1
|
Chen W, Li Z, Tang J, Liu S. Dendritic cell-based immunotherapy for head and neck squamous cell carcinoma: advances and challenges. Front Immunol 2025; 16:1573635. [PMID: 40491907 PMCID: PMC12146400 DOI: 10.3389/fimmu.2025.1573635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 05/05/2025] [Indexed: 06/11/2025] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a prevalent cancer with poor response to conventional treatments such as surgery, chemotherapy and radiotherapy. Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of HNSCC, but many patients still exhibit poor responses due to insufficient T cell infiltration and impaired dendritic cell (DC) function within the tumor microenvironment. DCs are crucial for initiating anti-tumor immune responses, but their dysfunction in HNSCC leads to inadequate T cell activation and immune evasion. DC-based immunotherapy offers a promising approach to enhance ICIs therapy efficacy by improving DC function and enhancing T cell-mediated anti-tumor immune response. This review discusses the mechanisms underlying DC dysfunction in HNSCC, recent advances in DC-based immunotherapy, and the potential for combination therapies to overcome resistance to ICIs. Future strategies should focus on optimizing DC vaccines and developing personalized treatments to improve outcomes for HNSCC patients.
Collapse
Affiliation(s)
| | | | | | - Shuguang Liu
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Wang Y, Han J, Zhu Y, Huang N, Qu N. New advances in the therapeutic strategy of head and neck squamous cell carcinoma: A review of latest therapies and cutting-edge research. Biochim Biophys Acta Rev Cancer 2025; 1880:189230. [PMID: 39608621 DOI: 10.1016/j.bbcan.2024.189230] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a common and aggressive malignancy with a poor prognosis, particularly when diagnosed at advanced stages. Despite progress in surgical, chemotherapeutic, and radiotherapeutic interventions, the five-year survival rate remains low due to high rates of recurrence and therapeutic resistance. This review explores recent advances in therapeutic strategies for HNSCC, focusing on targeted therapies, immunotherapy, and innovative drug delivery systems. Targeted therapies, such as EGFR inhibitors and PI3K/AKT/mTOR pathway inhibitors, offer promising options for overcoming HNSCC, though resistance challenges persist. Emerging treatments, including dual-target inhibitors and personalized therapeutic approaches, show potential in addressing these limitations. Immunotherapy, particularly PD-1/PD-L1 blockade, has achieved positive outcomes in a subset of patients, though overall response rates remain modest. Strategies aimed at enhancing immune responses, such as combination therapies and nanotechnology-based drug delivery systems, are actively being investigated to improve efficacy. This review also underscores the critical role of the tumor microenvironment and epithelial-mesenchymal transition (EMT) in HNSCC progression and therapeutic resistance. Novel approaches, including smart drug delivery systems utilizing nanotechnology and immune modulation, are opening new avenues for more personalized and effective treatments. Ongoing interdisciplinary research into molecular targets and advanced drug delivery techniques holds great promise for significantly improving patient outcomes in HNSCC.
Collapse
Affiliation(s)
- Yuting Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Han
- Department of Oral and Maxillofacial Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Rd., Huangpu District, Shanghai 200011, China
| | - Yongxue Zhu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Naisi Huang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ning Qu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Bhandari C, Moffat A, Fakhry J, Malkoochi A, Nguyen A, Trinh B, Hoyt K, Story MD, Hasan T, Obaid G. A single photodynamic priming protocol augments delivery of ⍺-PD-L1 mAbs and induces immunogenic cell death in head and neck tumors. Photochem Photobiol 2024; 100:1647-1658. [PMID: 37818742 PMCID: PMC11006828 DOI: 10.1111/php.13865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023]
Abstract
Photodynamic priming (PDP) leverages the photobiological effects of subtherapeutic photodynamic therapy (PDT) regimens to modulate the tumor vasculature and stroma. PDP also sensitizes tumors to secondary therapies, such as immunotherapy by inducing a cascade of molecular events, including immunogenic cell death (ICD). We and others have shown that PDP improves the delivery of antibodies, among other theranostic agents. However, it is not known whether a single PDP protocol is capable of both inducing ICD in vivo and augmenting the delivery of immune checkpoint inhibitors. In this rapid communication, we show for the first time that a single PDP protocol using liposomal benzoporphyrin derivative (Lipo-BPD, 0.25 mg/kg) with 690 nm light (75 J/cm2, 100 mW/cm2) simultaneously doubles the delivery of ⍺-PD-L1 antibodies in murine AT-84 head and neck tumors and induces ICD in vivo. ICD was observed as a 3-11 fold increase in tumor cell exposure of damage-associated molecular patterns (Calreticulin, HMGB1, and HSP70). These findings suggest that this single, highly translatable PDP protocol using clinically relevant Lipo-BPD holds potential for improving immunotherapy outcomes in head and neck cancer. It can do so by simultaneously overcoming physical barriers to the delivery of immune checkpoint inhibitors, and biochemical barriers that contribute to immunosuppression.
