1
|
Kang JH, Toita R, Kawano T, Murata M, Kano A. Phospholipids and their metabolites as diagnostic biomarkers of human diseases. Prog Lipid Res 2025; 99:101340. [PMID: 40409729 DOI: 10.1016/j.plipres.2025.101340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/03/2025] [Accepted: 05/18/2025] [Indexed: 05/25/2025]
Abstract
Phospholipids that occur predominantly in the plasma membrane of mammalian cells are phosphatidylcholine (PC), phosphatidylserine (PS), phosphatidylethanolamine (PE), sphingomyelin (SM), and phosphatidylinositol (or phosphoinositide; PI). These membrane phospholipids are a promising source of disease-related biomarkers. Phospholipids and their metabolites are altered by the type of disease or disease progression. Metabolomics has shown that increased or decreased levels of altered phospholipids and their metabolites can be useful indicators for the diagnosis of various human diseases. In this review, we discuss the utility of the five major membrane phospholipids (PC, PS, PE, and SM, and PI) and their metabolites as diagnostic biomarkers of human diseases.
Collapse
Affiliation(s)
- Jeong-Hun Kang
- National Cerebral and Cardiovascular Center Research Institute, 6-1 Shinmachi, Kishibe, Suita, Osaka 564-8565, Japan.
| | - Riki Toita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan; AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, AIST, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takahito Kawano
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masaharu Murata
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Arihiro Kano
- Institute for Materials Chemistry and Engineering (IMCE), Kyushu University, 6-1 Kasuga-kouen, Kasuga, Fukuoka 819-0395, Japan
| |
Collapse
|
2
|
Polania-Sandoval C, Byeon SK, Hartwell J, Prudencio M, Petrucelli L, Brigham T, Meschia JF, Pandey A, Erben Y. Lipidomic Expression Analysis in Carotid Atherosclerotic Disease: A Systematic Review. Ann Vasc Surg 2025; 113:83-94. [PMID: 39855383 DOI: 10.1016/j.avsg.2024.12.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025]
Abstract
BACKGROUND Lipids are key molecules for atherosclerosis, with tight regulation mechanisms, making them potential biomarkers for disease-specific diagnostics and therapeutics. Therefore, we aim to perform a systematic literature review on lipidomic analysis in serum/plasma and plaque samples of patients with carotid atherosclerosis. METHODS We performed a systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines on the lipidomic profile in serum/plasma and carotid artery plaques from patients with significant carotid disease by degree of stenosis in preoperative imaging and clinical presentation (symptomatic, asymptomatic, and radiation-induced carotid disease). Main outcome was the differential lipidomic expression of serum/plasma, and plaque lipids of patients with carotid artery atherosclerosis. Studies were screened using the Newcastle-Ottawa Scale to determine the quality of the design and content of the selected manuscripts. RESULTS We included fourteen studies, from which ten included plaque analysis. The lipidomic analysis revealed that sterols and hydroxycholesterols were consistently found in both blood and plaque across studies. Triacylglycerols were present in both sample types, with specific forms linked to radiation-induced carotid artery disease. Symptomatic patients exhibited esterified hydroxyeicosatetraenoic acids and arachidonic acid precursors exclusively in plaque with an inflammatory profile of the disease. In contrast, docosahexaenoic acid and eicosapentaenoic acid were associated with plaque stability. Diabetics showed nonesterified fatty acids and specific phospholipids only in plaque, indicating localized lipid changes. Other pathways relevant to disease progression include the sphingolipids and ceramide pathways with inflammatory profiling. CONCLUSION Lipidomic provides an innovative approach to stratify carotid atherosclerotic disease. Integrating lipidomic data with other -omics approaches may further enhance our understanding of disease mechanisms and aid in the development of precision medicine approaches, specifically in those patients at risk for early carotid atherosclerotic disease.
