1
|
Wu B, Wu M, Yan P. Bioactive equivalent combinatorial components of Xiao-Xu-Ming decoction inhibit the calmodulin-mediated MLCK/MLC axis to attenuate coronary artery spasm. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156713. [PMID: 40349422 DOI: 10.1016/j.phymed.2025.156713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/14/2025] [Accepted: 03/31/2025] [Indexed: 05/14/2025]
Abstract
BACKGROUND Coronary artery spasm (CAS) is a severe pathological disorder with limited treatment options. Inhibiting vascular smooth muscle cell (VSMC) proliferation has emerged as a promising therapeutic strategy for CAS. PURPOSE This study aims to investigate the potential function of Xiao-Xu-Ming decoction (XXMD) in the attenuation of CAS in rats. METHODS The involvement of bioactive equivalent combinatorial components (BECCs) of XXMD in CAS was predicted using network pharmacological analysis. A CAS rat model was established using pituitrin (Pit), and an Ang II-induced cell model was developed to assess the effects of BECCs on VSMC contraction. The expression of contractile phenotype markers was analyzed using RT-qPCR and Western blotting. Additionally, MTT assay, flow cytometry, Annexin V/PI staining, and Transwell assay were performed to evaluate cell proliferation, cell cycle progression, apoptosis, and migration. A collagen gel contraction assay was conducted to assess VSMC contraction. RESULTS Network pharmacological analysis suggested that BECCs in XXMD may influence CAS development through the Calmodulin (CaM)-MLCK/MLC axis. The drug-containing XXMD serum significantly inhibited VSMC proliferation and migration by reducing the expression of MLCK, α-SMA, Calponin, and SMHHC. Furthermore, it suppressed VSMC proliferation by downregulating MLCK expression via CaM inhibition. Importantly, BECCs of XXMD promoted anti-inflammatory responses, vasorelaxation, and oxidative stress reduction in Pit-induced CAS rats. CONCLUSION These findings suggest that BECCs in XXMD may counteract CAS by modulating the CaM-mediated MLCK/MLC pathway in VSMCs. This mechanism may offer a foundation for novel and effective therapeutic strategies to treat CAS and prevent associated cardiac events, such as myocardial infarction and sudden cardiac death. NOVELTY This study identifies a novel mechanism by which the "active ingredient cluster" of XXMD alleviates CAS through modulation of the MLCK/MLC signaling pathway via CaM. These insights enhance our understanding of XXMD's therapeutic potential in CAS treatment.
Collapse
Affiliation(s)
- Bowen Wu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa 999078, Macao, China
| | - Mishan Wu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa 999078, Macao, China; State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa 999078, Macao, China
| | - Peiyu Yan
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa 999078, Macao, China; State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa 999078, Macao, China.
| |
Collapse
|
2
|
Zhang J, Wang H, Xue X, Wu X, Li W, Lv Z, Su Y, Zhang M, Zhao K, Zhang X, Jia C, Zhu F. Human endogenous retrovirus W family envelope protein (ERVWE1) regulates macroautophagy activation and micromitophagy inhibition via NOXA1 in schizophrenia. Virol Sin 2025:S1995-820X(25)00065-3. [PMID: 40419114 DOI: 10.1016/j.virs.2025.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 05/22/2025] [Indexed: 05/28/2025] Open
Abstract
The human endogenous retrovirus type W envelope glycoprotein (ERVWE1), located at chromosome 7q21-22, has been implicated in the pathophysiology of schizophrenia. Our previous studies have shown elevated ERVWE1 expression in schizophrenia patients. Growing evidence suggests that autophagy dysfunction contributes to schizophrenia, yet the relationship between ERVWE1 and autophagy remains unclear. In this study, bioinformatics analysis of the human prefrontal cortex RNA microarray dataset (GSE53987) revealed that differentially expressed genes were predominantly enriched in autophagy-related pathways. Clinical data further demonstrated that serum levels of microtubule-associated protein 1 light chain 3β (LC3B), a key marker of macroautophagy, were significantly elevated in schizophrenia patients compared to controls, and positively correlated with ERVWE1 expression. Cellular and molecular experiments suggested that ERVWE1 promoted macroautophagy by increasing the LC3B II/I ratio, enhancing autophagosome formation, and reducing sequestosome 1 (SQSTM1) expression via upregulation of NADPH oxidase activator 1 (NOXA1). Concurrently, NOXA1 downregulated the expression of key micromitophagy-related genes, including PTEN-induced kinase 1 (PINK1), Parkin RBR E3 ubiquitin-protein ligase (Parkin), and the pyruvate dehydrogenase E1 subunit α 1 (PDHA1). As a result, ERVWE1, via NOXA1, inhibited micromitophagy by suppressing the expression of PINK1, Parkin, and PDHA1, thereby leading to impaired production of mitochondrial-derived vesicles (MDVs). Mechanistically, ERVWE1 enhanced NOXA1 transcription by upregulating upstream transcription factor 2 (USF2). In conclusion, ERVWE1 promotes macroautophagy and inhibits micromitophagy through USF2-NOXA1 axis, providing novel mechanistic insight into the role autophagy dysregulation in schizophrenia. These findings suggest that targeting autophagy pathways may offer novel therapeutic strategies for schizophrenia treatment.
Collapse
Affiliation(s)
- Jiahang Zhang
- State Key Laboratory of Virology and Biosafety, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan, 430060, China
| | - Xing Xue
- State Key Laboratory of Virology and Biosafety, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Xiulin Wu
- State Key Laboratory of Virology and Biosafety, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Wenshi Li
- State Key Laboratory of Virology and Biosafety, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Zhao Lv
- State Key Laboratory of Virology and Biosafety, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Yaru Su
- State Key Laboratory of Virology and Biosafety, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Mengqi Zhang
- State Key Laboratory of Virology and Biosafety, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Kexin Zhao
- State Key Laboratory of Virology and Biosafety, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Xu Zhang
- State Key Laboratory of Virology and Biosafety, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Chen Jia
- State Key Laboratory of Virology and Biosafety, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Fan Zhu
- State Key Laboratory of Virology and Biosafety, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China; Hubei Province Key Laboratory of Allergy and Immunology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China.
| |
Collapse
|
3
|
Wang X, Xiong X. Mitochondrial Reactive Oxygen Species (mROS) Generation and Cancer: Emerging Nanoparticle Therapeutic Approaches. Int J Nanomedicine 2025; 20:6085-6119. [PMID: 40385494 PMCID: PMC12085131 DOI: 10.2147/ijn.s510972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 04/24/2025] [Indexed: 05/20/2025] Open
Abstract
Mitochondrial reactive oxygen species (mROS) are generated as byproducts of mitochondrial oxidative phosphorylation. Changes in mROS levels are involved in tumorigenesis through their effects on cancer genome instability, sustained cancer cell survival, metabolic reprogramming, and tumor metastasis. Recent advances in nanotechnology offer a promising approach for precise regulation of mROS by either enhancing or depleting mROS generation. This review examines the association between dysregulated mROS levels and key cancer hallmarks. We also discuss the potential applications of mROS-targeted nanoparticles that artificially manipulate ROS levels in the mitochondria to achieve precise delivery of antitumor drugs.
Collapse
Affiliation(s)
- Xinyao Wang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
- Queen Mary School of Nanchang University, Nanchang, People’s Republic of China
| | - Xiangyang Xiong
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|
4
|
Zhang Y, Lu Y, Zheng S, Luo W, Tan M, Luo B. Decoding ARF4 and EIF5B-Based Prognostic Signatures and Immune Landscape Following Insufficient Radiofrequency Ablation in Hepatocellular Carcinoma: Through Multi-Omics and Experimental Validation. J Hepatocell Carcinoma 2025; 12:909-931. [PMID: 40370639 PMCID: PMC12075487 DOI: 10.2147/jhc.s517528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/16/2025] [Indexed: 05/16/2025] Open
Abstract
Background Radiofrequency ablation (RFA) is pivotal in non-surgical hepatocellular carcinoma (HCC) treatments but poses a high postoperative recurrence risk, exceeding conventional surgeries. Insufficient tumor ablation may trigger immune responses, promoting tumor progression locally. Hence, this study seeks to pinpoint immune biomarkers to improve treatment precision and prognostic accuracy for RFA patients. Methods The study utilized data from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and The International Cancer Genome Consortium (ICGC) database to investigate novel immune biomarkers influencing the prognosis of patients undergoing insufficient radiofrequency ablation (IRFA). Subsequently, an IRFA model was developed and validated. Then, we employed Quantitative real time-Polymerase Chain Reaction (qPCR), Western blotting (WB), immunohistochemistry (IHC), and immunofluorescence (IF) techniques on human HCC cell lines and IRFA animal model to validate ADP-ribosylation factor 4 (ARF4) and Eukaryotic translation initiation factor 5B (EIF5B) expression and prognostic relevance post-IRFA. In addition, knockdown of ARF4 and EIF5B was performed to evaluate cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT). Finally, transcriptome sequencing was subsequently performed to confirm and extend our findings. Results ARF4 and EIF5B were identified as critical immune targets affecting IRFA patient prognosis, forming the basis of an IRFA risk model. High-risk scores in this model correlated with poorer prognoses and reduced responsiveness to immune checkpoint inhibitors (ICIs) across multiple cancer types. Experimental validations confirmed the protective role of ARF4 and EIF5B in IRFA outcomes, while knockdown experiments suggested their involvement in promoting cell proliferation, migration, invasion, and EMT in IRFA models, potentially through pathways like P53 and Transforming Growth Factor Beta(TGF-β) signaling pathway activation as indicated by transcriptome sequencing. Conclusion ARF4 and EIF5B have demonstrated promising potential as biomarkers influencing patient prognosis following RFA in HCC. These findings suggest they could serve as viable therapeutic targets aimed at mitigating HCC recurrence post-RFA.