Collapse
Affiliation(s)
- Chanda Bhandari
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Azophi Moffat
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - John Fakhry
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Ashritha Malkoochi
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Austin Nguyen
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Brian Trinh
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Kenneth Hoyt
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
- Present Address: Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Michael D. Story
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Girgis Obaid
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
4
|
Yu JF, Wen Y, Li M. An Active Self-Mitochondria-Targeting Cyanine Immunomodulator for Near-Infrared II Fluorescence Imaging-Guided Synergistic Photodynamic Immunotherapy. Adv Healthc Mater 2024; 13:e2401061. [PMID: 38849128 DOI: 10.1002/adhm.202401061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/05/2024] [Indexed: 06/09/2024]
Abstract
Photodynamic therapy targeting mitochondria represents a promising therapeutic strategy for fighting diverse types of cancers. However, the currently available photosensitizers (PSs) suffer from insufficient therapeutic potency, limited mitochondria delivery efficiency, and the inability to treat invisible metastatic distal cancers. Herein, an active self-mitochondria-targeting heptapeptide cyanine (HCy) immunomodulator (I2HCy-QAP) is reported for near-infrared II (NIR-II) fluorescence imaging-guided photodynamic immunotherapy of primary and distal metastatic cancers. The I2HCy-QAP is designed by introducing a quaternary ammonium salt with a phenethylamine skeleton (QAP) into the iodinated HCy photosensitizer. The I2HCy-QAP can precisely target mitochondria due to the lipophilic cationic QAP unit, present strong NIR-II fluorescence tail emission, and effectively generate singlet oxygen 1O2 under NIR laser irradiation, thereby inducing mitochondria-targeted damages and eliciting strong systemic immunogenic cell death immune responses. The combination of the I2HCy-QAP-mediated photodynamic immunotherapy with anti-programmed death-1 antibody therapy achieves remarkable therapeutic efficacy against both primary and distal metastatic cancers with significant inhibition of lung metastasis in a triple-negative breast cancer model. This work provides a new concept for designing high-performance NIR emissive cyanine immunomodulators for NIR-II fluorescence-guided photodynamic immunotherapy.
Collapse
Affiliation(s)
- Jin-Feng Yu
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Yu Wen
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
- Furong Laboratory, Central South University, Changsha, Hunan, 410008, China
| | - Ming Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| |
Collapse
|
5
|
Sun H, Wang X, Guo Z, Hu Z, Yin Y, Duan S, Jia W, Lu W, Hu J. Fe 3O 4 Nanoparticles That Modulate the Polarisation of Tumor-Associated Macrophages Synergize with Photothermal Therapy and Immunotherapy (PD-1/PD-L1 Inhibitors) to Enhance Anti-Tumor Therapy. Int J Nanomedicine 2024; 19:7185-7200. [PMID: 39050876 PMCID: PMC11268759 DOI: 10.2147/ijn.s459400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/22/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction Traditional surgical resection, radiotherapy, and chemotherapy have been the treatment options for patients with head and neck squamous cell carcinoma (HNSCC) over the past few decades. Nevertheless, the five-year survival rate for patients has remained essentially unchanged, and research into treatments has been relatively stagnant. The combined application of photothermal therapy (PTT) and immunotherapy for treating HNSCC has considerable potential. Methods Live-dead cell staining and CCK-8 assays proved that Fe3O4 nanoparticles are biocompatible in vitro. In vitro, cellular experiments utilized flow cytometry and immunofluorescence staining to verify the effect of Fe3O4 nanoparticles on the polarisation of tumor-associated macrophages. In vivo, animal experiments were conducted to assess the inhibitory effect of Fe3O4 nanoparticles on tumor proliferation under the photothermal effect in conjunction with BMS-1. Tumour tissue sections were stained to observe the effects of apoptosis and the inhibition of tumor cell proliferation. The histological damage to animal organs was analyzed by hematoxylin and eosin (H&E) staining. Results The stable photothermal properties of Fe3O4 nanoparticles were validated by in vitro cellular and in vivo animal experiments. Fe3O4 photothermal action not only directly triggered immunogenic cell death (ICD) and enhanced the immunogenicity of the tumor microenvironment but also regulated the expression of tumor-associated macrophages (TAMs), up-regulating CD86 and down-regulating CD206 to inhibit tumor growth. The PD-1/PD-L1 inhibitor promoted tumor suppression, and reduced tumor recurrence and metastasis. In vivo studies demonstrated that the photothermal action exhibited a synergistic effect when combined with immunotherapy, resulting in significant suppression of primary tumors and an extension of survival. Conclusion In this study, we applied Fe3O4 photothermolysis in a biomedical context, combining photothermolysis with immunotherapy, exploring a novel pathway for treating HNSCC and providing a new strategy for effectively treating HNSCC.
