1
|
Wang H, Qiu B, Li X, Ying Y, Wang Y, Chen H, Zeng F, Shi J, Huang J, Wu Z, Chen Z, Che X, Li Q, Fan Y, Li B, Wang Q, Huang C, Chen Y, Li T, Mo K, Wang Q, Cui C. Single cell analysis reveals that SPP1 + macrophages enhance tumor progression by triggering fibroblast extracellular vesicles. Transl Oncol 2025; 55:102347. [PMID: 40086324 PMCID: PMC11954126 DOI: 10.1016/j.tranon.2025.102347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/03/2025] [Indexed: 03/16/2025] Open
Abstract
Patients with liver metastatic colorectal cancer (mCRC) have a poor prognosis and are the leading cause of death in colorectal cancer (CRC) patients, but the mechanisms associated with CRC metastasis have not been fully elucidated. In this study, we obtained data from the Gene Expression Omnibus database and characterized the single-cell profiles of CRC, mCRC and healthy samples at single-cell resolution, and explored the cells that influence CRC metastasis. We find that AQP1+ CRC identified as highly malignant tumor cells exhibited proliferative and metastatic characteristics. Immunosuppressive properties are present in the tumor microenvironment (TME), while NOTCH3+ Fib is identified to play a facilitating role in the metastatic colonization of CRC. Importantly, we reveal that tumor-associated macrophages (TAM) characterized by SPP1-specific high expression may be involved in TME remodeling through intercellular communication. Specifically, SPP1+ TAM mediates the generation of Fib-derived extracellular vesicle through the APOE-LRP1 axis, which in turn delivers tumor growth-promoting factors in the TME. This study deepens the understanding of the mechanism of TME in mCRC and lays the scientific foundation for the development of therapeutic regimens for mCRC patients.
Collapse
Affiliation(s)
- Haocheng Wang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Bowen Qiu
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xinyu Li
- Experimental Center of BIOQGene, YuanDong International Academy Of Life Sciences, Hong Kong 999077, China; Systems Biology Research Center, Biology Institute, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China
| | - Yao Ying
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yue Wang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Hungchen Chen
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Fanan Zeng
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Junyao Shi
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Junpeng Huang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Ziying Wu
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Zequn Chen
- Department of Gastrointestinal Surgery, First Ward of Maoming People's Hospital, Maoming 525000, China
| | - Xiao Che
- Department of Abdominal Hernia Surgery, Maoming People's Hospital, Southern Medical University, Maoming 525000, China
| | - Qingzhong Li
- Guangzhou University of Traditional Chinese Medicine, Maoming 525000, China
| | - Yingming Fan
- Department of General Surgery, Guangning County People's Hospital, Guangdong Medical University, Zhaoqing 526300, China
| | - Bingyao Li
- Department of General Surgery, Guangning People's Hospital, Zhaoqing 526300, China
| | - Qun Wang
- Department of Emergency, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou 510282, China
| | - Chengyu Huang
- Experimental Center of BIOQGene, YuanDong International Academy Of Life Sciences, Hong Kong 999077, China; Systems Biology Research Center, Biology Institute, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China
| | - Yixuan Chen
- Experimental Center of BIOQGene, YuanDong International Academy Of Life Sciences, Hong Kong 999077, China; Systems Biology Research Center, Biology Institute, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China
| | - Ting Li
- Experimental Center of BIOQGene, YuanDong International Academy Of Life Sciences, Hong Kong 999077, China; Systems Biology Research Center, Biology Institute, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China
| | - Ke Mo
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Experimental Center of BIOQGene, YuanDong International Academy Of Life Sciences, Hong Kong 999077, China; Systems Biology Research Center, Biology Institute, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China.
| | - Qian Wang
- Department of Gastrointestinal surgery, The Seventh Affiliated Hospital, Southern Medical University, Foshan 528000, China.
| | - Chunhui Cui
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| |
Collapse
|
2
|
Wu JS, He YQ, Wei YY, Ma XY, Zhang XY, He J, Wang LL, He JX, Han Y, Lin ZN, Lin YC. Evaluation of the efficacy of cell-penetrating monoclonal antibodies targeting intracellular p-NLRP3 S295 in alleviating hepatotoxicant-induced NAFLD. Int J Biol Macromol 2025; 308:142696. [PMID: 40169050 DOI: 10.1016/j.ijbiomac.2025.142696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 03/27/2025] [Accepted: 03/29/2025] [Indexed: 04/03/2025]
Abstract
NOD-like receptor protein 3 (NLRP3) is a key driver of hepatotoxicant-induced nonalcoholic fatty liver disease (NAFLD). Phosphorylation of NLRP3 at serine 295 (p-NLRP3S295) is crucial for pyroptosis. Monoclonal antibodies (mAbs) have been designed to target extracellular molecules or cell membrane surface receptors and have achieved progress in NAFLD treatment. However, research on mAbs targeting intracellular biomarkers for NAFLD treatment remains limited. In this study, aflatoxin B1 (AFB1), lipopolysaccharide (LPS) combined with ATP, or palmitic acid (PA) were used to induce p-NLRP3S295-dependent pyroptosis and inflammation mediated by lipotoxicity in hepatocytes in vitro. We generated a specific anti-p-NLRP3S295 mAb (14C7) and internalized it into hepatocytes via an enhanced TAT-based intracellular delivery system (eTAT), which inhibited p-NLRP3S295-dependent pyroptosis and inflammation in hepatocytes subjected to simulated lipotoxic injury and in the livers of NAFLD mice. The recombinant mAb@p-NLRP3S295 expression system was constructed with 14C7. The intracellularly expressed recombinant monoclonal antibody (R-mAb) efficiently blocked p-NLRP3S295-dependent pyroptosis and inflammation in hepatocytes exposed to hepatotoxicant through the proteasome degradation pathway mediated by tripartite motif-containing 40 (TRIM40). In conclusion, this study presents a novel approach for the targeted inhibition of p-NLRP3S295 through intracellular recombinant mAbs, offering new insights into the treatment of hepatotoxicant-related NAFLD via specific intracellular targeting.