Collapse
Affiliation(s)
- Yixin Zhang
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, People’s Republic of China
| | - Yongpan Lu
- Department of Anorectal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, People’s Republic of China
| | - Sui Zheng
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, People’s Republic of China
| | - Wanrong Luo
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, People’s Republic of China
| | - Min Tan
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, People’s Republic of China
| | - Baoming Luo
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, People’s Republic of China
| |
Collapse
|
5
|
Miao X, Liu P, Liu Y, Zhang W, Li C, Wang X. Epigenetic targets and their inhibitors in the treatment of idiopathic pulmonary fibrosis. Eur J Med Chem 2025; 289:117463. [PMID: 40048798 DOI: 10.1016/j.ejmech.2025.117463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a deadly lung disease characterized by fibroblast proliferation, excessive extracellular matrix buildup, inflammation, and tissue damage, resulting in respiratory failure and death. Recent studies suggest that impaired interactions among epithelial, mesenchymal, immune, and endothelial cells play a key role in IPF development. Advances in bioinformatics have also linked epigenetics, which bridges gene expression and environmental factors, to IPF. Despite the incomplete understanding of the pathogenic mechanisms underlying IPF, recent preclinical studies have identified several novel epigenetic therapeutic targets, including DNMT, EZH2, G9a/GLP, PRMT1/7, KDM6B, HDAC, CBP/p300, BRD4, METTL3, FTO, and ALKBH5, along with potential small-molecule inhibitors relevant for its treatment. This review explores the pathogenesis of IPF, emphasizing epigenetic therapeutic targets and potential small molecule drugs. It also analyzes the structure-activity relationships of these epigenetic drugs and summarizes their biological activities. The objective is to advance the development of innovative epigenetic therapies for IPF.
Collapse
Affiliation(s)
- Xiaohui Miao
- Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Pan Liu
- Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Yangyang Liu
- Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Wenying Zhang
- Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Chunxin Li
- Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Xiujiang Wang
- Department of Pulmonary Diseases, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China.
| |
Collapse
|
6
|
Dar AI, Jain V, Rani A, Pulukuri AJ, Gonzalez JC, Dhull A, Sharma R, Sharma A. Silibinin-Conjugated Galactose Dendrimers for Targeted Treatment of Hepatocellular Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20980-21000. [PMID: 40146860 DOI: 10.1021/acsami.5c04744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Hepatocellular carcinoma (HCC) remains one of the most prevalent and lethal forms of liver cancer, contributing significantly to global cancer-related mortality. Conventional treatments, including surgical resection, liver transplantation, and systemic therapies such as multikinase inhibitors and immune checkpoint inhibitors, often face limitations such as systemic toxicity and drug resistance, emphasizing the urgent need for more effective therapeutic strategies. In this study, we developed a galactose-functionalized dendrimer (Gal24) conjugated with a natural flavonoid, silibinin, (Gal24-Sil), for HCC therapy. In our previous study, we developed a Gal24 dendrimer to target hepatocytes in vivo. Here, we further demonstrated that the conjugation of silibinin to Gal24 dendrimer platform significantly enhanced its solubility and efficacy. In vitro studies demonstrated that Gal24-Sil conjugates significantly improved the anticancer efficacy of silibinin in HepG2 and Hep3B liver cancer cells. The conjugate induced an inflammatory response and reactive oxygen species (ROS) generation, triggering cellular apoptosis and necrosis. Furthermore, Gal24-Sil effectively reduced cell proliferation by promoting mitochondrial membrane potential (MMP) depolarization and inducing DNA damage. Our findings demonstrate the potential of Gal24-Sil as a promising nanoplatform for HCC therapy, offering enhanced therapeutic efficacy over free Silibinin. This study highlights the broader applicability of the Gal24 dendrimer platform for addressing various liver diseases.
Collapse
Affiliation(s)
- Aqib Iqbal Dar
- Department of Chemistry, College of Arts and Sciences, Washington State University, Pullman, Washington 99164, United States
| | - Vikrantvir Jain
- Department of Chemistry, College of Arts and Sciences, Washington State University, Pullman, Washington 99164, United States
| | - Anu Rani
- Department of Chemistry, College of Arts and Sciences, Washington State University, Pullman, Washington 99164, United States
| | - Anunay James Pulukuri
- Department of Chemistry, College of Arts and Sciences, Washington State University, Pullman, Washington 99164, United States
| | - Joan Castaneda Gonzalez
- Department of Chemistry, College of Arts and Sciences, Washington State University, Pullman, Washington 99164, United States
| | - Anubhav Dhull
- Department of Chemistry, College of Arts and Sciences, Washington State University, Pullman, Washington 99164, United States
| | - Rishi Sharma
- Department of Chemistry, College of Arts and Sciences, Washington State University, Pullman, Washington 99164, United States
| | - Anjali Sharma
- Department of Chemistry, College of Arts and Sciences, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
7
|
Zhang Y, Shu M, Shan S, Liu H, Zhang Y, Song C, Xu Q, Fan Y, Lu C. Perfluorohexane Sulfonic Acid Disrupts the Immune Microenvironment for Spermatogenesis by Damaging the Structure of the Blood-Testis Barrier in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409383. [PMID: 39823537 PMCID: PMC11904953 DOI: 10.1002/advs.202409383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/12/2024] [Indexed: 01/19/2025]
Abstract
Perfluorohexane sulfonic acid (PFHxS) is extensively used in waterproof coatings and fire-fighting foams, and several studies have found it to be a potential health hazard, but there is still unknown about its effects on spermatogenesis. Our results showed that PFHxS-treated mice have significant reproductive toxicity, including a decrease in sperm count and motility, and the levels of sex hormones (P < 0.05). Concurrently, structural abnormalities are observed in sperm, affecting ≈60-75% of those in the PFHxS-treated group. Additionally, it is found that the structure of the blood-testis barrier (BTB) is damaged after PFHxS treatment, leading to higher expression levels of inflammatory cytokines in the microenvironment for spermatogenesis. Moreover, the expression of proteins associated with mitochondrial biogenesis, including PTEN-induced kinase 1 (PINK1) and NADPH oxidase 4 (NOX4), is dysregulated in the testes after PFHxS treatment. Based on metabolome data, the differential metabolite 3-hydroxybutanoic acid is identified in the PFHxS-treated group, which can regulate the histone Kac levels, especially H3K4ac and H3K9ac. In summary, the results of this study suggest that in the testes of PFHxS-treated mice, inflammatory factors disrupt the mitochondrial function and metabolic profiles and hinder the progress of gene transcription through histone Kac, ultimately causing sperm dysfunction.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public HealthNanjing Medical UniversityNanjing211166China
- Department of Epidemiology, School of Public HealthNantong UniversityNantong226001China
| | - Mingxue Shu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public HealthNanjing Medical UniversityNanjing211166China
| | - Shilin Shan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public HealthNanjing Medical UniversityNanjing211166China
| | - Huiying Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public HealthNanjing Medical UniversityNanjing211166China
| | - Yucheng Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public HealthNanjing Medical UniversityNanjing211166China
| | - Chenyang Song
- State Key Laboratory of Reproductive Medicine and Offspring Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public HealthNanjing Medical UniversityNanjing211166China
| | - Qiaoqiao Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public HealthNanjing Medical UniversityNanjing211166China
| | - Yun Fan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public HealthNanjing Medical UniversityNanjing211166China
| | - Chuncheng Lu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public HealthNanjing Medical UniversityNanjing211166China
| |
Collapse
|
8
|
Yu X, Gao J, Zhang C. Sepsis-induced cardiac dysfunction: mitochondria and energy metabolism. Intensive Care Med Exp 2025; 13:20. [PMID: 39966268 PMCID: PMC11836259 DOI: 10.1186/s40635-025-00728-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 02/04/2025] [Indexed: 02/20/2025] Open
Abstract
Sepsis is a life-threatening multi-organ dysfunction syndrome caused by dysregulated host response to infection, posing a significant global healthcare challenge. Sepsis-induced myocardial dysfunction (SIMD) is a common complication of sepsis, significantly increasing mortality due to its high energy demands and low compensatory reserves. The substantial mitochondrial damage rather than cell apoptosis in SIMD suggests disrupted cardiac energy metabolism as a crucial pathophysiological mechanism. Therefore, we systematically reviewed the mechanisms underlying energy metabolism dysfunction in SIMD, including alterations in myocardial cell energy metabolism substrates, excitation-contraction coupling processes, mitochondrial dysfunction, and mitochondrial autophagy and biogenesis, summarizing potential therapeutic targets within them.
Collapse
Affiliation(s)
- Xueting Yu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan, China
- Department of Cardiology, Institute of Cardiovascular Research, the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan, China
| | - Jie Gao
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan, China
- Department of Cardiology, Institute of Cardiovascular Research, the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan, China
| | - Chunxiang Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan, China.