Collapse
Affiliation(s)
| | - Seul Kee Byeon
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Janelle Hartwell
- Division of Vascular and Endovascular Surgery, Mayo Clinic, Jacksonville, FL
| | | | | | - Tara Brigham
- Mayo Clinic Libraries, Mayo Clinic, Jacksonville, FL
| | | | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN; Manipal Academy of Higher Education, Manipal, Karnataka, India; Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | - Young Erben
- Division of Vascular and Endovascular Surgery, Mayo Clinic, Jacksonville, FL.
| |
Collapse
|
3
|
Lin F, Hu W, Yang C, Cheng B, Chen H, Li J, Zhu H, Zhang H, Yuan X, Ren X, Hong X, Tang X. Associations of combined lifestyle and metabolic risks with cancer incidence in the UK biobank study. BMC Cancer 2025; 25:547. [PMID: 40140964 PMCID: PMC11948676 DOI: 10.1186/s12885-025-13955-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Although metabolic syndrome (MetS) is associated with an increased risk of various cancers, the combined impact of MetS and healthy lifestyle factors (HLF) on cancer risk is unclear. This study aimed to investigate the independent and combined effects of MetS and HLF on the risk of 16 site-specific cancers in a large community-based cohort. METHODS A total of 289,557 participants in the UK Biobank were analyzed. MetS was defined using a combination of metabolic factors, while HLF scores were evaluated based on lifestyle behaviors, such as smoking, alcohol consumption, physical activity, and diet. Cox proportional hazard models were used to investigate the relationship between MetS or HLF and cancer risk, adjusting for age, sex, ethnicity, education level, family history of cancer, and the Townsend Deprivation Index (TDI). RESULTS During a median follow-up of 11.69 years, 11,190 individuals developed cancer. MetS was associated with an increased risk of 9 cancers in men and 7 cancers in women. Compared with participants with unfavorable lifestyles, regardless of metabolic status, HLF was significantly associated with decreased risk of overall cancer (without MetS: HR: 0.812; 95% CI: 0.745-0.886 for intermediate lifestyle and HR: 0.757; 95% CI: 0.669-0.855 for favorable lifestyle; with MetS: HR: 0.702; 95% CI: 0.572-0.862 for favorable lifestyle) and oesophagus, stomach, liver, lung, bronchus, trachea cancers in men and of lung, bronchus, trachea cancers in women. Our analysis demonstrated that the protective association between HLF and reduced cancer risk was confined to subgroups without MetS. Specifically, this association was observed for cancers of the lip, oral cavity, pharynx, colon, rectum, pancreas, kidney, bladder, and lymphoid leukemia in men, and for overall cancer in women(HR: 0.917; 95% CI: 0.862-0.975 for intermediate lifestyle and HR: 0.875; 95% CI: 0.817-0.938 for favorable lifestyle). CONCLUSION MetS elevates risks for multiple cancers, while adopting a healthy lifestyle reduces risks of oesophagus, stomach, and lung, bronchus, trachea cancers in men and lung, bronchus, trachea cancer in women, regardless of metabolic status. However, MetS counteracts lifestyle-mediated protection against specific cancers-including lip, oral cavity, pharynx, colon, rectum, pancreas, kidney, and bladder cancers in men, as well as pancreas and breast cancers in women. These findings underscore the necessity to develop metabolic status-stratified management strategies and implement proactive prevention of MetS.
Collapse
Affiliation(s)
- Feng Lin
- Department of Radiation Oncology, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Wen Hu
- Department of Radiation Oncology, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Chenfenglin Yang
- Department of Hepatobiliary Surgery, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Binglin Cheng
- Department of Radiation Oncology, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Hongfan Chen
- Department of Radiation Oncology, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Jiaxin Li
- Department of Obstetrics & Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hanrui Zhu
- Department of Radiation Oncology, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Haixiang Zhang
- Department of Radiation Oncology, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Xiang Yuan
- Department of Radiation Oncology, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Xianyue Ren
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xiaohong Hong
- Department of Radiation Oncology, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China.