Collapse
Affiliation(s)
- Jia-Shen Wu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yu-Qiao He
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yue-Yue Wei
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xin-Yu Ma
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xin-Yu Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jie He
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Lei-Lei Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jia-Xin He
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yu Han
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhong-Ning Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Yu-Chun Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
3
|
Qian Z, Li Z, Peng X, Mao Y, Mao X, Li J. Annexin A: Cell Death, Inflammation, and Translational Medicine. J Inflamm Res 2025; 18:5655-5672. [PMID: 40309306 PMCID: PMC12042829 DOI: 10.2147/jir.s511439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 04/07/2025] [Indexed: 05/02/2025] Open
Abstract
The annexin superfamily proteins, a family of calcium-dependent phospholipid-binding proteins, are involved in a variety of Ca²+-regulated membrane events. Annexin A, expressed in vertebrates, has been implicated in a variety of regulated cell death (RCD) pathways, including apoptosis, autophagy, pyroptosis, ferroptosis, and neutrophil extracellular trap-induced cell death (NETosis). Given that inflammation is a key driver of cell death, the roles of Annexin A in inflammation have been extensively studied. In this review, we discuss the regulatory roles of Annexin A in RCD and inflammation, the development of related targeted therapies in translational medicine, and the application of animal models to study these processes. We also analyze current challenges and discuss future directions for improved diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Zibing Qian
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, 730000, People’s Republic of China
| | - Ziyi Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, 730000, People’s Republic of China
| | - Xuebin Peng
- Department of Infectious Disease, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, People’s Republic of China
| | - Yongwu Mao
- Department of Infectious Disease, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, People’s Republic of China
| | - Xiaorong Mao
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, 730000, People’s Republic of China
- Department of Infectious Disease, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, People’s Republic of China
| | - Junfeng Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, 730000, People’s Republic of China
- Institute of Infectious Diseases, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, People’s Republic of China
| |
Collapse
|
4
|
Zhang C, Sun M, Ding Y, Yuan X, Lu J, Nan Y. Research progress on the regulatory role of different cell death pathways in metabolic-dysfunction-associated steatotic liver disease. Clin Res Hepatol Gastroenterol 2025; 49:102578. [PMID: 40174778 DOI: 10.1016/j.clinre.2025.102578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/18/2025] [Accepted: 03/24/2025] [Indexed: 04/04/2025]
Abstract
Metabolic dysfunction associated steatotic liver disease (MASLD) is one of the most common chronic liver diseases that pose a significant threat to human health. An essential process in developing various diseases, including MASLD, is programmed cell death, a regulated and controlled mechanism that eliminates damaged or unnecessary cells. It is a ubiquitous process during organismal development and represents an active, orderly form of cell death. Significant progress has been made in studying programmed cell death in the context of MASLD. This review systematically summarizes various forms of cell death, including apoptosis, Pyroptosis, autophagy, ferroptosis, and cuproptosis, along with their regulatory mechanisms in MASLD. It has been observed that there are interactions between different forms of cell death. As MASLD progresses through inflammation, fibrosis, and cirrhosis stages, multiple forms of cell death may act synergistically. This article aims to provide the latest research findings and theoretical insights to further our understanding of the pathogenesis of MASLD.
Collapse
Affiliation(s)
- Congyue Zhang
- Department of Integrated Traditional Chinese and Western Medicine Hepatology, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, China.
| | - Mengjiao Sun
- Department of Integrated Traditional Chinese and Western Medicine Hepatology, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, China
| | - Yuanjian Ding
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Xiwei Yuan
- Department of Integrated Traditional Chinese and Western Medicine Hepatology, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, China
| | - Jingyi Lu
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yuemin Nan
- Department of Integrated Traditional Chinese and Western Medicine Hepatology, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
5
|
Lu X, Hu H, Zhou Y, Zhang H, Xie C, Sun Y, Shao Z, Tang L, Ren Y, Chen J, Xu X, Qiu N, Guo H. One-step engineered mesenchymal stem cell-derived exosomes against hepatic ischemia-reperfusion injury. Int J Pharm 2025; 672:125292. [PMID: 39892672 DOI: 10.1016/j.ijpharm.2025.125292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/08/2025] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
Hepatic ischemia-reperfusion injury (IRI) is an important factor affecting the prognosis of patients undergoing surgery. Exosomes derived from mesenchymal stem cells (MSC-EXOs) are widely used and play a therapeutic role in hepatic IRI. However, natural exosomes lack liver-targeting ability and have low bioavailability. In this study, MSC-EXOs were simply modified with OPDEA-PCL or liver-targeting DSPE-PEG2000-Galactose, forming OPDEA-PCL-modified MSC-EXOs (OP-EXOs) or DSPE-PEG2000-Galactose-modified MSC-EXOs (GPEG-EXOs). In mouse hepatic IRI model, OP-EXOs and GPEG-EXOs both significantly reduced alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH) levels in serum after hepatic IRI, alleviating liver injury. Transcriptomic and proteomic analyses showed that OP-EXOs and GPEG-EXOs reduced hepatic IRI by downregulating the expression of S100A8, S100A9, SELP, and ANXA2 in the liver following IRI. This study opens a new paradigm for the treatment of hepatic IRI using engineered MSC-EXOs with the potential to improve the prognosis of liver surgery.