Collapse
Affiliation(s)
- Haishui Sun
- Department of Oral and Maxillofacial - Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, People’s Republic of China
| | - Xiao Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of D&A for Metal Functional Materials, School of Materials Science and Engineering, Tongji University, Shanghai, People’s Republic of China
| | - Zhaoyang Guo
- School of Stomatology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Zhenrong Hu
- Department of Stomatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Yuanchen Yin
- School of Stomatology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Shuhan Duan
- Shanghai Key Laboratory of Stomatology, Department of Oral Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Wenwen Jia
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, People’s Republic of China
| | - Wei Lu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of D&A for Metal Functional Materials, School of Materials Science and Engineering, Tongji University, Shanghai, People’s Republic of China
| | - Jingzhou Hu
- Department of Oral and Maxillofacial - Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, Zhang Zhiyuan Academician Workstation, Hainan Western Central Hospital, Shanghai Ninth People’s Hospital, Danzhou, Hainan, People’s Republic of China
| |
Collapse
|
6
|
Aebisher D, Przygórzewska A, Bartusik-Aebisher D. The Latest Look at PDT and Immune Checkpoints. Curr Issues Mol Biol 2024; 46:7239-7257. [PMID: 39057071 PMCID: PMC11275601 DOI: 10.3390/cimb46070430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Photodynamic therapy (PDT) can not only directly eliminate cancer cells, but can also stimulate antitumor immune responses. It also affects the expression of immune checkpoints. The purpose of this review is to collect, analyze, and summarize recent news about PDT and immune checkpoints, along with their inhibitors, and to identify future research directions that may enhance the effectiveness of this approach. A search for research articles published between January 2023 and March 2024 was conducted in PubMed/MEDLINE. Eligibility criteria were as follows: (1) papers describing PDT and immune checkpoints, (2) only original research papers, (3) only papers describing new reports in the field of PDT and immune checkpoints, and (4) both in vitro and in vivo papers. Exclusion criteria included (1) papers written in a language other than Polish or English, (2) review papers, and (3) papers published before January 2023. 24 papers describing new data on PDT and immune checkpoints have been published since January 2023. These included information on the effects of PDT on immune checkpoints, and attempts to associate PDT with ICI and with other molecules to modulate immune checkpoints, improve the immunosuppressive environment of the tumor, and resolve PDT-related problems. They also focused on the development of new nanoparticles that can improve the delivery of photosensitizers and drugs selectively to the tumor. The effect of PDT on the level of immune checkpoints and the associated activity of the immune system has not been fully elucidated further, and reports in this area are divergent, indicating the complexity of the interaction between PDT and the immune system. PDT-based strategies have been shown to have a beneficial effect on the delivery of ICI to the tumor. The utility of PDT in enhancing the induction of the antitumor response by participating in the triggering of immunogenic cell death, the exposure of tumor antigens, and the release of various alarm signals that together promote the activation of dendritic cells and other components of the immune system has also been demonstrated, with the result that PDT can enhance the antitumor immune response induced by ICI therapy. PDT also enables multifaceted regulation of the tumor's immunosuppressive environment, as a result of which ICI therapy has the potential to achieve better antitumor efficacy. The current review has presented evidence of PDT's ability to modulate the level of immune checkpoints and the effectiveness of the association of PDT with ICIs and other molecules in inducing an effective immune response against cancer cells. However, these studies are at an early stage and many more observations need to be made to confirm their efficacy. The new research directions indicated may contribute to the development of further strategies.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College, The Rzeszów University, 35-959 Rzeszów, Poland