| | - Xinran Tang
- Department of Radiation Oncology, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Su J, Zhou L, Liu J, Wang Y, Wang G. Noninvasive liver fibrosis markers are independently associated with carotid atherosclerosis risk in patients with nonalcoholic fatty liver disease. Scand J Gastroenterol 2024; 59:961-971. [PMID: 38907624 DOI: 10.1080/00365521.2024.2364878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/29/2024] [Accepted: 06/02/2024] [Indexed: 06/24/2024]
Abstract
OBJECTIVE Nonalcoholic fatty liver disease (NAFLD) is considered an independent risk factor for cardiovascular disease (CVD). The overall morbidity and mortality of CVD increase with higher fibrosis stage in NAFLD. Carotid atherosclerosis (CAS) is an important predictor of cardiovascular events. However, the relationship between liver fibrosis degree and the risk of CAS in NAFLD patients remains uncertain. We aimed to investigate the relationship between noninvasive liver fibrosis markers and CAS risk in patients with NAFLD. MATERIALS AND METHODS This study included 3,302 participants with NAFLD. Participants were divided into a CAS group and a non-CAS group based on carotid artery ultrasound results. They were then stratified into quartiles using various noninvasive liver fibrosis markers (fibrosis-4 (FIB-4), modified FIB-4 (mFIB-4), aminotransferase to platelet ratio index (APRI), aminotransferase to alanine aminotransferase ratio (AAR), AAR-to-platelet ratio index (AARPRI), and Forns index) to assess the associations between these markers and the risk of CAS. RESULTS In the NAFLD population, individuals with CAS exhibited elevated levels of blood pressure, glucose, lipids, and noninvasive liver fibrosis markers (p < 0.001). The higher quartiles of noninvasive liver fibrosis markers, including FIB-4, mFIB-4, AAR, AARPRI, and Forns index, were significantly associated with increased risks of CAS, even after adjusting for multiple CVD risk factors. CONCLUSIONS In individuals with NAFLD, increased noninvasive liver fibrosis markers were independently associated with elevated CAS risk, which may be beneficial in assessing the risk of CVD in individuals with NAFLD.
Collapse
Affiliation(s)
- Jingru Su
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, P. R. China
| | - Liyuan Zhou
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, P. R. China
| | - Jia Liu
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, P. R. China
| | - Ying Wang
- Medical Examination Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, P. R. China
| | - Guang Wang
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, P. R. China
| |
Collapse
|
5
|
Qian F, Ouyang B, Cai Z, Zhu D, Yu S, Zhao J, Wei N, Wang G, Wang L, Zhang J. Compound Shouwu Jiangzhi Granule regulates triacylglyceride synthesis to alleviate hepatic lipid accumulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155691. [PMID: 38744232 DOI: 10.1016/j.phymed.2024.155691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/10/2024] [Accepted: 04/28/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease with few therapeutic options currently available. Traditional Chinese medicine has been used for thousands of years and exhibited remarkable advantages against such complicated disease for its "multi-component, multi-target and multi-pathway" characteristics. Compound Shouwu Jiangzhi Granule (CSJG) is a clinical empirical prescription for the treatment of NAFLD, but its pharmacological mechanism remains unknown. METHODS The clinical efficacy of CSJG was retrospectively analyzed in NAFLD patients by comparing blood biomarkers levels and liver MR images before and after CSJG treatment. Then, high-fat/high-fructose (HFHF) diet-induced NAFLD mice were used to further confirm CSJG's effect against hepatic lipid accumulation through hepatic lipid determination and histopathological staining of liver samples. Next, the ingredients of CSJG were determined, and network pharmacology analysis was performed to predict potential targets of CSJG, followed by quantitative PCR (qPCR) and western blotting for verification. Then, lipidomics study was carried out to further explore the anti-NAFLD mechanism of CSJG from the perspective of triacylglyceride (TAG) synthesis but not free fatty acid (FFA) synthesis. The enzymes involved in this process were assayed by qPCR and western blotting. The potential interactions between the key enzymes of TAG synthesis and the active ingredients of CSJG were analyzed by molecular docking. RESULTS CSJG attenuated blood lipid levels and hepatic fat accumulation in both NAFLD patients and mice. Although network pharmacology analysis revealed the FFA synthesis pathway, CSJG only slightly affected it. Through lipidomics analysis, GSJG was found to significantly block the synthesis of diglycerides (DAGs) and TAGs in the liver, with decreased DGAT2 and increased PLD1 protein expression, which diverted DAGs from the synthesis of TAGs to the production of PEs, PCs and PAs and thus lowed TAGs level. Molecular docking suggested that rhein, luteolin and liquiritigenin from CSJG might be involved in this regulation. CONCLUSION Clinical and experimental evidence demonstrated that CSJG is a promising agent for the treatment of NAFLD. CSJG regulated TAGs synthesis to alleviate hepatic lipid accumulation. Rhein, luteolin and liquiritigenin from CSJG might play a role in it.