Collapse
Affiliation(s)
- Xinfeng Lu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou 310053, China
| | - Haitao Hu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou 310053, China
| | - Yujie Zhou
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou 310053, China
| | - Hui Zhang
- Department of Medical Oncology, Xuzhou First People's Hospital, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou 221000 China
| | - Chang Xie
- School of Clinical Medicine, Hangzhou Normal University, Hangzhou 311121, China
| | - Yiyang Sun
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou 310053, China
| | - Zile Shao
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou 310053, China
| | - Lin Tang
- Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Yuhao Ren
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou 310053, China
| | - Jun Chen
- Department of Hepatobiliary and Pancreatic Surgery, People's Hospital Affiliated to Hangzhou Medical College, Zhejiang Provincial People's Hospital, Hangzhou 310024, China
| | - Xiao Xu
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou 310059, China; Institute of Translational Medicine, Zhejiang University, Hangzhou 310000, China.
| | - Nasha Qiu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou 310053, China; School of Clinical Medicine, Hangzhou Normal University, Hangzhou 311121, China.
| | - Haijun Guo
- Affliated Hangzhou First People's Hospital, School of Medicine, Westlake University.
| |
Collapse
|
6
|
Yuan L, Liu Y, Fan L, Sun C, Ran S, Huang K, Shen Y. Identification of Potential Hub Genes Related to Acute Pancreatitis and Chronic Pancreatitis via Integrated Bioinformatics Analysis and In Vitro Analysis. Mol Biotechnol 2025; 67:1188-1200. [PMID: 38520499 DOI: 10.1007/s12033-024-01118-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/02/2024] [Indexed: 03/25/2024]
Abstract
Acute pancreatitis (AP) and chronic pancreatitis (CP) are considered to be two separate pancreatic diseases in most studies, but some clinical retrospective analyses in recent years have found some degree of correlation between the two in actual treatment, however, the exact association is not clear. In this study, bioinformatics analysis was utilized to examine microarray sequencing data in mice, with the aim of elucidating the critical signaling pathways and genes involved in the progression from AP to CP. Differential gene expression analyses on murine transcriptomes were conducted using the R programming language and the R/Bioconductor package. Additionally, gene network analysis was performed using the STRING database to predict correlations among genes in the context of pancreatic diseases. Functional enrichment and gene ontology pathways common to both diseases were identified using Metascape. The hub genes were screened in the cytoscape algorithm, and the mRNA levels of the hub genes were verified in mice pancreatic tissues of AP and CP. Then the drugs corresponding to the hub genes were obtained in the drug-gene relationship. A set of hub genes, including Jun, Cd44, Epcam, Spp1, Anxa2, Hsp90aa1, and Cd9, were identified through analysis, demonstrating their pivotal roles in the progression from AP to CP. Notably, these genes were found to be enriched in the Helper T-cell factor (Th17) signaling pathway. Up-regulation of these genes in both AP and CP mouse models was validated through quantitative real-time polymerase chain reaction (qRT-PCR) results. The significance of the Th17 signaling pathway in the transition from AP to CP was underscored by our findings. Specifically, the essential genes driving this progression were identified as Jun, Cd44, Epcam, Spp1, Anxa2, Hsp90aa1, and Cd9. Crucial insights into the molecular mechanisms underlying pancreatitis progression were provided by this research, offering promising avenues for the development of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Lu Yuan
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yiyuan Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Lingyan Fan
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, 266042, China
| | - Cai Sun
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Sha Ran
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Kuilong Huang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yan Shen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
| |
Collapse
|
7
|
Ates E, My Ong HT, Yu SM, Kim JH, Kang MJ. Comparative Analysis of the Total Proteome in Nonalcoholic Steatohepatitis: Identification of Potential Biomarkers. Mol Cell Proteomics 2025; 24:100921. [PMID: 39894410 PMCID: PMC11910689 DOI: 10.1016/j.mcpro.2025.100921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/06/2024] [Accepted: 11/08/2024] [Indexed: 02/04/2025] Open
Abstract
Nonalcoholic fatty liver disease is a hepatic condition characterized by excessive fat accumulation in the liver with advanced stage nonalcoholic steatohepatitis (NASH), potentially leading to liver fibrosis, cirrhosis, and cancer. Currently, the identification and classification of NASH require invasive liver biopsy, which has certain limitations. Mass spectrometry-based proteomics can detect crucial proteins and pathways implicated in NASH development and progression. We collected the liver and serum samples from choline-deficient, L-amino acid-defined high-fat diet fed NASH C57BL/6J mice and human serum samples to examine proteomic alterations and identify early biomarkers for NASH diagnosis. In-depth targeted multiple reaction monitoring scanning and immunoblotting assays were used to verify the biomarker candidates from mouse liver and serum samples, and enzyme-linked immunosorbent assay (ELISA) was employed to analyze human serum samples. The multiple reaction monitoring analysis of NASH liver revealed 50 proteins with altered expression (21 upregulated and 29 downregulated) that are involved in biological processes such as detoxification, fibrosis, inflammation, and fatty acid metabolism. Ingenuity pathway analysis identified impaired protein synthesis, cellular stress and defense, cellular processes and communication, and metabolism in NASH mouse liver. Immunoblotting analysis confirmed that the expression of proteins associated with fatty acid metabolism (Aldo B and Fasn) and urea cycle (Arg1, Cps1, and Otc) was altered in the mouse liver and serum. Further analysis on human serum samples using ELISA confirmed the increased expression of multiple proteins, including Aldo B, Asl, and Lgals3, demonstrating values of 0.917, 0.979, and 0.965 of area under the curve in NASH diagnosis. These findings offer valuable insights into the molecular mechanisms of NASH and possible diagnostic biomarkers for early detection.
Collapse
Affiliation(s)
- Eda Ates
- Center for Advanced Biomolecular Recognition, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, Republic of Korea
| | - Hien Thi My Ong
- Center for Advanced Biomolecular Recognition, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, Republic of Korea
| | - Seung-Min Yu
- Center for Advanced Biomolecular Recognition, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea; College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ji-Hoon Kim
- Center for Advanced Biomolecular Recognition, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Min-Jung Kang
- Center for Advanced Biomolecular Recognition, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Geng W, Liao W, Cao X, Yang Y. Therapeutic Targets and Approaches to Manage Inflammation of NAFLD. Biomedicines 2025; 13:393. [PMID: 40002806 PMCID: PMC11853636 DOI: 10.3390/biomedicines13020393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and its advanced form, non-alcoholic steatohepatitis (NASH), are the leading causes of chronic liver disease globally. They are driven by complex mechanisms where inflammation plays a pivotal role in disease progression. Current therapies, including lifestyle changes and pharmacological agents, are limited in efficacy, particularly in addressing the advanced stages of the disease. Emerging approaches targeting inflammation, metabolic dysfunction, and fibrosis offer promising new directions, though challenges such as treatment complexity and heterogeneity persist. This review concludes the main therapeutic targets and approaches to manage inflammation currently and emphasizes the critical need for future drug development and combination therapy for NAFLD/NASH management.