- Department of Cardiology, Institute of Cardiovascular Research, the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan, China.
- FACC, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
9
|
Kong L, Li S, Fu Y, Cai Q, Du X, Liang J, Ma T. Mitophagy in relation to chronic inflammation/ROS in aging. Mol Cell Biochem 2025; 480:721-731. [PMID: 38834837 DOI: 10.1007/s11010-024-05042-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
Various assaults on mitochondria occur during the human aging process, contributing to mitochondrial dysfunction. This mitochondrial dysfunction is intricately connected with aging and diseases associated with it. In vivo, the accumulation of defective mitochondria can precipitate inflammatory and oxidative stress, thereby accelerating aging. Mitophagy, an essential selective autophagy process, plays a crucial role in managing mitochondrial quality control and homeostasis. It is a highly specialized mechanism that systematically removes damaged or impaired mitochondria from cells, ensuring their optimal functioning and survival. By engaging in mitophagy, cells are able to maintain a balanced and stable environment, free from the potentially harmful effects of dysfunctional mitochondria. An ever-growing body of research highlights the significance of mitophagy in both aging and age-related diseases. Nonetheless, the association between mitophagy and inflammation or oxidative stress induced by mitochondrial dysfunction remains ambiguous. We review the fundamental mechanisms of mitophagy in this paper, delve into its relationship with age-related stress, and propose suggestions for future research directions.
Collapse
Affiliation(s)
- Liang Kong
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Shuhao Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Yu Fu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Qinyun Cai
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Xinyun Du
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Jingyan Liang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Tan Ma
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China.
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, 225001, Jiangsu, China.
| |
Collapse
|
10
|
Huang Y, Pi S, Chen H, Zhang S, Xian J, Lin Y, Chen J, Ye Q, Ye F, Huang Y, Yu H, Su Z. Ultrasonic-Controlled Drug Release Prevents Protumorigenic Transition and Improves Sequential Targeting Effect to Enhance Treatment of Residual Hepatocellular Carcinoma. Biomater Res 2025; 29:0114. [PMID: 39882403 PMCID: PMC11775379 DOI: 10.34133/bmr.0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/20/2024] [Accepted: 11/06/2024] [Indexed: 01/31/2025] Open
Abstract
Insufficient radio-frequency ablation (IRFA) of hepatocellular carcinoma accelerates the recurrence of residual tumor, leading to a poor prognosis. Neutrophils (NEs), as the initial leukocytes to infiltrate the IRFA-associated inflammatory area, were utilized as drug carriers due to their inherent chemotactic properties for targeted delivery of chemotherapy drugs to the inflammatory site where residual tumor persists post-IRFA. Previous research has highlighted that the immunosuppressive cytokines in the tumor microenvironment could promote the transition of NEs into a protumorigenic phenotype. However, it is unclear whether NEs used as drug delivery carriers undergo similar changes and how this transition affects treatment effectiveness. Here, we present novel findings demonstrating the phenotypic transition of NEs in the residual tumor microenvironment from an antitumorigenic to a protumorigenic state following IRFA treatment. More critically, we found for the first time that NE carriers undergo a comparable phenotypic transition in the residual tumor, thereby attenuating the therapeutic outcome. Ingeniously, coloading NE carriers with perfluorohexane not only enabled ultrasound imaging but also facilitated spatiotemporally controllable drug release through ultrasound irradiation, thus preventing the protumorigenic transition of NE carriers and maintaining an inflammatory microenvironment at the residual tumor zone. This significantly improved the sequential targeting effect of NE carriers and ultimately enhanced the treatment of residual tumor post-IRFA. Our study provided novel insights into the modulatory role of the immune microenvironment on the phenotypic transition of live NE carriers in the drug delivery system and presented a strategy to prevent adverse effects and enhance residual tumor treatment.
Collapse
Affiliation(s)
- Yongquan Huang
- Department of Ultrasound,
Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging,
Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Songying Pi
- Department of Ultrasound,
Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging,
Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Hui Chen
- Department of Ultrasound,
Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging,
Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Shushan Zhang
- Department of Ultrasound,
Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Jianzhong Xian
- Department of Ultrasound,
Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Yuhong Lin
- Department of Ultrasound,
Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Jiaxing Chen
- Department of Ultrasound,
Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Qing Ye
- Department of Ultrasound,
Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Feile Ye
- Department of Ultrasound,
Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Yin Huang
- Center of Cardiovascular Disease,
Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Hailing Yu
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging,
Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Zhongzhen Su
- Department of Ultrasound,
Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| |
Collapse
|
11
|
Yang M, Liu D, Tan Y, Chen J, Yang F, Mei C, Zeng Q, Lin Y, Li D. Polyoxometalate-based injectable coacervate inhibits HCC metastasis after incomplete radiofrequency ablation via scavenging ROS. J Nanobiotechnology 2025; 23:47. [PMID: 39871237 PMCID: PMC11773879 DOI: 10.1186/s12951-024-02989-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/04/2024] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND Incomplete radiofrequency ablation (iRFA) stimulates residual hepatocellular carcinoma (HCC) metastasis, leading to a poor prognosis for patients. Therefore, it is imperative to develop an effective therapeutic strategy to prevent iRFA-induced HCC metastasis. RESULTS Our study revealed that iRFA induced an abnormal increase in ROS levels within residual HCC, which enhanced tumor cell invasiveness and promoted macrophage M2 polarization, ultimately facilitating HCC metastasis. Molybdenum-based polyoxometalate (POM) is an excellent ROS-scavenging nanocluster, but its size is too small to be easily cleared by the kidneys, limiting its effectiveness in scavenging iRFA-induced ROS. To overcome this limitation, we synthesized an injectable POM-loaded coacervate delivery system named POM@Coa, which can sustainably scavenge iRFA-induced ROS by slowly releasing POM. POM@Coa markedly reduced HCC invasiveness, reversed macrophage polarization from M2 to M1, and promoted the infiltration and activation of CD8+ T cells, ultimately inhibiting HCC metastasis. Importantly, POM@Coa showed superior therapeutic efficacy to free POM in the absence of systemic toxicity. CONCLUSIONS POM@Coa exhibits the potential to decrease HCC invasiveness and activate anti-tumor immunity, opening up new avenues for the safe and effective treatment and prevention of HCC metastasis when combined with RFA.
Collapse
Affiliation(s)
- Meilin Yang
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong Province, 519000, China
| | - Die Liu
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong Province, 519000, China
| | - Yan Tan
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong Province, 519000, China
| | - Jieting Chen
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong Province, 519000, China
| | - Fan Yang
- Department of Pediatrics, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Chaoming Mei
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong Province, 519000, China
| | - Qi Zeng
- Cancer Center, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong Province, 519000, China.
| | - Yong Lin
- Department of Psychiatry, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China.
| | - Dan Li
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China.
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China.
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong Province, 519000, China.
| |
Collapse
|
12
|
Wu X, Chen J, Luo H, Du T, Wang Q, Tan M, Chen Y, Sun S, Liu Z, Yang Z, Zhang Q, Guan Q. Pan-cancer analysis of NADPH oxidase 4 identifying its prognostic and immunotherapy predictive value and in vitro experimental verification in glioblastoma. Int Immunopharmacol 2025; 146:113815. [PMID: 39700959 DOI: 10.1016/j.intimp.2024.113815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/15/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND NADPH oxidase 4 (NOX4) plays an important role in metabolic reprogramming, epithelial-mesenchymal transition (EMT), and other cellular processes by strictly regulating intracellular ROS generation. However, there is a lack of analysis on the role of NOX4 in the tumor immune microenvironment and predictive value for prognosis and immunotherapy response in various tumor types. METHODS This study used data from the Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), Tumor Immune Single-cell Hub (TISCH), Genotype-Tissue Expression (GTEx), cBioPortal, Tumor Immune Estimation Resource (TIMER 2.0), and ROC Plotter databases to analyze the expression, prognosis, biological function, immune cell infiltration, and genetic and epigenetic changes of NOX4 in various tumor types. Meanwhile, in vitro experiments were conducted to verify the role of NOX4 in the migration, invasion, proliferation, and apoptosis of glioblastoma (GBM). RESULTS The findings indicated that NOX4 is upregulated in various types of cancer, accompanied by gene amplification, mutation, and deletion. The high expression of NOX4 is associated with poor prognosis in various cancers. Functional enrichment analysis showed that NOX4 is mainly enriched in immune and cancer progression pathways, such as angiogenesis, EMT, interferon response, inflammatory response. Immune cell infiltration analysis showed that high expression of NOX4 is associated with increased infiltration of cancer-associated fibroblasts (CAF) and macrophages. In vitro experiments showed that silencing NOX4 inhibits the proliferation, migration, and invasion of GBM and increases cell apoptosis. CONCLUSION NOX4 can serve as a prognostic and immunotherapy response biomarker for various cancers and targeting NOX4 may be a feasible anti-tumor therapy and may have synergistic anti-tumor effects combined with immunotherapy.