Collapse
Affiliation(s)
- Fei Qian
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Bingchen Ouyang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing, China
| | - Zuhuan Cai
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing, China
| | - Dan Zhu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Simiao Yu
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing, China
| | - Jingcheng Zhao
- School of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Naijie Wei
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing, China
| | - Guangji Wang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing, China.
| | - Lin Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, China.
| | - Jingwei Zhang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
6
|
Shao C, Ye J, Dong Z, Liao B, Feng S, Hu S, Zhong B. Phospholipid metabolism-related genotypes of PLA2R1 and CERS4 contribute to nonobese MASLD. Hepatol Commun 2024; 8:e0388. [PMID: 38836837 PMCID: PMC11155565 DOI: 10.1097/hc9.0000000000000388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 01/02/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Abnormal phospholipid metabolism is linked to metabolic dysfunction-associated steatotic liver disease (MASLD) development and progression. We aimed to clarify whether genetic variants of phospholipid metabolism modify these relationships. METHODS This case-control study consecutively recruited 600 patients who underwent MRI-based proton density fat fraction examination (240 participants with serum metabonomics analysis, 128 biopsy-proven cases) as 3 groups: healthy control, nonobese MASLD, and obese MASLD, (n = 200 cases each). Ten variants of phospholipid metabolism-related genes [phospholipase A2 Group VII rs1805018, rs76863441, rs1421378, and rs1051931; phospholipase A2 receptor 1 (PLA2R1) rs35771982, rs3828323, and rs3749117; paraoxonase-1 rs662 and rs854560; and ceramide synthase 4 (CERS4) rs17160348)] were genotyped using SNaPshot. RESULTS The T-allele of CERS4 rs17160348 was associated with a higher risk of both obese and nonobese MASLD (OR: 1.95, 95% CI: 1.20-3.15; OR: 1.76, 95% CI: 1.08-2.86, respectively). PLA2R1 rs35771982-allele is a risk factor for nonobese MASLD (OR: 1.66, 95% CI: 1.11-1.24), moderate-to-severe steatosis (OR: 3.24, 95% CI: 1.96-6.22), and steatohepatitis (OR: 2.61, 95% CI: 1.15-3.87), while the paraoxonase-1 rs854560 T-allele (OR: 0.50, 95% CI: 0.26-0.97) and PLA2R1 rs3749117 C-allele (OR: 1.70, 95% CI: 1.14-2.52) are closely related to obese MASLD. After adjusting for sphingomyelin level, the effect of the PLA2R1 rs35771982CC allele on MASLD was attenuated. Furthermore, similar effects on the association between the CERS4 rs17160348 C allele and MASLD were observed for phosphatidylcholine, phosphatidic acid, sphingomyelin, and phosphatidylinositol. CONCLUSIONS The mutations in PLA2R1 rs35771982 and CERS4 rs17160348 presented detrimental impact on the risk of occurrence and disease severity in nonobese MASLD through altered phospholipid metabolism.