Collapse
Affiliation(s)
- Wanying Geng
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China;
- Department of Gastroenterology, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China; (W.L.); (X.C.)
| | - Wanying Liao
- Department of Gastroenterology, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China; (W.L.); (X.C.)
| | - Xinyuan Cao
- Department of Gastroenterology, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China; (W.L.); (X.C.)
| | - Yingyun Yang
- Department of Gastroenterology, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China; (W.L.); (X.C.)
| |
Collapse
|
9
|
Liu G, Dong BB, Ding ZH, Lan C, Zhu CJ, Liu Q. Unphysiological lung strain promotes ventilation-induced lung injury via activation of the PECAM-1/Src/STAT3 signaling pathway. Front Pharmacol 2025; 15:1469783. [PMID: 39845800 PMCID: PMC11751019 DOI: 10.3389/fphar.2024.1469783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/20/2024] [Indexed: 01/24/2025] Open
Abstract
Introduction In patients with acute respiratory distress syndrome, mechanical ventilation often leads to ventilation-induced lung injury (VILI), which is attributed to unphysiological lung strain (UPLS) in respiratory dynamics. Platelet endothelial cell adhesion molecule-1 (PECAM-1), a transmembrane receptor, senses mechanical signals. The Src/STAT3 pathway plays a crucial role in the mechanotransduction network, concurrently triggering pyroptosis related inflammatory responses. We hypothesized that the mechanical stretch caused by UPLS can be sensed by PECAM-1 in the lungs, leading to VILI via the Src/STAT3 and pyroptosis pathway. Methods A VILI model was established in rats through UPLS. The link between lung strain and VILI as well as the change in the activation of PECAM-1, Src/STAT3, and pyroptosis was firstly being explored. Then, the inhibitors of PECAM-1, Src, STAT3 were adopted respectively, the effect on VILI, inflammation, the Src/STAT3 pathway, and pyroptosis was evaluated. In vitro, human umbilical vein endothelial cells (HUVECs) were used to validate the findings in vivo. Results UPLS activated PECAM-1, Src/STAT3 signaling pathway, inflammation, and pyroptosis in the VILI model with rats, whereas inhibition of PECAM-1 or the Src/STAT3 signaling pathway decreased lung injury, inflammatory responses, and pyroptosis. Inhibition of PECAM-1 also reduced activation of the Src/STAT3 signaling pathway. The mechanism was validated with HUVECs exposed to overload mechanical cyclic stretch. Conclusions This study suggests that UPLS contributes to VILI by activating the PECAM-1/Src/STAT3 pathway and inducing inflammatory responses as well aspyroptosis.
Collapse
Affiliation(s)
- Gang Liu
- Department of Emergency Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bin-Bin Dong
- Department of Emergency Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zi-Heng Ding
- Department of Emergency Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chao Lan
- Department of Emergency Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chang-Ju Zhu
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qi Liu
- Department of Emergency Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
10
|
Ueda H, Honda A, Miyazaki T, Morishita Y, Hirayama T, Iwamoto J, Ikegami T. High-fat/high-sucrose diet results in a high rate of MASH with HCC in a mouse model of human-like bile acid composition. Hepatol Commun 2025; 9:e0606. [PMID: 39670881 PMCID: PMC11637755 DOI: 10.1097/hc9.0000000000000606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/21/2024] [Indexed: 12/14/2024] Open
Abstract
BACKGROUND Wild-type (WT) mice fed a conventional high-fat/high-sucrose diet (HFHSD) rarely develop metabolic dysfunction-associated steatohepatitis (MASH) with HCC. Because mouse bile acid (BA) is highly hydrophilic, we hypothesized that making it hydrophobic would lead to MASH with HCC. METHODS Eleven-week-old WT and Cyp2a12/Cyp2c70 double knockout (DKO) mice were divided into two groups, including one which was fed a normal chow diet, and one which was fed an HFHSD. Samples were collected after 15, 30, 47, and 58 weeks for histological, biochemical, and immunological analyses. RESULTS In the HFHSD group, body weight gain did not differ in WT versus DKO mice, although HFHSD-fed DKO mice exhibited markedly accelerated liver inflammation, fibrosis, and carcinogenesis. HFHSD upregulated lipogenesis and downregulated fatty acid oxidation in both WT and DKO mice, which increased liver lipid accumulation and lipotoxicity. However, the increase in reactive oxygen species production and carcinogenesis observed in DKO mice could not be explained by abnormal lipid metabolism alone. Regarding BA metabolism, DKO mice had a higher hydrophobicity index. They exhibited an age-associated increase in chenodeoxycholic acid (CDCA) levels because of CYP8B1 activity inhibition due to the farnesoid X receptor activation. HFHSD further downregulated CYP8B1, presumably by activating the Liver X receptor. Liver CDCA accumulation was associated with increased inflammation, reactive oxygen species production, and hepatocyte FGF15 induction. Moreover, in noncancerous liver tissues, HFHSD appeared to activate STAT3, an oncogenic transcription factor, which was enhanced by a CDCA-rich environment. CONCLUSIONS Here, we developed a new model of MASH with HCC using mice with human-like BA composition and found that HFHSD and elevated hepatic CDCA synergistically increased the risk of MASH with HCC.