| | - Agnieszka Przygórzewska
- English Division Science Club, Medical College of The Rzeszów University, 35-025 Rzeszów, Poland;
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of The Rzeszów University, 35-025 Rzeszów, Poland;
| |
Collapse
|
7
|
Thiruppathi J, Vijayan V, Park IK, Lee SE, Rhee JH. Enhancing cancer immunotherapy with photodynamic therapy and nanoparticle: making tumor microenvironment hotter to make immunotherapeutic work better. Front Immunol 2024; 15:1375767. [PMID: 38646546 PMCID: PMC11026591 DOI: 10.3389/fimmu.2024.1375767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Cancer immunotherapy has made tremendous advancements in treating various malignancies. The biggest hurdle to successful immunotherapy would be the immunosuppressive tumor microenvironment (TME) and low immunogenicity of cancer cells. To make immunotherapy successful, the 'cold' TME must be converted to 'hot' immunostimulatory status to activate residual host immune responses. To this end, the immunosuppressive equilibrium in TME should be broken, and immunogenic cancer cell death ought to be induced to stimulate tumor-killing immune cells appropriately. Photodynamic therapy (PDT) is an efficient way of inducing immunogenic cell death (ICD) of cancer cells and disrupting immune-restrictive tumor tissues. PDT would trigger a chain reaction that would make the TME 'hot' and have ICD-induced tumor antigens presented to immune cells. In principle, the strategic combination of PDT and immunotherapy would synergize to enhance therapeutic outcomes in many intractable tumors. Novel technologies employing nanocarriers were developed to deliver photosensitizers and immunotherapeutic to TME efficiently. New-generation nanomedicines have been developed for PDT immunotherapy in recent years, which will accelerate clinical applications.
Collapse
Affiliation(s)
- Jayalakshmi Thiruppathi
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea
- Combinatorial Tumor Immunotherapy Medical Research Center (MRC), Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- National Immunotherapy Innovation Center, Hwasun-gun, Jeonnam, Republic of Korea
| | - Veena Vijayan
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
| | - In-Kyu Park
- National Immunotherapy Innovation Center, Hwasun-gun, Jeonnam, Republic of Korea
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- Department of Radiology, Biomolecular Theranostics (BiT) Laboratory, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
| | - Shee Eun Lee
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea
- National Immunotherapy Innovation Center, Hwasun-gun, Jeonnam, Republic of Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Joon Haeng Rhee
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea
- Combinatorial Tumor Immunotherapy Medical Research Center (MRC), Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- National Immunotherapy Innovation Center, Hwasun-gun, Jeonnam, Republic of Korea
| |
Collapse
|
8
|
Huang Q, Wang F, Hao D, Li X, Li X, Lei T, Yue J, Liu C. Deciphering tumor-infiltrating dendritic cells in the single-cell era. Exp Hematol Oncol 2023; 12:97. [PMID: 38012715 PMCID: PMC10680280 DOI: 10.1186/s40164-023-00459-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023] Open
Abstract
Dendritic cells (DCs) serve as a pivotal link connecting innate and adaptive immunity by processing tumor-derived antigens and activating T cells. The advent of single-cell sequencing has revolutionized the categorization of DCs, enabling a high-resolution characterization of the previously unrecognized diversity of DC populations infiltrating the intricate tumor microenvironment (TME). The application of single-cell sequencing technologies has effectively elucidated the heterogeneity of DCs present in the tumor milieu, yielding invaluable insights into their subpopulation structures and functional diversity. This review provides a comprehensive summary of the current state of knowledge regarding DC subtypes in the TME, drawing from single-cell studies conducted across various human tumors. We focused on the categorization, functions, and interactions of distinct DC subsets, emphasizing their crucial roles in orchestrating tumor-related immune responses. Additionally, we delve into the potential implications of these findings for the identification of predictive biomarkers and therapeutic targets. Enhanced insight into the intricate interplay between DCs and the TME promises to advance our comprehension of tumor immunity and, in turn, pave the way for the development of more efficacious cancer immunotherapies.
