abdul-Badi Abou-Samra
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Rakesh Kumar
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Rashid Mir
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia.
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
17
|
Chen C, He YQ, Gao Y, Pan QW, Cao JS. Extracellular vesicles of Bacteroides fragilis regulated macrophage polarization through promoted Sema7a expression. Microb Pathog 2024; 187:106527. [PMID: 38163490 DOI: 10.1016/j.micpath.2023.106527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/30/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Abnormal activation of macrophage and gut Bacteroides fragilis (BF) are the important induction factors in the occurrence of type 2 diabetes (T2D) and vascular complications. However, it remains unknown whether BF involves in macrophage polarization. In this study, we found that BF extracellular vesicles (EV) can be uptaken by macrophage. BF-EV promote macrophage M1/M2 polarization significantly, and increase Sting expression significantly. Bioinformatics analysis found that Sema7a is an important gene involving in macrophage polarization. The expression of Sema7a can be induced by BF-EV and can be inhibited after C-176 treated. The inhibition expression of Sema7a prevent BF-EV to induce macrophage polarization. Further analysis reveals that there is no direct interaction between Sting and Sema7a, but Sgpl1 can interact with Sting or Sema7a. BF-EV promote the expression of Sgpl1, which the phenomenon can be inhibited after C-176 treated. Importantly, overexpression of Sgpl1 reversed the effect of C-176 for Sema7a expression, while inhibit Sema7a expression has limitation influence for Sting and Sgpl1 expression. In conclusion, this study confirms that Sting-Sgpl1-Sema7a is a key mechanism by which BF-EV regulates macrophage polarization.
Collapse
Affiliation(s)
- Cong Chen
- The First Affiliated Hospital, Department of Laboratory Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yu-Qi He
- The First Affiliated Hospital, Department of Laboratory Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yan Gao
- The First Affiliated Hospital, Institute of Endocrinology and Metabolism, Center for Clinical Research in Diabetes, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Qun-Wen Pan
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Jing-Song Cao
- The First Affiliated Hospital, Institute of Endocrinology and Metabolism, Center for Clinical Research in Diabetes, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
18
|
Kang JH, Kawano T, Murata M, Toita R. Vascular calcification and cellular signaling pathways as potential therapeutic targets. Life Sci 2024; 336:122309. [PMID: 38042282 DOI: 10.1016/j.lfs.2023.122309] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
Increased vascular calcification (VC) is observed in patients with cardiovascular diseases such as atherosclerosis, diabetes, and chronic kidney disease. VC is divided into three types according to its location: intimal, medial, and valvular. Various cellular signaling pathways are associated with VC, including the Wnt, mitogen-activated protein kinase, phosphatidylinositol-3 kinase/Akt, cyclic nucleotide-dependent protein kinase, protein kinase C, calcium/calmodulin-dependent kinase II, adenosine monophosphate-activated protein kinase/mammalian target of rapamycin, Ras homologous GTPase, apoptosis, Notch, and cytokine signaling pathways. In this review, we discuss the literature concerning the key cellular signaling pathways associated with VC and their role as potential therapeutic targets. Inhibitors to these pathways represent good candidates for use as potential therapeutic agents for the prevention and treatment of VC.
Collapse
Affiliation(s)
- Jeong-Hun Kang
- National Cerebral and Cardiovascular Center Research Institute, 6-1 Shinmachi, Kishibe, Suita, Osaka 564-8565, Japan.