Collapse
Affiliation(s)
- Hajime Ueda
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ami, Ibaraki, Japan
| | - Akira Honda
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ami, Ibaraki, Japan
- Joint Research Center, Tokyo Medical University Ibaraki Medical Center, Ami, Ibaraki, Japan
| | - Teruo Miyazaki
- Joint Research Center, Tokyo Medical University Ibaraki Medical Center, Ami, Ibaraki, Japan
| | - Yukio Morishita
- Diagnostic Pathology Division, Tokyo Medical University Ibaraki Medical Center, Ami, Ibaraki, Japan
| | - Takeshi Hirayama
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ami, Ibaraki, Japan
| | - Junichi Iwamoto
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ami, Ibaraki, Japan
| | - Tadashi Ikegami
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ami, Ibaraki, Japan
| |
Collapse
|
11
|
Zhu J, Chen Y, Chen Y, Lv Y, Chen T. STAT3 inhibition ameliorates renal interstitial inflammation in MRL/lpr mice with diffuse proliferative lupus nephritis. Ren Fail 2024; 46:2358187. [PMID: 38803234 PMCID: PMC11136473 DOI: 10.1080/0886022x.2024.2358187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Acute kidney injury (AKI) is one of the most common and severe clinical syndromes of diffuse proliferative lupus nephritis (DPLN), of which poor prognosis is indicated by aggravated renal function deterioration. However, the specific therapy and mechanisms of AKI in DPLN remain to be explored. METHODS The correlation between AKI and clinical pathological changes in DPLN patients was analyzed. Expression of STAT3 signaling was detected in MRL/lpr mice with DPLN using immunohistochemical staining and immunoblotting. Inhibition of STAT3 activation by combination therapy was assessed in MRL/lpr mice. RESULTS Correlation analysis revealed only the interstitial leukocytes were significantly related to AKI in endocapillary DPLN patients. MRL/lpr mice treated with vehicle, which can recapitulate renal damages of DPLN patients, showed upregulation of STAT3, pSTAT3 and caspase-1 in renal cortex. FLLL32 combined with methylprednisolone therapy significantly inhibited the STAT3 activation, improved acute kidney damage, reduced the interstitial infiltration of inflammatory cells and decreased the AKI incidence in MRL/lpr mice. CONCLUSION STAT3 activation may play an important role in the pathogenesis of DPLN and the development of AKI. Hence, STAT3 inhibition based on the combination of FLLL32 with methylprednisolone may represent a new strategy for treatment of DPLN with AKI.
Collapse
Affiliation(s)
- Jianfen Zhu
- Department of Internal Medicine Nursing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yijing Chen
- Department of clinical College, Wenzhou Medical University, Wenzhou, China
| | - Yulan Chen
- Department of clinical College, Wenzhou Medical University, Wenzhou, China
| | - Yinqiu Lv
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tianxin Chen
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
12
|
Chen X, Huang S, Wang L, Liu K, Wu H. Maternal exposure to polystyrene nanoplastics induces sex-specific cardiotoxicity in offspring mice. Heliyon 2024; 10:e39139. [PMID: 39640785 PMCID: PMC11620075 DOI: 10.1016/j.heliyon.2024.e39139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 09/19/2024] [Accepted: 10/08/2024] [Indexed: 12/07/2024] Open
Abstract
Globally, plastic pollution threatens human health, particularly affecting the hearts of offspring exposed to maternal environmental factors early in development. Few studies have specifically addressed sex-specific cardiac injury in offspring resulting from maternal exposure to polystyrene nanoplastics (PS-NPs). This study investigates the potential cardiac injury in offspring following maternal exposure to 1 mg/L PS-NPs. Pregnant C57BL/6J mice were exposed to PS-NPs until 3 weeks postpartum to establish a maternal exposure model. Heart tissues were collected and weighed, and the transcriptomes of the offspring hearts were sequenced and analyzed using high-throughput RNA sequencing. Immunohistochemical staining was performed to assess the effects of PS-NPs on cardiac immune infiltration, fibrosis, and apoptosis in the offspring. PS-NPs caused a significant reduction in heart and body weight in female offspring compared to males. Additionally, PS-NPs induced sex-specific transcriptional reprogramming and metabolic disruptions in the offspring. PS-NPs also induced significant fibrosis, apoptosis, and increased CD68+ macrophage infiltration in offspring hearts. Notably, PS-NPs induced distinct cardiovascular diseases in the offspring. Fluid shear stress and atherosclerosis were significantly enriched in PS-NP-treated male offspring, while viral myocarditis was predominantly enriched in PS-NP-treated females. Our findings suggest that PS-NPs induce cardiotoxicity in offspring by disrupting metabolism, impairing immunity, and triggering fibrosis and apoptosis, with sex-specific differences. This study provides novel insights and a foundation for understanding sex-specific pharmacological differences and interventions in PS-NP-induced cardiovascular disease in offspring.
Collapse
Affiliation(s)
- Xiuli Chen
- Department of Gynecology and Obstetrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine of Henan University, Zhengzhou, Henan, 450003, China
| | - Shenzhen Huang
- Henan Eye Institute, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Li Wang
- Department of Gynecology and Obstetrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine of Henan University, Zhengzhou, Henan, 450003, China
| | - Kan Liu
- Department of Gynecology and Obstetrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine of Henan University, Zhengzhou, Henan, 450003, China
| | - Haiying Wu
- Department of Gynecology and Obstetrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine of Henan University, Zhengzhou, Henan, 450003, China
| |
Collapse
|
13
|
Li SJ, Liu AB, Yu YY, Ma JH. The role and mechanism of pyroptosis and potential therapeutic targets in non-alcoholic fatty liver disease (NAFLD). Front Cell Dev Biol 2024; 12:1407738. [PMID: 39022762 PMCID: PMC11251954 DOI: 10.3389/fcell.2024.1407738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a clinical pathological syndrome characterized by the excessive accumulation of fat within liver cells, which can progress to end-stage liver disease in severe cases, posing a threat to life. Pyroptosis is a distinct, pro-inflammatory form of cell death, differing from traditional apoptosis. In recent years, there has been growing research interest in the association between pyroptosis and NAFLD, encompassing the mechanisms and functions of pyroptosis in the progression of NAFLD, as well as potential therapeutic targets. Controlled pyroptosis can activate immune cells, eliciting host immune responses to shield the body from harm. However, undue activation of pyroptosis may worsen inflammatory responses, induce cellular or tissue damage, disrupt immune responses, and potentially impact liver function. This review elucidates the involvement of pyroptosis and key molecular players, including NOD-like receptor thermal protein domain associated protein 3(NLRP3) inflammasome, gasdermin D (GSDMD), and the caspase family, in the pathogenesis and progression of NAFLD. It emphasizes the promising prospects of targeting pyroptosis as a therapeutic approach for NAFLD and offers valuable insights into future directions in the field of NAFLD treatment.