Collapse
Affiliation(s)
- Xun Wu
- The First School of Clinical Medicine, Lanzhou University, No.1 Donggang West Road, Chengguan District, Lanzhou 730000, PR China; Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Chengguan District, Lanzhou 730000, PR China
| | - Junru Chen
- The First School of Clinical Medicine, Lanzhou University, No.1 Donggang West Road, Chengguan District, Lanzhou 730000, PR China; Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Chengguan District, Lanzhou 730000, PR China
| | - Hongtao Luo
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Chengguan District, Lanzhou 730000, PR China
| | - Tianqi Du
- The First School of Clinical Medicine, Lanzhou University, No.1 Donggang West Road, Chengguan District, Lanzhou 730000, PR China; Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Chengguan District, Lanzhou 730000, PR China
| | - Qian Wang
- The First School of Clinical Medicine, Lanzhou University, No.1 Donggang West Road, Chengguan District, Lanzhou 730000, PR China; Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Chengguan District, Lanzhou 730000, PR China
| | - Mingyu Tan
- The First School of Clinical Medicine, Lanzhou University, No.1 Donggang West Road, Chengguan District, Lanzhou 730000, PR China; Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Chengguan District, Lanzhou 730000, PR China
| | - Yanliang Chen
- The First School of Clinical Medicine, Lanzhou University, No.1 Donggang West Road, Chengguan District, Lanzhou 730000, PR China; Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Chengguan District, Lanzhou 730000, PR China
| | - Shilong Sun
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Chengguan District, Lanzhou 730000, PR China
| | - Zhiqiang Liu
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Chengguan District, Lanzhou 730000, PR China
| | - Zhen Yang
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Chengguan District, Lanzhou 730000, PR China
| | - Qiuning Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Chengguan District, Lanzhou 730000, PR China.
| | - Quanlin Guan
- The First School of Clinical Medicine, Lanzhou University, No.1 Donggang West Road, Chengguan District, Lanzhou 730000, PR China.
| |
Collapse
|
13
|
Fedotova EI, Berezhnov AV, Popov DY, Shitikova EY, Vinokurov AY. The Role of mtDNA Mutations in Atherosclerosis: The Influence of Mitochondrial Dysfunction on Macrophage Polarization. Int J Mol Sci 2025; 26:1019. [PMID: 39940788 PMCID: PMC11817597 DOI: 10.3390/ijms26031019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/06/2025] [Accepted: 01/15/2025] [Indexed: 02/16/2025] Open
Abstract
Atherosclerosis is a complex inflammatory process associated with high-mortality cardiovascular diseases. Today, there is a growing body of evidence linking atherosclerosis to mutations of mitochondrial DNA (mtDNA). But the mechanism of this link is insufficiently studied. Atherosclerosis progression involves different cell types and macrophages are one of the most important. Due to their high plasticity, macrophages can demonstrate pro-inflammatory and pro-atherogenic (macrophage type M1) or anti-inflammatory and anti-atherogenic (macrophage type M2) effects. These two cell types, formed as a result of external stimuli, differ significantly in their metabolic profile, which suggests the central role of mitochondria in the implementation of the macrophage polarization route. According to this, we assume that mtDNA mutations causing mitochondrial disturbances can play the role of an internal trigger, leading to the formation of macrophage M1 or M2. This review provides a comparative analysis of the characteristics of mitochondrial function in different types of macrophages and their possible associations with mtDNA mutations linked with inflammation-based pathologies including atherosclerosis.
Collapse
Affiliation(s)
- Evgeniya I. Fedotova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino 142290, Russia; (E.I.F.); (A.V.B.)
- Cell Physiology and Pathology Laboratory, Orel State University, Orel 302026, Russia; (D.Y.P.); (E.Y.S.)
| | - Alexey V. Berezhnov
- Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino 142290, Russia; (E.I.F.); (A.V.B.)
- Cell Physiology and Pathology Laboratory, Orel State University, Orel 302026, Russia; (D.Y.P.); (E.Y.S.)
| | - Daniil Y. Popov
- Cell Physiology and Pathology Laboratory, Orel State University, Orel 302026, Russia; (D.Y.P.); (E.Y.S.)
| | - Elena Y. Shitikova
- Cell Physiology and Pathology Laboratory, Orel State University, Orel 302026, Russia; (D.Y.P.); (E.Y.S.)
| | - Andrey Y. Vinokurov
- Cell Physiology and Pathology Laboratory, Orel State University, Orel 302026, Russia; (D.Y.P.); (E.Y.S.)
| |
Collapse
|
14
|
Li Y, Ji W, Wang C, Chang L, Zhang Q, Gao J, Wang T, Wu W. Poly l-Lactic Acid Nanofiber Membrane Effectively Inhibits Liver Cancer Cells Growth and Prevents Postoperative Residual Cancer Recurrence. ACS APPLIED MATERIALS & INTERFACES 2025; 17:689-700. [PMID: 39681510 PMCID: PMC11783531 DOI: 10.1021/acsami.4c18625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/18/2024]
Abstract
Electrospun nanocarrier systems, widely employed in the medical field, exhibit the capability to encapsulate multiple drugs and mitigate complications. Doxorubicin hydrochloride (DOX) represents a frequently utilized chemotherapeutic agent for liver cancer patients. Sodium bicarbonate (SB) serves to neutralize the acidic tumor microenvironment, while ibuprofen (IBU) attenuates inflammatory factor production. The combination of these three commonly used drugs facilitates antitumor efficacy and relapse prevention. Composite fibrous membranes were prepared by incorporating the antitumor drug DOX into MSN, which was then codispersed with IBU in a poly l-lactic acid (PLLA) electrospinning solution after acid sensitization using SB. The resulting membrane was characterized using transmission electron microscopy and scanning electron microscopy. The toxic effect of this fibrous membrane and its pro-apoptotic effect on tumor cells were evaluated, along with the expression of cell proliferation-related factors, immune/inflammatory factors, and apoptosis-related factors. Immunohistochemistry and HE staining confirmed its ability to inhibit recurrence of postoperative residual cancer without causing toxicity to vital organs. The PLLA-MSN@DOX-SB-IBU nanofibrous membrane not only mitigates the cardiotoxicity associated with DOX but also inhibits tumor cell proliferation and enhances the tumor microenvironment, demonstrating significant antitumor efficacy. Furthermore, it effectively prevents the recurrence of residual cancer postsurgery while exhibiting excellent biocompatibility. The PLLA-MSN@DOX-SB-IBU nanofibrous membrane demonstrates significant potential in impeding the progression of hepatocellular carcinoma and mitigating the recurrence of residual cancer following surgical intervention for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yanxu Li
- General
Surgery Department, Affiliated Hospital
of Yang Zhou University, Medical College of Yang Zhou University,
Yang Zhou University, Yang Zhou, Jiang Su 225009, China
| | - Weiben Ji
- General
Surgery Department, Affiliated Hospital
of Yang Zhou University, Medical College of Yang Zhou University,
Yang Zhou University, Yang Zhou, Jiang Su 225009, China
| | - Chaoying Wang
- General
Surgery Department, Affiliated Hospital
of Yang Zhou University, Medical College of Yang Zhou University,
Yang Zhou University, Yang Zhou, Jiang Su 225009, China
| | - Lai Chang
- Taixing
People’s Hospital in Jiangsu Province, Tai Zhou, Jiang Su 225400, China
| | - Quan Zhang
- College
of Veterinary Medicine, Yangzhou University, Yang Zhou, Jiang Su 225009, China
| | - Jiefeng Gao
- School
of Chemistry and Chemical Engineering, Yangzhou
University, Yang Zhou, Jiang Su 225009, China
| | - Tao Wang
- College
of Veterinary Medicine, Yangzhou University, Yang Zhou, Jiang Su 225009, China
| | - Wei Wu
- General
Surgery Department, Affiliated Hospital
of Yang Zhou University, Medical College of Yang Zhou University,
Yang Zhou University, Yang Zhou, Jiang Su 225009, China
| |
Collapse
|
15
|
Garcia KB, Hussein A, Satish S, Wehrle CJ, Karakaya O, Panconesi R, Sun K, Jiao C, Fernandes E, Pinna A, Hashimoto K, Miller C, Aucejo F, Schlegel A. Machine Perfusion as a Strategy to Decrease Ischemia-Reperfusion Injury and Lower Cancer Recurrence Following Liver Transplantation. Cancers (Basel) 2024; 16:3959. [PMID: 39682147 DOI: 10.3390/cancers16233959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 12/18/2024] Open
Abstract
Liver transplantation (LT) is a key treatment for primary and secondary liver cancers, reducing tumor burden with concurrent improvement of liver function. While significant improvement in survival is noted with LT, cancer recurrence rates remain high. Mitochondrial dysfunction caused by ischemia-reperfusion injury (IRI) is known to drive tumor recurrence by creating a favorable microenvironment rich in pro-inflammatory and angiogenic factors. Therefore, strategies that decrease reperfusion injury and mitochondrial dysfunction may also decrease cancer recurrence following LT. Machine perfusion techniques are increasingly used in routine clinical practice of LT with improved post-transplant outcomes and increased use of marginal grafts. Normothermic (NMP) and hypothermic oxygenated machine perfusion (HOPE) provide oxygen to ischemic tissues, and impact IRI and potential cancer recurrence through different mechanisms. This article discussed the link between IRI-associated inflammation and tumor recurrence after LT. The current literature was screened for the role of machine perfusion as a strategy to mitigate the risk of cancer recurrence. Upfront NMP ("ischemia free organ transplantation") and end-ischemic HOPE were shown to reduce hepatocellular carcinoma recurrence in retrospective studies. Three prospective randomized controlled trials are ongoing in Europe to provide robust evidence on the impact of HOPE on cancer recurrence in LT.