| | - Takahito Kawano
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masaharu Murata
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Riki Toita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan; AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, AIST, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
19
|
Zhou Z, Li Y, Jiang W, Wang Z. Molecular Mechanism of Calycosin Inhibited Vascular Calcification. Nutrients 2023; 16:99. [PMID: 38201929 PMCID: PMC10781010 DOI: 10.3390/nu16010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Vascular calcification (VC) is a pathological condition frequently observed in cardiovascular diseases. Primary factors contributing to VC are osteogenic differentiation of vascular smooth muscle and hydroxyapatite deposition. Targeted autophagy (a lysosome-mediated mechanism for degradation/recycling of unnecessary cellular components) is a useful approach for inhibiting VC and promoting vascular cell health. Calycosin has been shown to alleviate atherosclerosis by enhancing macrophage autophagy, but its therapeutic effect on VC has not been demonstrated. Using an in vitro model (rat thoracic aortic smooth muscle cell line A7r5), we demonstrated effective inhibition of VC using calycosin (the primary flavonoid component of astragalus), based on the enhancement of autophagic flux. Calycosin treatment activated AMPK/mTOR signaling to induce initiation of autophagy and restored mTORC1-dependent autophagosome-lysosome fusion in late-stage autophagy by promoting soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex formation, thereby preventing stoppage of autophagy in calcified cells. Calycosin substantially reduced degrees of both osteogenic differentiation and calcium deposition in our VC cell model by enhancing autophagy. The present findings clarify the mechanism whereby calycosin mitigates autophagy stoppage in calcified smooth muscle cells and provide a basis for effective VC treatment via autophagy enhancement.
Collapse
Affiliation(s)
- Zekun Zhou
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Z.Z.); (Y.L.)
| | - Yi Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Z.Z.); (Y.L.)
| | - Wei Jiang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China;
| | - Zengli Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Z.Z.); (Y.L.)
| |
Collapse
|
20
|
Wang C, Liang Q, He S, Zhu J, Lin X, Lin G, Wu D, Zhang W, Wang Z. Role of inflammation and immunity in vascular calcification: a bibliometric and visual analysis, 2000-2022. Front Cardiovasc Med 2023; 10:1258230. [PMID: 37965089 PMCID: PMC10642504 DOI: 10.3389/fcvm.2023.1258230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/18/2023] [Indexed: 11/16/2023] Open
Abstract
Background In recent years, a great deal of research has been done on vascular calcification (VC), and inflammation and immunity have been displayed to play important roles in the mechanism of VC. However, to date, no comprehensive or systematic bibliometric analyses have been conducted on this topic. Methods Articles and reviews on the roles of inflammation and immunity in VC were obtained from the Web of Science Core Collection on August 5, 2022. Four scientometric software packages-HistCite, CiteSpace, VOSviewer, and R-bibliometrix-were used for the bibliometric and knowledge mapping analyses. Results The obtained 1,868 papers were published in 627 academic journals by 9,595 authors of 2,217 institutions from 69 countries. The annual number of publications showed a clear growth trend. The USA and China were the most productive countries. Karolinska Institutet, Harvard University, and the University of Washington were the most active institutions. Stenvinkel P published the most articles, whereas Demer LL received the most citations. Atherosclerosis published the most papers, while Circulation was the most highly cited journal. The largest cluster among the 22 clusters, based on the analysis of co-citations, was osteo-/chondrogenic transdifferentiation. "Vascular calcification," "inflammation," "chronic kidney disease," and "expression" were the main keywords in the field. The keyword "extracellular vesicle" attracted great attention in recent years with the strongest citation burst. Conclusions Osteo-/chondrogenic transdifferentiation is the primary research topic in this field. Extracellular vesicles are expected to become a new research focus for exploring the inflammatory and immune mechanisms of VC.