Collapse
Affiliation(s)
- Shu-Jing Li
- Department of Pediatrics Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - An-Bu Liu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yuan-Yuan Yu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jin-Hai Ma
- Department of Pediatrics Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
14
|
Chen D, Shen F, Liu J, Tang H, Teng X, Yang F, Liu H. Luteolin enhanced antioxidant capability and induced pyroptosis through NF-κB/NLRP3/Caspase-1 in splenic lymphocytes exposure to ammonia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170699. [PMID: 38325474 DOI: 10.1016/j.scitotenv.2024.170699] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
During feeding process in intensive chicken farms, the prolonged exposure of chickens to elevated level of ammonia leads to substantial economic losses within poultry farming industry. Luteolin (Lut), known as its anti-inflammatory and antioxidant properties, possesses the ability to eliminate free radicals and enhance the activities of antioxidant enzymes, thus rendering it highly esteemed in production. The objective of this study was to examine the effects of Lut on antioxidant and anti-inflammatory responses of chicken splenic lymphocytes exposed to ammonia. In order to achieve this, we have replicated a protective model involving Lut against ammonia exposure in chicken splenic lymphocytes. The findings of the study indicated that Lut mitigated the elevation of lactate dehydrogenase (LDH), malondialdehyde (MDA), and reactive oxygen species (ROS) induced by ammonia poisoning. Additionally, Lut demonstrated an increase in the expression of antioxidant enzymes, namely superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). Furthermore, Lut exhibited a protective effect on cell morphology and ultrastructure following exposure to ammonia. Moreover, Lut exhibited a reduction in the expression of heat shock proteins (HSPs) and inflammatory cytokines, which were found to be highly expressed in splenic lymphocytes after ammonia exposure. Additionally, Lut demonstrated the ability to inhibit the overexpression of pyroptosis-related genes and proteins (NLRP3 and Caspase-1) in splenic lymphocytes following ammonia exposure. Lut exerted an antioxidant effect on lymphocytes, counteracting elevated levels of oxidative stress following exposure to ammonia. Additionally, Lut had the potential to modulate the expression of HSPs, suppressed the inflammatory response subsequent to ammonia exposure, and influenced the expression of NLRP3 and Caspase-1, thereby mitigating pyroptosis induced by ammonia exposure. The exploration of this subject matter can elucidate the protective properties of Lut against NH4Cl-induced damage in chicken splenic lymphocytes, while also offer insights and experimental groundwork for the utilization of natural therapeutics in animal husbandry to prevent and treat ammonia-related conditions.
Collapse
Affiliation(s)
- Dechun Chen
- Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Fanyu Shen
- Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Jiahao Liu
- Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Haojinming Tang
- Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Falong Yang
- Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China.
| | - Haifeng Liu
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
15
|
Li Y, Li H, Tang Y, Rong Y. Extracellular histones exacerbate heat stroke-induced liver injury by triggering hepatocyte pyroptosis and liver injury via the TLR9-NLRP3 pathway. Int Immunopharmacol 2024; 126:111305. [PMID: 38043264 DOI: 10.1016/j.intimp.2023.111305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND Severe heat stroke is often complicated by multiple organ failure, including liver injury. Recent evidence indicates that the underlying mechanism constitutes sterile inflammation triggered by cell damage, in which hepatocyte NOD-like receptor family pyrin domain-containing 3 inflammasome activation and pyroptosis play key roles. As extracellular histones act as damage-associated molecular patterns and mediate tissue toxicity and inflammation, we aimed to investigate whether extracellular histones contribute to inducing hepatocyte pyroptosis following heat stroke, promoting the development of liver inflammation and injury, and elucidate the potential underlying mechanisms. METHODS Exogenous histones were administered to AML-12 murine hepatocytes or male aged 8-12 week mice following hyperthermic treatment (at 39 °C in a chamber with 60 % relative humidity). Prior to heat exposure, endogenous histones were neutralized using neutralizing antibodies, inflammasomes were inhibited by RNA silencing, and Toll-like receptor 9 was modulated using a pharmacological agonist or antagonist. Inflammasome assembly, caspase-1 activation, histological changes, and liver enzyme levels were measured. Statistical comparison of more than two groups was performed using one-way ANOVA with Tukey's post-hoc testing. The correlations were analyzed using Pearson's correlation test. All experiments were repeated thrice. A p-value < 0.05 was considered significant. RESULTS Heat stroke induced histone release into the extracellular space at levels correlating with liver injury. Moreover, extracellular histones augmented heat stroke-induced liver injury both in vitro and in vivo in a dose- and time-dependent manner, whereas neutralizing histones conferred protection following heat stroke. Histones mediated NOD-like receptor family pyrin domain-containing 3 inflammasome activation through the Toll-like receptor 9 signaling pathway, which resulted in hepatocyte pyroptosis and liver inflammation. CONCLUSIONS Our findings show that histones are critical mediators of hepatocyte pyroptosis that aggravate liver injury in a heat stroke setting. Therefore, we suggest extracellular histones as potential therapeutic targets to limit heat stroke-induced cell death and liver injury.