Collapse
Affiliation(s)
- Karla Bracho Garcia
- Department of Liver Transplantation, Cleveland Clinic Weston Hospital, Weston, FL 33331, USA
| | - Ahmed Hussein
- Department of Liver Transplantation, Cleveland Clinic Weston Hospital, Weston, FL 33331, USA
| | - Sangeeta Satish
- Transplantation Center, Department of Surgery, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Chase J Wehrle
- Transplantation Center, Department of Surgery, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Omer Karakaya
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Rebecca Panconesi
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Keyue Sun
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Chunbao Jiao
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Eduardo Fernandes
- Department of Liver Transplantation, Cleveland Clinic Weston Hospital, Weston, FL 33331, USA
| | - Antonio Pinna
- Department of Liver Transplantation, Cleveland Clinic Weston Hospital, Weston, FL 33331, USA
| | - Koji Hashimoto
- Transplantation Center, Department of Surgery, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Charles Miller
- Transplantation Center, Department of Surgery, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Federico Aucejo
- Transplantation Center, Department of Surgery, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Andrea Schlegel
- Transplantation Center, Department of Surgery, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
16
|
Wan W, Pan Y, Pang J, Bai X, Li L, Kang T, Chen J, Wen R, Wen D, Yang H, He Y. Incomplete Thermal Ablation-Induced FOXP4-Mediated Promotion of Malignant Progression in Liver Cancer via NDST2. J Hepatocell Carcinoma 2024; 11:1945-1959. [PMID: 39429915 PMCID: PMC11488511 DOI: 10.2147/jhc.s476612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
Purpose The explosive progression of residual hepatocellular carcinoma (HCC) following incomplete thermal ablation is challenging, and the underlying mechanisms require further exploration. We investigated the mechanism by which Forkhead box P4 (FOXP4) promotes the malignant transformation of residual HCC cells through N-deacetylase and N-sulfotransferase 2 (NDST2) after incomplete thermal ablation. Methods The clinical significance of FOXP4 and NDST2 in HCC was evaluated using big data analysis. FOXP4 expression was detected in clinical samples of HCC. The gene expression levels in an in vitro heat-stressed HCC cell model were determined using quantitative real-time PCR (RT-qPCR) and Western blotting. The effects of the genes on heat-stressed HCC cells were investigated using Cell Counting Kit-8 (CCK-8), scratch, Transwell migration, and invasion assays. Additionally, the regulatory relationship between FOXP4 and NDST2 was validated using the Cleavage Under Targets and Tagmentation (CUT&Tag) experiments and phenotypic assays. Results High FOXP4 expression was correlated with liver cancer occurrence and development. In the heat-stressed HCC cell model, downregulating FOXP4 inhibited cancer cell progression. Besides, there was a positive association between FOXP4 and NDST2 in liver cancer. Suppressing FOXP4 reduced NDST2 expression in the heat-stressed HCC cells. Furthermore, reducing NDST2 expression weakened the biological behavior of heat-stressed HCC cells. Conclusion FOXP4 and NDST2 are crucial in the incomplete thermal ablation of residual cancer. FOXP4 might regulate the biological progression of residual HCC after incomplete thermal ablation through NDST2.
Collapse
Affiliation(s)
- Weijun Wan
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor/Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Yunjing Pan
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor/Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Jinshu Pang
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor/Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Xiumei Bai
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor/Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Lipeng Li
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor/Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Tong Kang
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor/Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Jiamin Chen
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor/Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Rong Wen
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
| | - Dongyue Wen
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
| | - Hong Yang
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor/Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Yun He
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor/Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, 530021, People’s Republic of China
| |
Collapse
|
17
|
Wu J, Zhou Z, Huang Y, Deng X, Zheng S, He S, Huang G, Hu B, Shi M, Liao W, Huang N. Radiofrequency ablation: mechanisms and clinical applications. MedComm (Beijing) 2024; 5:e746. [PMID: 39359691 PMCID: PMC11445673 DOI: 10.1002/mco2.746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024] Open
Abstract
Radiofrequency ablation (RFA), a form of thermal ablation, employs localized heat to induce protein denaturation in tissue cells, resulting in cell death. It has emerged as a viable treatment option for patients who are ineligible for surgery in various diseases, particularly liver cancer and other tumor-related conditions. In addition to directly eliminating tumor cells, RFA also induces alterations in the infiltrating cells within the tumor microenvironment (TME), which can significantly impact treatment outcomes. Moreover, incomplete RFA (iRFA) may lead to tumor recurrence and metastasis. The current challenge is to enhance the efficacy of RFA by elucidating its underlying mechanisms. This review discusses the clinical applications of RFA in treating various diseases and the mechanisms that contribute to the survival and invasion of tumor cells following iRFA, including the roles of heat shock proteins, hypoxia, and autophagy. Additionally, we analyze the changes occurring in infiltrating cells within the TME after iRFA. Finally, we provide a comprehensive summary of clinical trials involving RFA in conjunction with other treatment modalities in the field of cancer therapy, aiming to offer novel insights and references for improving the effectiveness of RFA.
Collapse
Affiliation(s)
- Jianhua Wu
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Zhiyuan Zhou
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Yuanwen Huang
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Xinyue Deng
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Siting Zheng
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Shangwen He
- Department of Respiratory and Critical Care MedicineChronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical UniversityGuangzhouGuangdongChina
| | - Genjie Huang
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Binghui Hu
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Min Shi
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Wangjun Liao
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Na Huang
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
18
|
Liu Q, Yao F, Wu L, Xu T, Na J, Shen Z, Liu X, Shi W, Zhao Y, Liao Y. Heterogeneity and interplay: the multifaceted role of cancer-associated fibroblasts in the tumor and therapeutic strategies. Clin Transl Oncol 2024; 26:2395-2417. [PMID: 38602644 DOI: 10.1007/s12094-024-03492-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/31/2024] [Indexed: 04/12/2024]
Abstract
The journey of cancer development is a multifaceted and staged process. The array of treatments available for cancer varies significantly, dictated by the disease's type and stage. Cancer-associated fibroblasts (CAFs), prevalent across various cancer types and stages, play a pivotal role in tumor genesis, progression, metastasis, and drug resistance. The strategy of concurrently targeting cancer cells and CAFs holds great promise in cancer therapy. In this review, we focus intently on CAFs, delving into their critical role in cancer's progression. We begin by exploring the origins, classification, and surface markers of CAFs. Following this, we emphasize the key cytokines and signaling pathways involved in the interplay between cancer cells and CAFs and their influence on the tumor immune microenvironment. Additionally, we examine current therapeutic approaches targeting CAFs. This article underscores the multifarious roles of CAFs within the tumor microenvironment and their potential applications in cancer treatment, highlighting their importance as key targets in overcoming drug resistance and enhancing the efficacy of tumor therapies.
Collapse
Affiliation(s)
- Qiaoqiao Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Fei Yao
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Liangliang Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Tianyuan Xu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Jintong Na
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Zhen Shen
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Wei Shi
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China.
- Department of Oncology, The First Affiliated Tumor Hospital, Guangxi University of Chinese Medicine, Nanning, 530021, Guangxi, China.
| | - Yongxiang Zhao
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China.
| | - Yuan Liao
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
19
|
Gan L, Wang W, Jiang J, Tian K, Liu W, Cao Z. Dual role of Nrf2 signaling in hepatocellular carcinoma: promoting development, immune evasion, and therapeutic challenges. Front Immunol 2024; 15:1429836. [PMID: 39286246 PMCID: PMC11402828 DOI: 10.3389/fimmu.2024.1429836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the predominant form of liver cancer and ranks as the third leading cause of cancer-related mortality globally. The liver performs a wide range of tasks and is the primary organ responsible for metabolizing harmful substances and foreign compounds. Oxidative stress has a crucial role in growth and improvement of hepatocellular carcinoma (HCC). Nuclear factor erythroid 2 (1)-related factor 2 (Nrf2) is an element that regulates transcription located in the cytoplasm. It controls the balance of redox reactions by stimulating the expression of many genes that depend on antioxidant response elements. Nrf2 has contrasting functions in the normal, healthy liver and HCC. In the normal liver, Nrf2 provides advantageous benefits, while in HCC it promotes harmful effects that support the growth and survival of HCC. Continuous activation of Nrf2 has been detected in HCC and promotes its advancement and aggressiveness. In addition, Activation of Nrf2 may lead to immune evasion, weakening the immune cells' ability to attack tumors and thereby promoting tumor development. Furthermore, chemoresistance in HCC, which is considered a form of stress response to chemotherapy medications, significantly impedes the effectiveness of HCC treatment. Stress management is typically accomplished by activating specific signal pathways and chemical variables. One important element in the creation of chemoresistance in HCC is nuclear factor-E2-related factor 2 (Nrf2). Nrf2 is a transcription factor that regulates the activation and production of a group of genes that encode proteins responsible for protecting cells from damage. This occurs through the Nrf2/ARE pathway, which is a crucial mechanism for combating oxidative stress within cells.