Collapse
Affiliation(s)
- Chen Wang
- Department of Anesthesiology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Qingchun Liang
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Siyi He
- Department of Anesthesiology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jie Zhu
- Department of Anesthesiology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xiafei Lin
- Department of Anesthesiology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Guanwen Lin
- Department of Anesthesiology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Duozhi Wu
- Department of Anesthesiology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Wenqi Zhang
- Department of Anesthesiology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Zhihua Wang
- Department of Anesthesiology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
21
|
Yang S, Zeng Z, Yuan Q, Chen Q, Wang Z, Xie H, Liu J. Vascular calcification: from the perspective of crosstalk. MOLECULAR BIOMEDICINE 2023; 4:35. [PMID: 37851172 PMCID: PMC10584806 DOI: 10.1186/s43556-023-00146-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023] Open
Abstract
Vascular calcification (VC) is highly correlated with cardiovascular disease morbidity and mortality, but anti-VC treatment remains an area to be tackled due to the ill-defined molecular mechanisms. Regardless of the type of VC, it does not depend on a single cell but involves multi-cells/organs to form a complex cellular communication network through the vascular microenvironment to participate in the occurrence and development of VC. Therefore, focusing only on the direct effect of pathological factors on vascular smooth muscle cells (VSMCs) tends to overlook the combined effect of other cells and VSMCs, including VSMCs-VSMCs, ECs-VMSCs, Macrophages-VSMCs, etc. Extracellular vesicles (EVs) are a collective term for tiny vesicles with a membrane structure that are actively secreted by cells, and almost all cells secrete EVs. EVs docked on the surface of receptor cells can directly mediate signal transduction or transfer their contents into the cell to elicit a functional response from the receptor cells. They have been proven to participate in the VC process and have also shown attractive therapeutic prospects. Based on the advantages of EVs and the ability to be detected in body fluids, they may become a novel therapeutic agent, drug delivery vehicle, diagnostic and prognostic biomarker, and potential therapeutic target in the future. This review focuses on the new insight into VC molecular mechanisms from the perspective of crosstalk, summarizes how multi-cells/organs interactions communicate via EVs to regulate VC and the emerging potential of EVs as therapeutic methods in VC. We also summarize preclinical experiments on crosstalk-based and the current state of clinical studies on VC-related measures.
Collapse
Affiliation(s)
- Shiqi Yang
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
- Department of Clinical Laboratory Medicine, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Zhaolin Zeng
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Qing Yuan
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
- Department of Clinical Laboratory Medicine, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Qian Chen
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Zuo Wang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Hui Xie
- Department of Orthopaedics, Movement System Injury and Repair Research Centre, Xiangya Hospital, Central South University, Changsha, Hunan Province, China.
| | - Jianghua Liu
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
22
|
Wang M, Xie K, Zhao S, Jia N, Zong Y, Gu W, Cai Y. Aerobic exercise improves cognitive impairment in mice with type 2 diabetes by regulating the MALAT1/miR-382-3p/BDNF signaling pathway in serum-exosomes. Mol Med 2023; 29:130. [PMID: 37740187 PMCID: PMC10517522 DOI: 10.1186/s10020-023-00727-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND It has been documented that aerobic exercise (AE) has a positive effect on improving cognitive function in type 2 diabetes (T2DM) patients. Here, we tried to explore how AE regulates the expression of long non-coding RNA in serum-exosomes (Exos), thereby affecting cognitive impairment in T2DM mice as well as its potential molecular mechanism. METHODS T2DM mouse models were constructed, and serum-Exos were isolated for whole transcriptome sequencing to screen differentially expressed lncRNA and mRNA, followed by prediction of downstream target genes. The binding ability of miR-382-3p with a long non-coding RNA MALAT1 and brain-derived neurotrophic factor (BDNF) was explored. Then, primary mouse hippocampal neurons were collected for in vitro mechanism verification, as evidenced by the detection of hippocampal neurons' vitality, proliferation, and apoptosis capabilities, and insulin resistance. Finally, in vivo mechanism verification was performed to assess the effect of AE on insulin resistance and cognitive disorder. RESULTS Transcriptome sequencing analysis showed that MALAT1 was lowly expressed and miR-382-3p was highly expressed in serum-Exos samples of T2DM mice. There were targeted binding sites between MALAT1 and miR-382-3p and between miR-382-3p and BDNF. In vitro experiments showed that MALAT1 upregulated BDNF expression by inhibiting miR-382-3p. Silencing MALAT1 or overexpressing miR-382-3p could reduce the expression of INSR, IRS-1, IRS-2, PI3K/AKT, and Ras/MAPK, inhibit neuronal proliferation, and promote apoptosis. In vivo experiments further confirmed that AE could increase the expression of MALAT1 in serum-Exos to competitively inhibit miR-382-3p and upregulate BDNF expression, thereby improving cognitive impairment in T2DM mice. CONCLUSION AE may upregulate the expression of MALAT1 in serum-Exos to competitively inhibit miR-382-3p and upregulate BDNF expression, thus improving cognitive impairment in T2DM mice.