Collapse
Affiliation(s)
- Yue Li
- Department of Emergency Medicine, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510310, China; Department of Intensive Care Unit, Jiangmen People's Hospital, Southern Medical University, Jiangmen, Guangdong 529020, China; General Hospital of Southern Theatre Command of PLA, Guangzhou, Guangdong 510010, China
| | - Huan Li
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China; Department of ICU, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Youqing Tang
- Department of Emergency Medicine, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510310, China.
| | - Yongzhang Rong
- Department of Intensive Care Unit, Jiangmen People's Hospital, Southern Medical University, Jiangmen, Guangdong 529020, China.
| |
Collapse
|
16
|
Qin J, Cao P, Ding X, Zeng Z, Deng L, Luo L. Machine learning identifies ferroptosis-related gene ANXA2 as potential diagnostic biomarkers for NAFLD. Front Endocrinol (Lausanne) 2023; 14:1303426. [PMID: 38192427 PMCID: PMC10773757 DOI: 10.3389/fendo.2023.1303426] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/14/2023] [Indexed: 01/10/2024] Open
Abstract
Introduction Non-alcoholic fatty liver disease (NAFLD), a major cause of chronic liver disease, still lacks effective therapeutic targets today. Ferroptosis, a type of cell death characterized by lipid peroxidation, has been linked to NAFLD in certain preclinical trials, yet the exact molecular mechanism remains unclear. Thus, we analyzed the relationship between ferroptosis genes and NAFLD using high-throughput data. Method We utilized a total of 282 samples from five datasets, including two mouse ones, one human one, one single nucleus dataset and one single cell dataset from Gene Expression Omnibus (GEO), as the data basis of our study. To filter robust treatment targets, we employed four machine learning methods (LASSO, SVM, RF and Boruta). In addition, we used an unsupervised consensus clustering algorithm to establish a typing scheme for NAFLD based on the expression of ferroptosis related genes (FRGs). Our study is also the first to investigate the dynamics of FRGs throughout the disease process by time series analysis. Finally, we validated the relationship between core gene and ferroptosis by in vitro experiments on HepG2 cells. Results We discovered ANXA2 as a central focus in NAFLD and indicated its potential to boost ferroptosis in HepG2 cells. Additionally, based on the results obtained from time series analysis, ANXA2 was observed to significantly define the disease course of NAFLD. Our results demonstrate that implementing a ferroptosis-based staging method may hold promise for the diagnosis and treatment of NAFLD. Conclusion Our findings suggest that ANXA2 may be a useful biomarker for the diagnosis and characterization of NAFLD.
Collapse
Affiliation(s)
- Jingtong Qin
- The First Clinical College, Guangdong Medical University, Zhanjiang, China
| | - Peng Cao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuexuan Ding
- The First Clinical College, Guangdong Medical University, Zhanjiang, China
| | - Zeyao Zeng
- The First Clinical College, Guangdong Medical University, Zhanjiang, China
| | - Liyan Deng
- The First Clinical College, Guangdong Medical University, Zhanjiang, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| |
Collapse
|
17
|
Tang N, Zhu Y, Yu J. Xihuang pill facilitates glioma cell pyroptosis via the POU4F1/STAT3 axis. Funct Integr Genomics 2023; 23:334. [PMID: 37962640 DOI: 10.1007/s10142-023-01263-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/20/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
Glioma is the most common malignancy in the central nervous system. This study aims to disclose the impacts of Xihuang pill (XHP), a traditional Chinese formula, on glioma cell pyroptosis and relevant molecular mechanism. U251 and SHG-44 cells were treated with XHP alone or together with oe-POU4F1 and sh-STAT3. CCK8 assay detected the viability, flow cytometry evaluated pyroptosis, and microscopy observed cell morphology. LDH release was determined by the LDH kit and the levels of IL-1β and IL-18 were detected by ELISA. Immunofluorescence showed NLRP3 expression in glioma cells and western blotting measured the levels of POU4F1, STAT3, NLRP3, ASC, cleaved caspase-1, and IL-1β. The binding of POU4F1 to STAT3 was verified. Primary glioma model was established to observe tumor change by in vivo imaging, determine the levels of Ki67 and NLRP3 by immunochemistry, and detect relevant protein levels by western blotting. XHP treatment alone downregulated POU4F1 and STAT3 levels, aroused pyroptotic appearance in glioma cells such as ballooning swelling, reduced cell viability and number of pyroptotic cells, increased LDH release and IL-1β and IL-18 levels, formed NLRP3 sports in cells, and elevated the levels of pyroptosis-related proteins. However, POU4F1 overexpression or STAT3 silencing suppressed XHP-promoted pyroptosis. Mechanistically, POU4F1 acted as a transcription factor of STAT3 and regulated its transcription. In primary glioma models, XHP enhanced glioma cell pyroptosis and blocked glioma growth. XHP facilitates glioma cell pyroptosis via the POU4F1/STAT3 axis.
Collapse
Affiliation(s)
- Ning Tang
- Department of Neurosurgery, The First Affiliated Hospital of Hunan University of Chinese Medicine, No. 95 Shaoshan Middle Road, Changsha, Hunan, 410007, People's Republic of China
| | - Yuanyuan Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Hunan University of Chinese Medicine, No. 95 Shaoshan Middle Road, Changsha, Hunan, 410007, People's Republic of China
| | - Jianbai Yu
- Department of Neurosurgery, The First Affiliated Hospital of Hunan University of Chinese Medicine, No. 95 Shaoshan Middle Road, Changsha, Hunan, 410007, People's Republic of China.
| |
Collapse
|
18
|
Lei J, Sun P, Sheng J, Wang H, Xie Y, Song J. The intricate role of annexin A2 in kidney: a comprehensive review. Ren Fail 2023; 45:2273427. [PMID: 37955107 PMCID: PMC10653649 DOI: 10.1080/0886022x.2023.2273427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Annexin A2 (Anxa2) is a calcium (Ca2+)-regulated phospholipid binding protein composed of a variable N-terminus and a conserved core domain. This protein has been widely found in many tissues and fluids, including tubule cells, glomerular epithelial cells, renal vessels, and urine. In acute kidney injury, the expression level of this protein is markedly elevated in response to acute stress. Moreover, Anxa2 is a novel biomarker and potential therapeutic target with prognostic value in chronic kidney disease. In addition, Anxa2 is associated not only with clear-cell renal cell carcinoma differentiation but also the formation of calcium-related nephrolithiasis. In this review, we discuss the characteristics and functions of Anxa2 and focus on recent reports on the role of Anxa2 in the kidney, which may be useful for future research.