Collapse
Affiliation(s)
- Qingyu Huang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Fuhao Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Di Hao
- The Second Clinical Medical College, Anhui Medical University, Hefei, 230032, China
| | - Xinyu Li
- The Second Clinical Medical College, Anhui Medical University, Hefei, 230032, China
| | - Xiaohui Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Tianyu Lei
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jinbo Yue
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.
| | - Chao Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.
| |
Collapse
|
9
|
Calvillo-Rodríguez KM, Lorenzo-Anota HY, Rodríguez-Padilla C, Martínez-Torres AC, Scott-Algara D. Immunotherapies inducing immunogenic cell death in cancer: insight of the innate immune system. Front Immunol 2023; 14:1294434. [PMID: 38077402 PMCID: PMC10701401 DOI: 10.3389/fimmu.2023.1294434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023] Open
Abstract
Cancer immunotherapies include monoclonal antibodies, cytokines, oncolytic viruses, cellular therapies, and other biological and synthetic immunomodulators. These are traditionally studied for their effect on the immune system's role in eliminating cancer cells. However, some of these therapies have the unique ability to directly induce cytotoxicity in cancer cells by inducing immunogenic cell death (ICD). Unlike general immune stimulation, ICD triggers specific therapy-induced cell death pathways, based on the release of damage-associated molecular patterns (DAMPs) from dying tumour cells. These activate innate pattern recognition receptors (PRRs) and subsequent adaptive immune responses, offering the promise of sustained anticancer drug efficacy and durable antitumour immune memory. Exploring how onco-immunotherapies can trigger ICD, enhances our understanding of their mechanisms and potential for combination strategies. This review explores the complexities of these immunotherapeutic approaches that induce ICD, highlighting their implications for the innate immune system, addressing challenges in cancer treatment, and emphasising the pivotal role of ICD in contemporary cancer research.
Collapse
Affiliation(s)
- Kenny Misael Calvillo-Rodríguez
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico
| | - Helen Yarimet Lorenzo-Anota
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico
- The Institute for Obesity Research, Tecnológico de Monterrey, Monterrey, NL, Mexico
| | - Cristina Rodríguez-Padilla
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico
| | - Ana Carolina Martínez-Torres
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico
| | - Daniel Scott-Algara
- Département d'Immunologie, Unité de Biologie Cellulaire des Lymphocytes, Pasteur Institute, Paris, France
| |
Collapse
|
10
|
Olszowy M, Nowak-Perlak M, Woźniak M. Current Strategies in Photodynamic Therapy (PDT) and Photodynamic Diagnostics (PDD) and the Future Potential of Nanotechnology in Cancer Treatment. Pharmaceutics 2023; 15:1712. [PMID: 37376160 DOI: 10.3390/pharmaceutics15061712] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Photodynamic diagnostics (PDD) and photodynamic therapy (PDT) are well-established medical technologies used for the diagnosis and treatment of malignant neoplasms. They rely on the use of photosensitizers, light and oxygen to visualize or eliminate cancer cells. This review demonstrates the recent advancements in these modalities with the use of nanotechnology, including quantum dots as innovative photosensitizers or energy donors, liposomes and micelles. Additionally, this literature review explores the combination of PDT with radiotherapy, chemotherapy, immunotherapy, and surgery for treating various neoplasms. The article also focuses on the latest achievements in PDD and PDT enhancements, which seem to be very promising in the field of oncology.
Collapse
Affiliation(s)
- Marta Olszowy
- Department of Clinical and Experimental Pathology, Division of General and Experimental Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Martyna Nowak-Perlak
- Department of Clinical and Experimental Pathology, Division of General and Experimental Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Marta Woźniak
- Department of Clinical and Experimental Pathology, Division of General and Experimental Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|