Collapse
Affiliation(s)
- Mingzhu Wang
- National Clinical Research Center for Geriatric Disorders, Department of Rehabilitation, Xiangya Hospital Central South University, Changsha, 410008, Hunan, China
| | - Kangling Xie
- National Clinical Research Center for Geriatric Disorders, Department of Rehabilitation, Xiangya Hospital Central South University, Changsha, 410008, Hunan, China
| | - Shengnan Zhao
- National Clinical Research Center for Geriatric Disorders, Department of Rehabilitation, Xiangya Hospital Central South University, Changsha, 410008, Hunan, China
| | - Nan Jia
- National Clinical Research Center for Geriatric Disorders, Department of Rehabilitation, Xiangya Hospital Central South University, Changsha, 410008, Hunan, China
| | - Yujiao Zong
- National Clinical Research Center for Geriatric Disorders, Department of Rehabilitation, Xiangya Hospital Central South University, Changsha, 410008, Hunan, China
| | - Wenping Gu
- National Clinical Research Center for Geriatric Disorders, Department of Neurology, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Ying Cai
- National Clinical Research Center for Geriatric Disorders, Department of Rehabilitation, Xiangya Hospital Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
23
|
Wang YD, Wu LL, Mai YN, Wang K, Tang Y, Wang QY, Li JY, Jiang LY, Liao ZZ, Hu C, Wang YY, Liu JJ, Liu JH, Xiao XH. miR-32-5p induces hepatic steatosis and hyperlipidemia by triggering de novo lipogenesis. Metabolism 2023; 146:155660. [PMID: 37451670 DOI: 10.1016/j.metabol.2023.155660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND AND OBJECTIVES MicroRNA-dependent regulation of hepatic lipid metabolism has been recognized recently as a key pathological mechanism contributing to the development of NAFLD. However, whether miR-32-5p (miR-32) plays a role in lipid metabolism or contributes to NAFLD remains unclear. METHODS AND RESULTS A marked increase in miR-32 expression was observed in liver samples from patients and mice with NAFLD, as well as in palmitate-induced hepatocytes. Hepatocyte-specific miR-32 knockout (miR-32-HKO) dramatically ameliorated hepatic steatosis and metabolic disorders in high-fat diet-fed mice. Conversely, hepatic miR-32 overexpression markedly exacerbated the progression of these abnormalities. Further, combinational analysis of transcriptomics and lipidomics suggested that miR-32 was a key trigger for de novo lipogenesis in the liver. Mechanistically, RNA sequencing, luciferase assay and adenovirus-mediated downstream gene rescue assay demonstrated that miR-32 directly bound to insulin-induced gene 1 (INSIG1) and subsequently activated sterol regulatory element binding protein-mediated lipogenic gene programs, thereby promoting hepatic lipid accumulation and metabolic disorders. Notably, pharmacological administration of miR-32 antagonist significantly inhibited palmitate-induced triglyceride deposition in hepatocytes and markedly mitigated hepatic steatosis and metabolic abnormalities in obesity-associated NAFLD mice. CONCLUSION miR-32 is an important checkpoint for lipogenesis in the liver, and targeting miR-32 could be a promising therapeutic approach for NAFLD treatment.