Collapse
Affiliation(s)
- Lin Gan
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Wei Wang
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Jinxiu Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Ke Tian
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Wei Liu
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Zhumin Cao
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| |
Collapse
|
20
|
Zhong Y, Xia S, Wang G, Liu Q, Ma F, Yu Y, Zhang Y, Qian L, Hu L, Xie J. The interplay between mitophagy and mitochondrial ROS in acute lung injury. Mitochondrion 2024; 78:101920. [PMID: 38876297 DOI: 10.1016/j.mito.2024.101920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/27/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Mitochondria orchestrate the production of new mitochondria and the removal of damaged ones to dynamically maintain mitochondrial homeostasis through constant biogenesis and clearance mechanisms. Mitochondrial quality control particularly relies on mitophagy, defined as selective autophagy with mitochondria-targeting specificity. Most ROS are derived from mitochondria, and the physiological concentration of mitochondrial ROS (mtROS) is no longer considered a useless by-product, as it has been proven to participate in immune and autophagy pathway regulation. However, excessive mtROS appears to be a pathogenic factor in several diseases, including acute lung injury (ALI). The interplay between mitophagy and mtROS is complex and closely related to ALI. Here, we review the pathways of mitophagy, the intricate relationship between mitophagy and mtROS, the role of mtROS in the pathogenesis of ALI, and their effects and related progression in ALI induced by different conditions.
Collapse
Affiliation(s)
- Yizhi Zhong
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3 East Qingchun Road, Jianggan District, Hangzhou 310016, China
| | - Siwei Xia
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3 East Qingchun Road, Jianggan District, Hangzhou 310016, China
| | - Gaojian Wang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3 East Qingchun Road, Jianggan District, Hangzhou 310016, China
| | - Qinxue Liu
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3 East Qingchun Road, Jianggan District, Hangzhou 310016, China
| | - Fengjie Ma
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3 East Qingchun Road, Jianggan District, Hangzhou 310016, China
| | - Yijin Yu
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3 East Qingchun Road, Jianggan District, Hangzhou 310016, China
| | - Yaping Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3 East Qingchun Road, Jianggan District, Hangzhou 310016, China
| | - Lu Qian
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3 East Qingchun Road, Jianggan District, Hangzhou 310016, China
| | - Li Hu
- Department of Anesthesiology, Second Affiliated Hospital of Jiaxing University, No.1518 North Huancheng Road, Nanhu District, Jiaxing 314000, China
| | - Junran Xie
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3 East Qingchun Road, Jianggan District, Hangzhou 310016, China.
| |
Collapse
|
21
|
Jiang Y, Li Y, Wang Y, Li X. Furanodienone induces apoptosis via regulating the PRDX1/MAPKs/p53/caspases signaling axis through NOX4-derived mitochondrial ROS in colorectal cancer cells. Biochem Pharmacol 2024; 227:116456. [PMID: 39079582 DOI: 10.1016/j.bcp.2024.116456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/03/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
Furanodienone, a biologically active constituent of sesquiterpenes isolated from Rhizome Curcumae, has been reported to induce apoptosis in human colorectal cancer (CRC) cells by promoting the generation of reactive oxygen species (ROS). However, the source of ROS and how it manipulates apoptosis in CRC cells remains to be elucidated. Herein, we assessed the potential role of the well-known sources of intracellular ROS-mitochondrial electron transport chain and the nicotinamide adenine dinucleotide phosphate oxidases (NOXs), on furanodienone-induced cell death. The results indicated that furanodienone substantially increased the levels of mitochondrial ROS, which were subsequently eliminated by the general NOX inhibitor. Specifically, the nuclear factor kappa-B (NF-κB) translocation triggered a significant rise in the expression of NOX4, an isoform of the NOXs family, upon furanodienone treatment. Nevertheless, the specific NOX4 inhibitor GLX351322 attenuated cell apoptosis and mitochondrial ROS production. As a result, ROS burst induced by furanodienone suppressed the expression of peroxiredoxin1 (PRDX1), a redox signaling protein overexpressed in CRC cells, through a nuclear factor-erythroid-2-related factor 2 (Nrf2)-dependent pathway, thus amplifying the mitogen-activated protein kinases (MAPKs)/p53-mediated apoptotic signaling by increasing the p-p38, p-JNK levels, as well as the cleaved caspases -3, -8 and -9. In vivo experiments further confirmed the anti-proliferative impact of PRDX1 following furanodienone treatment. In summary, the study demonstrated that furanodienone-induced apoptosis in CRC cells is initiated by mitochondrial ROS derived from NOX4, which targeted the PRDX1 and activated the downstream MAPKs/p53-mediated caspase-dependent signaling pathway. Our findings may provide novel insights into the development of adjuvant drugs for CRC treatment and therapeutic applications.
Collapse
Affiliation(s)
- Ying Jiang
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Yanli Li
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Yuzhu Wang
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Xiaoyu Li
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
22
|
Lin X, Wang H, Zou L, Yang B, Chen W, Rong X, Zhang X, He L, Li X, Peng Y. The NRF2 activator RTA-408 ameliorates chronic alcohol exposure-induced cognitive impairment and NLRP3 inflammasome activation by modulating impaired mitophagy initiation. Free Radic Biol Med 2024; 220:15-27. [PMID: 38679301 DOI: 10.1016/j.freeradbiomed.2024.04.236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Chronic alcohol exposure induces cognitive impairment and NLRP3 inflammasome activation in the mPFC (medial prefrontal cortex). Mitophagy plays a crucial role in neuroinflammation, and dysregulated mitophagy is associated with behavioral deficits. However, the potential relationships among mitophagy, inflammation, and cognitive impairment in the context of alcohol exposure have not yet been studied. NRF2 promotes the process of mitophagy, while alcohol inhibits NRF2 expression. Whether NRF2 activation can ameliorate defective mitophagy and neuroinflammation in the presence of alcohol remains unknown. METHODS BV2 cells and primary microglia were treated with alcohol. C57BL/6J mice were repeatedly administered alcohol intragastrically. BNIP3-siRNA, PINK1-siRNA, CCCP and bafilomycin A1 were used to regulate mitophagy in BV2 cells. RTA-408 acted as an NRF2 activator. Mitochondrial dysfunction, mitophagy and NLRP3 inflammasome activation were assayed. Behavioral tests were used to assess cognition. RESULTS Chronic alcohol exposure impaired the initiation of both receptor-mediated mitophagy and PINK1-mediated mitophagy in the mPFC and in vitro microglial cells. Silencing BNIP3 or PINK1 induced mitochondrial dysfunction and aggravated alcohol-induced NLRP3 inflammasome activation in BV2 cells. In addition, alcohol exposure inhibited the NRF2 expression both in vivo and in vitro. NRF2 activation by RTA-408 ameliorated NLRP3 inflammasome activation and mitophagy downregulation in microglia, ultimately improving cognitive impairment in the presence of alcohol. CONCLUSION Chronic alcohol exposure-induced impaired mitophagy initiation contributed to NLRP3 inflammasome activation and cognitive deficits, which could be alleviated by NRF2 activation via RTA-408.
Collapse
Affiliation(s)
- Xinrou Lin
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China
| | - Hongxuan Wang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Lubin Zou
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China
| | - Biying Yang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Wanru Chen
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Xiaoming Rong
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Xiaoni Zhang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Lei He
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Xiangpen Li
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China; Shenshan Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Shanwei, 516400, China.
| | - Ying Peng
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China.
| |
Collapse
|
23
|
Zhang H, Wang H, Hu Y, Gao Y, Chen J, Meng Y, Qiu Y, Hu R, Liao P, Li M, He Y, Liang Z, Xie X, Li Y. Targeting PARP14 with lomitapide suppresses drug resistance through the activation of DRP1-induced mitophagy in multiple myeloma. Cancer Lett 2024; 588:216802. [PMID: 38467180 DOI: 10.1016/j.canlet.2024.216802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/23/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
Multiple myeloma (MM) is a hematological malignancy that remains incurable, primarily due to the high likelihood of relapse or development of resistance to current treatments. To explore and discover new medications capable of overcoming drug resistance in MM, we conducted cell viability inhibition screens of 1504 FDA-approved drugs. Lomitapide, a cholesterol-lowering agent, was found to exhibit effective inhibition on bortezomib-resistant MM cells in vitro and in vivo. Our data also indicated that lomitapide decreases the permeability of the mitochondrial outer membrane and induces mitochondrial dysfunction in MM cells. Next, lomitapide treatment upregulated DRP1 and PINK1 expression levels, coupled with the mitochondrial translocation of Parkin, leading to MM cell mitophagy. Excessive mitophagy caused mitochondrial damage and dysfunction induced by lomitapide. Meanwhile, PARP14 was identified as a direct target of lomitapide by SPR-HPLC-MS, and we showed that DRP1-induced mitophagy was crucial in the anti-MM activity mediated by PARP14. Furthermore, PARP14 is overexpressed in MM patients, implying that it is a novel therapeutic target in MM. Collectively, our results demonstrate that DRP1-mediated mitophagy induced by PARP14 may be the cause for mitochondrial dysfunction and damage in response to lomitapide treatment.