Collapse
Affiliation(s)
- Juan Lei
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Pingping Sun
- Department of Internal Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
| | - Jingyi Sheng
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Hongri Wang
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Yifan Xie
- Department of Rheumatism and Immunology, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Jiayu Song
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
19
|
Cerquetella M, Mangiaterra S, Pinnella F, Rossi G, Marchegiani A, Gavazza A, Serri E, Di Cerbo A, Marini C, Cecconi D, Sorio D, Marchetti V, Vincenzetti S. Fecal Proteome Profile in Dogs Suffering from Different Hepatobiliary Disorders and Comparison with Controls. Animals (Basel) 2023; 13:2343. [PMID: 37508119 PMCID: PMC10376375 DOI: 10.3390/ani13142343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
In the present study, the fecal proteomes of clinically healthy dogs (HD = n. 10), of dogs showing clinical, ultrasonographic, and/or laboratory evidence of different hepatobiliary dysfunction (DHD = n. 10), and of dogs suffering from chronic hepatitis (CHD = n. 10) were investigated with an Ultimate 3000 nanoUPLC system, coupled to an Orbitrap Fusion Lumos Tribrid mass spectrometer. Fifty-two different proteins of canine origin were identified qualitatively in the three study groups, and quantitative differences were found in 55 proteins when comparing groups. Quantitatively, a total of 41 and 36 proteins were found differentially abundant in the DHD and CHD groups compared to the control HD, and 38 proteins resulted dysregulated in the CHD group as compared to the DHD group. Among the various proteins, differently abundant fecal fibronectin and haptoglobin were more present in the feces of healthy and DHD dogs than in chronic ones, leading us to hypothesize its possible diagnostic/monitoring role in canine chronic hepatitis. On the other hand, the trefoil factor 2 was increased in DHD dogs. Our results show that the analysis of the fecal proteome is a very promising field of study, and in the case of dogs suffering from different hepatobiliary disorders, it was able to highlight both qualitative and quantitative differences among the three groups included. Results need to be confirmed with western blotting and in further studies.
Collapse
Affiliation(s)
- Matteo Cerquetella
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica, MC, Italy
| | - Sara Mangiaterra
- Futuravet Veterinary Referral Center, 62029 Tolentino, MC, Italy
| | - Francesco Pinnella
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica, MC, Italy
| | - Giacomo Rossi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica, MC, Italy
| | - Andrea Marchegiani
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica, MC, Italy
| | - Alessandra Gavazza
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica, MC, Italy
| | - Evelina Serri
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica, MC, Italy
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica, MC, Italy
| | - Carlotta Marini
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica, MC, Italy
| | - Daniela Cecconi
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, VR, Italy
| | - Daniela Sorio
- Centre for Technological Platforms (CPT), University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, VR, Italy
| | - Veronica Marchetti
- Department of Veterinary Sciences, University of Pisa, Via Livornese, San Piero a Grado, 56122 Pisa, PI, Italy
| | - Silvia Vincenzetti
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica, MC, Italy
| |
Collapse
|
20
|
Liu N, Liu M, Jiang M, Li Z, Chen W, Wang W, Fu X, Qi M, Ali MH, Zou N, Liu Q, Tang H, Chu S. Isoliquiritigenin alleviates the development of alcoholic liver fibrosis by inhibiting ANXA2. Biomed Pharmacother 2023; 159:114173. [PMID: 36680814 DOI: 10.1016/j.biopha.2022.114173] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/21/2023] Open
Abstract
The study aimed to investigate the effect of isoliquiritigenin (ISL) on model of alcoholic liver fibrosis (ALF). C57BL/6 mice were used to establish animal model of ALF, HSC-T6 cells were used to establish alcohol-activated cell model, and tandem mass tag (TMT) assays were used to analyze the proteome. The results showed that ISL obviously alleviated hepatic fibrosis in model mice. ISL visually improved the area of liver pathological stasis and deposition of fibrillar collagen (Sirius Red staining, Masson staining), inhibited the mRNA expression levels of interleukin 6 (IL-6), tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β) in liver tissues. ISL down-regulated the mRNA expression levels of IL-6 and transforming growth factor-β1(TGF-β1) in activated hepatic stellate cells (HSCs). And ISL significantly reduced annexin A2 (ANXA2) in vitro detected by TMT proteomics technology. Interestingly, it was found for the first time that ISL could inhibit ANXA2 expression both in vivo and in vitro, block the sphingosine kinases (SPHKs)/sphingosine-1-phosphate (S1P)/interleukin 17 (IL-17) signaling pathway and regulate the expression of α-smooth muscle actin (α-SMA) by inhibiting the phosphorylation of signal transducer and activator of transcription 3 (STAT3) at the downstream signal to finally reverse HSCs activation and hepatic fibrosis. Thus, we demonstrated that ISL is a drug monomer with notable anti-hepatic fibrosis activity.
Collapse
Affiliation(s)
- Na Liu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Min Liu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Mengwei Jiang
- Alcohol Research Center, University of Louisville, Louisville, KY, USA
| | - Zhenwei Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Weijun Chen
- School of Traditional Chinese Medicine, Xinjiang Second Medical College, Shengli Road 12, Karamay, China
| | - Wenxuan Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Xianglei Fu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Man Qi
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Md Hasan Ali
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Nan Zou
- First Affiliated Hospital, School of Medicine, Shihezi University, North 2nd Road 107, Shihezi, China
| | - Qingguang Liu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Hui Tang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China.
| | - Shenghui Chu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China.
| |
Collapse
|