Collapse
Affiliation(s)
- Ya-Di Wang
- The First Affiliated Hospital, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Liang-Liang Wu
- The First Affiliated Hospital, Department of Gastrointestinal Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yun-Ni Mai
- The First Affiliated Hospital, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Kai Wang
- The First Affiliated Hospital, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yi Tang
- The First Affiliated Hospital, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Qi-Yu Wang
- The First Affiliated Hospital, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jiao-Yang Li
- The First Affiliated Hospital, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Li-Yan Jiang
- The First Affiliated Hospital, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhe-Zhen Liao
- The First Affiliated Hospital, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Can Hu
- The First Affiliated Hospital, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yuan-Yuan Wang
- The First Affiliated Hospital, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jing-Jing Liu
- The First Affiliated Hospital, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jiang-Hua Liu
- The First Affiliated Hospital, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Xin-Hua Xiao
- The First Affiliated Hospital, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
24
|
Ren Y, Zhang H. Emerging role of exosomes in vascular diseases. Front Cardiovasc Med 2023; 10:1090909. [PMID: 36937921 PMCID: PMC10017462 DOI: 10.3389/fcvm.2023.1090909] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/11/2023] [Indexed: 03/06/2023] Open
Abstract
Exosomes are biological small spherical lipid bilayer vesicles secreted by most cells in the body. Their contents include nucleic acids, proteins, and lipids. Exosomes can transfer material molecules between cells and consequently have a variety of biological functions, participating in disease development while exhibiting potential value as biomarkers and therapeutics. Growing evidence suggests that exosomes are vital mediators of vascular remodeling. Endothelial cells (ECs), vascular smooth muscle cells (VSMCs), inflammatory cells, and adventitial fibroblasts (AFs) can communicate through exosomes; such communication is associated with inflammatory responses, cell migration and proliferation, and cell metabolism, leading to changes in vascular function and structure. Essential hypertension (EH), atherosclerosis (AS), and pulmonary arterial hypertension (PAH) are the most common vascular diseases and are associated with significant vascular remodeling. This paper reviews the latest research progress on the involvement of exosomes in vascular remodeling through intercellular information exchange and provides new ideas for understanding related diseases.
Collapse
Affiliation(s)
- Yi Ren
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Graduate School, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Honggang Zhang
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
25
|
Mao L, Yin R, Yang L, Zhao D. Role of advanced glycation end products on vascular smooth muscle cells under diabetic atherosclerosis. Front Endocrinol (Lausanne) 2022; 13:983723. [PMID: 36120471 PMCID: PMC9470882 DOI: 10.3389/fendo.2022.983723] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease and leading cause of cardiovascular diseases. The progression of AS is a multi-step process leading to high morbidity and mortality. Hyperglycemia, dyslipidemia, advanced glycation end products (AGEs), inflammation and insulin resistance which strictly involved in diabetes are closely related to the pathogenesis of AS. A growing number of studies have linked AGEs to AS. As one of the risk factors of cardiac metabolic diseases, dysfunction of VSMCs plays an important role in AS pathogenesis. AGEs are increased in diabetes, participate in the occurrence and progression of AS through multiple molecular mechanisms of vascular cell injury. As the main functional cells of vascular, vascular smooth muscle cells (VSMCs) play different roles in each stage of atherosclerotic lesions. The interaction between AGEs and receptor for AGEs (RAGE) accelerates AS by affecting the proliferation and migration of VSMCs. In addition, increasing researches have reported that AGEs promote osteogenic transformation and macrophage-like transformation of VSMCs, and affect the progression of AS through other aspects such as autophagy and cell cycle. In this review, we summarize the effect of AGEs on VSMCs in atherosclerotic plaque development and progression. We also discuss the AGEs that link AS and diabetes mellitus, including oxidative stress, inflammation, RAGE ligands, small noncoding RNAs.
Collapse
Affiliation(s)
| | | | | | - Dong Zhao
- *Correspondence: Longyan Yang, ; Dong Zhao,
| |
Collapse
|