Collapse
Affiliation(s)
- Congxiang Shao
- Department of Gastroenterology of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junzhao Ye
- Department of Gastroenterology of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhi Dong
- Department of Radiology of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bing Liao
- Department of Pathology of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shiting Feng
- Department of Radiology of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shixian Hu
- Department of Gastroenterology of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Precision Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Bihui Zhong
- Department of Gastroenterology of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Zhang Y, Xia Z, Cai X, Su X, Jin A, Mei L, Jing J, Wang S, Meng X, Li S, Wang M, Wei T, Wang Y, He Y, Pan Y. Association of metabolic dysfunction-associated fatty liver disease with systemic atherosclerosis: a community-based cross-sectional study. Cardiovasc Diabetol 2023; 22:342. [PMID: 38093371 PMCID: PMC10720122 DOI: 10.1186/s12933-023-02083-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Data are limited on the association of metabolic dysfunction-associated fatty liver disease (MAFLD) with systemic atherosclerosis. This study aimed to examine the relationship between MAFLD and the extent of atherosclerotic plaques and stenosis, and presence of polyvascular disease (PolyVD). METHODS In this cross-sectional study, MAFLD was diagnosed based on the presence of metabolic dysfunction (MD) and fatty liver disease (FLD). MAFLD was divided into three subtypes: MAFLD with diabetes mellitus (DM), MAFLD with overweight or obesity (OW), as well as MAFLD with lean/normal weight and at least two metabolic abnormalities. Atherosclerosis was evaluated, with vascular magnetic resonance imaging for intracranial and extracranial arteries, thoracoabdominal computed tomography angiography for coronary, subclavian, aorta, renal, iliofemoral arteries, and ankle-brachial index for peripheral arteries. The extent of plaques and stenosis was defined according to the number of these eight vascular sites affected. PolyVD was defined as the presence of stenosis in at least two vascular sites. RESULTS This study included 3047 participants, with the mean age of 61.2 ± 6.7 years and 46.6% of male (n = 1420). After adjusting for potential confounders, MAFLD was associated with higher extent of plaques (cOR, 2.14, 95% CI 1.85-2.48) and stenosis (cOR, 1.47, 95% CI 1.26-1.71), and higher odds of presence of PolyVD (OR, 1.55, 95% CI 1.24-1.94) as compared with Non-MAFLD. In addition, DM-MAFLD and OW-MAFLD were associated with the extent of atherosclerotic plaques and stenosis, and presence of PolyVD (All P < 0.05). However, lean-MAFLD was only associated with the extent of atherosclerotic plaques (cOR, 1.63, 95% CI 1.14-2.34). As one component of MAFLD, FLD per se was associated with the extent of plaques and stenosis in participants with MAFLD. Furthermore, FLD interacted with MD to increase the odds of presence of systemic atherosclerosis (P for interaction ≤ 0.055). CONCLUSIONS MAFLD and its subtypes of DM-MAFLD and OW-MAFLD were associated with the extent of atherosclerotic plaques and stenosis, and presence of PolyVD. This study implicated that FLD might be a potential target of intervention for reducing the deleterious effects of MAFLD on systemic atherosclerosis.
Collapse
Affiliation(s)
- Yanli Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119, South 4th Ring West Road, Fengtai District, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zhang Xia
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Xueli Cai
- Department of Neurology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Xin Su
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Aoming Jin
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119, South 4th Ring West Road, Fengtai District, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Lerong Mei
- Cerebrovascular Research Lab, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Jing Jing
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119, South 4th Ring West Road, Fengtai District, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Suying Wang
- Department of Neurology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
- Cerebrovascular Research Lab, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Xia Meng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119, South 4th Ring West Road, Fengtai District, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shan Li
- Cerebrovascular Research Lab, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Mengxing Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119, South 4th Ring West Road, Fengtai District, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Tiemin Wei
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119, South 4th Ring West Road, Fengtai District, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China.
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Yan He
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China.
| | - Yuesong Pan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119, South 4th Ring West Road, Fengtai District, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
| |
Collapse
|
8
|
Shan D, Xu D, Hu S, Qi P, Lu J, Wang D. LC-MS/MS based metabolomic analysis of serum from patients with cerebrovascular stenosis. J Pharm Biomed Anal 2023; 235:115608. [PMID: 37527609 DOI: 10.1016/j.jpba.2023.115608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023]
Abstract
Cerebrovascular stenosis (CVS) is the main cause of ischemic stroke, which greatly threatens human life. Hence, it's important to perform early screenings for CVS. Metabolomics is an emerging omics approach that has great advantages in disease screening and diagnosis. Therefore, we aim to elucidate the correlation between CVS and metabolomics, which can aid in conducting CVS screening at an early stage. Patients with CVS in Beijing Hospital were included in the study. A total of 36 participants, including 18 patients diagnosed with CVS and 18 healthy individuals, were recruited at Beijing Hospital between May 2022 and October 2021. The serum samples were analyzed for liquid chromatography-tandem mass spectrometry (LC-MS/MS). Then, multivariate statistical methods, including principal component analysis (PCA), partial least squares-discriminant analysis (PLS-DA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) were performed. Differential metabolites were obtained and demonstrated by volcano plot and heatmap. The study recruited 36 participants, including 18 patients with CVS and 18 healthy participants. A total of 150 metabolites were identified. Multivariate statistical analysis revealed significant differences between patients and healthy participants. Furthermore, 30 serum metabolites levels differed significantly between two groups. Differential metabolites were enriched in phenylalanine, tyrosine, and tryptophan biosynthesis; primary bile acid biosynthesis, and other pathways. This study identified differential metabolites in patients with CVS and elucidated the relevant metabolic pathways. Thus, these findings aid in the study of the pathogenesis of CVS and its early diagnosis. DATA AVAILABILITY STATEMENT: The datasets generated for this study are available on request to the corresponding author.