Collapse
Affiliation(s)
- Honghao Zhang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Hao Wang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yuxing Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yang Gao
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jianyu Chen
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yabo Meng
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yingqi Qiu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Rong Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Peiyun Liao
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Meifang Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yanjie He
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhao Liang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.
| | - Xiaoling Xie
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
24
|
Kong J, Xiang Q, Ge W, Wang Y, Xu F, Shi G. Network pharmacology mechanisms and experimental verification of licorice in the treatment of ulcerative colitis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117691. [PMID: 38176667 DOI: 10.1016/j.jep.2023.117691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/10/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Licorice is widely used in the treatment of ulcerative colitis (UC) and has good antioxidant and anti-inflammatory effects, but its specific active ingredients and mechanisms of action are still unknown. THE PURPOSE OF THE STUDY To elucidate the specific molecular mechanisms of licorice in the treatment of UC and to experimentally verify its activity. METHODS Through network pharmacology, the active ingredients of licorice and the molecular targets of UC were identified. A traditional Chinese medicine (TCM)-components-target-disease network diagram was established, and the binding energies of the active ingredient and targets of licorice were verified by molecular docking. A BALB/c mice model of UC was established by treatment with 3% dextran sulfate sodium (DSS). The effect of licorice on colon tissue injury was histologically assessed. The expression of IL-6 and IL-17 in colon tissue was detected by immunohistochemistry (IHC). Transmission electron microscopy (TEM) was used to observe morphological changes in mitochondria in the colon. Caco2 cells were treated with lipopolysaccharide (LPS) for 24 h to establish the cell inflammatory damage model, and cells were exposed to different concentrations of drug-containing serum of Licorice (DCSL) for 24 h. In cells treated with the drug, the contents of oxidation markers were measured and ELISA was used to determine the levels of inflammatory factors in the cells. TEM was used to observe morphological changes in mitochondria. ZO-1 and occludin were detected by Western blotting. DCSL effects on autophagy were evaluated by treating cells with DCSL and autophagy inhibitor for 24 h after LPS injection. Small interfering ribonucleic acid (si-RNA) was used to silence Nrf2 gene expression in Caco2 cells to observe the effects of DCSL on autophagy through the Nrf2/PINK1 pathway. Nrf2, PINK1, HO-1, Parkin, P62, and LC3 were detected by Western blotting. RESULTS Ninety-one active ingredients and 339 action targets and 792 UC disease targets were identified, 99 of which were overlapping targets. Molecular docking was used to analyze the binding energies of liquiritin, liquiritigenin, glycyrrhizic acid, and glycyrrhetinic acid to the targets, with glycyrrhetinic acid having the strongest binding energy. In the UC mouse model, licorice improved colon histopathological changes, reduced levels of IL-6 and IL-17 and repaired mitochondrial damage. In the LPS-induced inflammation model of Caco2 cells, DCSL decreased MDA, IL-1β, Il-6, and TNF-α levels and increased those of Superoxide Dismutase (SOD), glutathione peroxidase (GSH-PX), and IL-10, and improved the morphological changes of mitochondria. Increased expression of Nrf2, PINK1, Parkin, HO-1, ZO-1, occludin, P62, and LC3 promoted autophagy and reduced inflammation levels. CONCLUSION Licorice improves UC, which may be related to the activation of the Nrf2/PINK1 signaling pathway that regulates autophagy.
Collapse
Affiliation(s)
- Jinrong Kong
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei City, Anhui Province, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei City, Anhui Province, China
| | - Qingzhen Xiang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei City, Anhui Province, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei City, Anhui Province, China
| | - Wanyue Ge
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei City, Anhui Province, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei City, Anhui Province, China
| | - Yunlai Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei City, Anhui Province, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei City, Anhui Province, China
| | - Fan Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei City, Anhui Province, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei City, Anhui Province, China.
| | - Gaoxiang Shi
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei City, Anhui Province, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei City, Anhui Province, China.
| |
Collapse
|
25
|
Kang KA, Piao MJ, Fernando PDSM, Herath HMUL, Yi JM, Choi YH, Hyun YM, Zhang K, Park CO, Hyun JW. Particulate matter stimulates the NADPH oxidase system via AhR-mediated epigenetic modifications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123675. [PMID: 38447650 DOI: 10.1016/j.envpol.2024.123675] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/05/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Stimulation of human keratinocytes with particulate matter 2.5 (PM2.5) elicits complex signaling events, including a rise in the generation of reactive oxygen species (ROS). However, the mechanisms underlying PM2.5-induced ROS production remain unknown. Here, we show that PM2.5-induced ROS production in human keratinocytes is mediated via the NADPH oxidase (NOXs) system and the Ca2+ signaling pathway. PM2.5 treatment increased the expression of NOX1, NOX4, and a calcium-sensitive NOX, dual oxidase 1 (DUOX1), in human epidermal keratinocyte cell line. PM2.5 bound to aryl hydrocarbon receptor (AhR), and this complex bound to promoter regions of NOX1 and DUOX1, suggesting that AhR acted as a transcription factor of NOX1 and DUOX1. PM2.5 increased the transcription of DUOX1 via epigenetic modification. Moreover, a link between DNA demethylase and histone methyltransferase with the promoter regions of DUOX1 led to an elevation in the expression of DUOX1 mRNA. Interestingly, PM2.5 increased NOX4 expression and promoted the interaction of NOX4 and Ca2+ channels within the cytoplasmic membrane or endoplasmic reticulum, leading to Ca2+ release. The increase in intracellular Ca2+ concentration activated DUOX1, responsible for ROS production. Our findings provide evidence for a PM2.5-mediated ROS-generating system network, in which increased NOX1, NOX4, and DUOX1 expression serves as a ROS signal through AhR and Ca2+ activation.
Collapse
Affiliation(s)
- Kyoung Ah Kang
- Department of Biochemistry, College of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University, Jeju, 63243, South Korea
| | - Mei Jing Piao
- Department of Biochemistry, College of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University, Jeju, 63243, South Korea
| | | | | | - Joo Mi Yi
- Department of Microbiology and Immunology, Inje University College of Medicine, Busan, 47392, South Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dongeui University, Busan, 47340, South Korea
| | - Young-Min Hyun
- Department of Anatomy, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Kelun Zhang
- Department of Dermatology, and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Chang Ook Park
- Department of Dermatology, and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Jin Won Hyun
- Department of Biochemistry, College of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University, Jeju, 63243, South Korea.
| |
Collapse
|
26
|
Tang H, Kang R, Liu J, Tang D. ATF4 in cellular stress, ferroptosis, and cancer. Arch Toxicol 2024; 98:1025-1041. [PMID: 38383612 DOI: 10.1007/s00204-024-03681-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/15/2024] [Indexed: 02/23/2024]
Abstract
Activating transcription factor 4 (ATF4), a member of the ATF/cAMP response element-binding (CREB) family, plays a critical role as a stress-induced transcription factor. It orchestrates cellular responses, particularly in the management of endoplasmic reticulum stress, amino acid deprivation, and oxidative challenges. ATF4's primary function lies in regulating gene expression to ensure cell survival during stressful conditions. However, when considering its involvement in ferroptosis, characterized by severe lipid peroxidation and pronounced endoplasmic reticulum stress, the ATF4 pathway can either inhibit or promote ferroptosis. This intricate relationship underscores the complexity of cellular responses to varying stress levels. Understanding the connections between ATF4, ferroptosis, and endoplasmic reticulum stress holds promise for innovative cancer therapies, especially in addressing apoptosis-resistant cells. In this review, we provide an overview of ATF4, including its structure, modifications, and functions, and delve into its dual role in both ferroptosis and cancer.
Collapse
Affiliation(s)
- Hu Tang
- DAMP Laboratory, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jiao Liu
- DAMP Laboratory, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China.
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
27
|
Liu J, Liu H, Deng L, Wang T, Li L, Chen Y, Qu L, Zou W. Protective Role of Dioscin against Doxorubicin-Induced Chronic Cardiotoxicity: Insights from Nrf2-GPX4 Axis-Mediated Cardiac Ferroptosis. Biomolecules 2024; 14:422. [PMID: 38672439 PMCID: PMC11047995 DOI: 10.3390/biom14040422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Recent evidence suggests that ferroptosis, an iron-facilitated cell death with excessive lipid peroxidation, is a critical mechanism underlying doxorubicin (DOX)-induced cardiotoxicity (DIC). Although dioscin has been reported to improve acute DIC, direct evidence is lacking to clarify the role of dioscin in chronic DIC and its potential mechanism in cardiac ferroptosis. In this study, we used chronic DIC rat models and H9c2 cells to investigate the potential of dioscin to mitigate DIC by inhibiting ferroptosis. Our results suggest that dioscin significantly improves chronic DIC-induced cardiac dysfunction. Meanwhile, it significantly inhibited DOX-induced ferroptosis by reducing Fe2+ and lipid peroxidation accumulation, maintaining mitochondrial integrity, increasing glutathione peroxidase 4 (GPX4) expression, and decreasing acyl-CoA synthetase long-chain family 4 (ACSL4) expression. Through transcriptomic analysis and subsequent validation, we found that the anti-ferroptotic effects of dioscin are achieved by regulating the nuclear factor-erythroid 2-related factor 2 (Nrf2)/GPX4 axis and Nrf2 downstream iron metabolism genes. Dioscin further downregulates nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) and upregulates expression of frataxin (FXN) and ATP-binding cassette B8 (ABCB8) to limit mitochondrial Fe2+ and lipid peroxide accumulation. However, Nrf2 inhibition diminishes the anti-ferroptotic effects of dioscin, leading to decreased GPX4 expression and increased lipid peroxidation. This study is a compelling demonstration that dioscin can effectively reduce DIC by inhibiting ferroptosis, which is dependent on the Nrf2/GPX4 pathway modulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Liping Qu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (J.L.); (H.L.); (L.D.); (T.W.); (L.L.); (Y.C.)