Collapse
Affiliation(s)
- Dezhi Shan
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China; Graduate School of Peking Union Medical College, Beijing, China
| | - Dingkang Xu
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China; Graduate School of Peking Union Medical College, Beijing, China
| | - Shen Hu
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Peng Qi
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jun Lu
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Daming Wang
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China; Graduate School of Peking Union Medical College, Beijing, China.
| |
Collapse
|
9
|
Lei F, Wang XM, Wang C, Huang X, Liu YM, Qin JJ, Zhang P, Ji YX, She ZG, Cai J, Li HP, Zhang XJ, Li H. Metabolic dysfunction-associated fatty liver disease increased the risk of subclinical carotid atherosclerosis in China. Front Endocrinol (Lausanne) 2023; 14:1109673. [PMID: 37082131 PMCID: PMC10110917 DOI: 10.3389/fendo.2023.1109673] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/21/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND AND AIMS Metabolic dysfunction-associated fatty liver disease (MAFLD) was proposed to substitute NAFLD in 2020. This new term highlights the systematic metabolic disturbances that accompany fatty liver. We evaluated the correlations between MAFLD and subclinical carotid atherosclerosis (SCA) based on a nationwide health examination population in China. METHODS We performed a nationwide cross-sectional population and a Beijing retrospective cohort from 2009 to 2017. SCA was defined as elevated carotid intima-media thickness. The multivariable logistic and Cox models were used to analyze the association between MAFLD and SCA. RESULTS 153,482 participants were included in the cross-sectional study. MAFLD was significantly associated with SCA in fully adjusted models, with an odds ratio of 1.66; 95% confidence interval (CI): 1.62-1.70. This association was consistent in the cohort, with a hazard ratio (HR) of 1.31. The association between baseline MAFLD and incident SCA increased with hepatic steatosis severity. Subgroup analysis showed an interaction between age and MAFLD, with a higher risk in younger groups (HR:1.67, 95% CI: 1.17-2.40). CONCLUSION In this large cross-section and cohort study, MAFLD was significantly associated with the presence and development of SCA. Further, the risk was higher among MAFLD individuals with high hepatic steatosis index and young adults.
Collapse
Affiliation(s)
- Fang Lei
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Xiao-Ming Wang
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Changquan Wang
- Department of Neurology, Huanggang Central Hospital of Yangtze University, Huanggang, China
- Huanggang Institute of Translational Medicine, Huanggang Central Hospital of Yangtze University, Huanggang, China
| | - Xuewei Huang
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ye-Mao Liu
- Institute of Model Animal, Wuhan University, Wuhan, China
- Huanggang Institute of Translational Medicine, Huanggang Central Hospital of Yangtze University, Huanggang, China
- Department of Cardiology, Huanggang Central Hospital of Yangtze University, Huanggang, China
| | - Juan-Juan Qin
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Peng Zhang
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Yan-Xiao Ji
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Jingjing Cai
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Huo-ping Li
- Huanggang Institute of Translational Medicine, Huanggang Central Hospital of Yangtze University, Huanggang, China
- Department of Cardiology, Huanggang Central Hospital of Yangtze University, Huanggang, China
| | - Xiao-Jing Zhang
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
- Huanggang Institute of Translational Medicine, Huanggang Central Hospital of Yangtze University, Huanggang, China
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|