| | - Wenjun Zou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (J.L.); (H.L.); (L.D.); (T.W.); (L.L.); (Y.C.)
| |
Collapse
|
28
|
Li J, Jiang H, Zhu Y, Ma Z, Li B, Dong J, Xiao C, Hu A. Fine particulate matter (PM 2.5) induces the stem cell-like properties of hepatocellular carcinoma by activating ROS/Nrf2/Keap1-mediated autophagy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116052. [PMID: 38325274 DOI: 10.1016/j.ecoenv.2024.116052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/18/2024] [Accepted: 01/27/2024] [Indexed: 02/09/2024]
Abstract
Exposure to fine particulate matter (PM2.5) has been linked to an increased incidence and mortality of hepatocellular carcinoma (HCC). However, the impact of PM2.5 exposure on HCC progression and the underlying mechanisms remain largely unknown. This study aimed to investigate the effects of PM2.5 exposure on the stem cell-like properties of HCC cells. Our findings indicate that PM2.5 exposure significantly enhances the stemness of HCC cells (p < 0.01). Subsequently, male nude mice were divided into two groups (n = 8/group for tumor-bearing assay, n = 5/group for metastasis assay) for control and PM2.5 exposure. In vivo assays revealed that exposure to PM2.5 promoted the growth, metastasis, and epithelial-mesenchymal transition (EMT) of HCC cells (p < 0.01). Further exploration demonstrated that PM2.5 enhances the stemness of HCC cells by inducing cellular reactive oxygen species (ROS) generation (p < 0.05). Mechanistic investigation indicated that elevated intracellular ROS inhibited kelch-like ECH-associated protein 1 (Keap1) levels, promoting the upregulation and nucleus translocation of NFE2-like bZIP transcription factor 2 (Nrf2). This, in turn, induced autophagy activation, thereby promoting the stemness of HCC cells (p < 0.01). Our present study demonstrates the adverse effects of PM2.5 exposure on HCC development and highlights the mechanism of ROS/Nrf2/Keap1-mediated autophagy. For the first time, we reveal the impact of PM2.5 exposure on the poor prognosis-associated cellular phenotype of HCC and its underlying mechanism, which is expected to provide new theoretical basis for the improvement of public health.
Collapse
Affiliation(s)
- Jiujiu Li
- Hefei Center for Disease Control and Prevention, Hefei 230032, China
| | - Haoqi Jiang
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Yu Zhu
- Hefei Center for Disease Control and Prevention, Hefei 230032, China
| | - Zijian Ma
- Hefei Center for Disease Control and Prevention, Hefei 230032, China
| | - Bin Li
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Jun Dong
- Hefei Center for Disease Control and Prevention, Hefei 230032, China
| | - Changchun Xiao
- Hefei Center for Disease Control and Prevention, Hefei 230032, China.
| | - Anla Hu
- School of Public Health, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
29
|
Xia Z, Wei Z, Li X, Liu Y, Gu X, Huang S, Zhang X, Wang W. C/EBPα aggravates renal fibrosis in CKD through the NOX4-ROS-apoptosis pathway in tubular epithelial cells. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167039. [PMID: 38281712 DOI: 10.1016/j.bbadis.2024.167039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/11/2024] [Accepted: 01/19/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND Chronic kidney disease (CKD) is a prevalent renal disorder with various risk factors. Emerging evidence indicates that the transcriptional factor CCAAT/enhancer binding protein alpha (C/EBPα) may be associated with renal fibrosis. However, the precise role of C/EBPα in CKD progression remains unexplored. METHODS We investigated the involvement of C/EBPα in CKD using two distinct mouse models induced by folic acid (FA) and unilateral ureteral obstruction (UUO). Additionally, we used RNA sequencing and KEGG analysis to identify potential downstream pathways governed by C/EBPα. FINDINGS Cebpa knockout significantly shielded mice from renal fibrosis and reduced reactive oxygen species (ROS) levels in both the FA and UUO models. Primary tubular epithelial cells (PTECs) lacking Cebpa exhibited reduced apoptosis and ROS accumulation following treatment with TGF-β. RNA sequencing analysis suggested that apoptosis is among the primary pathways regulated by C/EBPα, and identified NADPH oxidoreductase 4 (NOX4) as a key protein upregulated upon C/EBPα induction (ICCB280). Treatment with l-Theanine, a potential NOX4 inhibitor, mitigated renal fibrosis and inflammation in both the FA and UUO mouse models. INTERPRETATION Our study unveils a role for C/EBPα in suppressing renal fibrosis, mitigating ROS accumulation, and reducing cell apoptosis. Furthermore, we investigate whether these protective effects are mediated by C/EBPα's regulation of NOX4 expression. These findings present a promising therapeutic target for modulating ROS and apoptosis in renal tubular cells, potentially offering an approach to treating CKD and other fibrotic diseases.
Collapse
Affiliation(s)
- Ziru Xia
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Zhaonan Wei
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xin Li
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yunzi Liu
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xiangchen Gu
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, People's Republic of China
| | - Siyi Huang
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xiaoyue Zhang
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Weiming Wang
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
30
|
Gensluckner S, Wernly B, Datz C, Aigner E. Iron, Oxidative Stress, and Metabolic Dysfunction-Associated Steatotic Liver Disease. Antioxidants (Basel) 2024; 13:208. [PMID: 38397806 PMCID: PMC10886327 DOI: 10.3390/antiox13020208] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Excess free iron is a substrate for the formation of reactive oxygen species (ROS), thereby augmenting oxidative stress. Oxidative stress is a well-established cause of organ damage in the liver, the main site of iron storage. Ferroptosis, an iron-dependent mechanism of regulated cell death, has recently been gaining attention in the development of organ damage and the progression of liver disease. We therefore summarize the main mechanisms of iron metabolism, its close connection to oxidative stress and ferroptosis, and its particular relevance to disease mechanisms in metabolic-dysfunction-associated fatty liver disease and potential targets for therapy from a clinical perspective.
Collapse
Affiliation(s)
- Sophie Gensluckner
- Department of Internal Medicine I, Paracelsus Medical University, Müllner Hauptstrasse 48, 5020 Salzburg, Austria
- Obesity Research Unit, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Bernhard Wernly
- Department of Medicine, General Hospital Oberndorf, Teaching Hospital of the Paracelsus Medical University, 5110 Oberndorf, Austria; (B.W.); (C.D.)
| | - Christian Datz
- Department of Medicine, General Hospital Oberndorf, Teaching Hospital of the Paracelsus Medical University, 5110 Oberndorf, Austria; (B.W.); (C.D.)
| | - Elmar Aigner
- Department of Internal Medicine I, Paracelsus Medical University, Müllner Hauptstrasse 48, 5020 Salzburg, Austria
- Obesity Research Unit, Paracelsus Medical University, 5020 Salzburg, Austria
| |
Collapse
|
31
|
Liu M, Zhang Y, Zhan P, Sun W, Dong C, Liu X, Yang Y, Wang X, Xie Y, Gao C, Hu H, Shi B, Wang Z, Guo C, Yi F. Histone deacetylase 9 exacerbates podocyte injury in hyperhomocysteinemia through epigenetic repression of Klotho. Pharmacol Res 2023; 198:107009. [PMID: 37995896 DOI: 10.1016/j.phrs.2023.107009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
Although hyperhomocysteinemia (hHcys) has been recognized as an important independent risk factor in the progression of end-stage renal disease and the development of cardiovascular complications related to end-stage renal disease, the mechanisms triggering pathogenic actions of hHcys are not fully understood. The present study was mainly designed to investigate the role of HDACs in renal injury induced by hHcys. Firstly, we identified the expression patterns of HDACs and found that, among zinc-dependent HDACs, HDAC9 was preferentially upregulated in the kidney from mice with hHcys. Deficiency or pharmacological inhibition of HDAC9 ameliorated renal injury in mice with hHcys. Moreover, podocyte-specific deletion of HDAC9 significantly attenuated podocyte injury and proteinuria. In vitro, gene silencing of HDAC9 attenuated podocyte injury by inhibiting apoptosis, reducing oxidative stress and maintaining the expressions of podocyte slit diaphragm proteins. Mechanically, we proved for the first time that HDAC9 reduced the acetylation level of H3K9 in the promoter of Klotho, then inhibited gene transcription of Klotho, finally aggravating podocyte injury in hHcys. In conclusion, our results indicated that targeting of HDAC9 might be an attractive therapeutic strategy for the treatment of renal injury induced by hHcys.
Collapse
Affiliation(s)
- Min Liu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Yang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Ping Zhan
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Wenjuan Sun
- Department of Obstetrics, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Chuanqiao Dong
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Xiaohan Liu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Yujie Yang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Xiaojie Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Yusheng Xie
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Chengjiang Gao
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Huili Hu
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Benkang Shi
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Ziying Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China.
| | - Chun Guo
- School of Basic Medical Sciences, Shandong University, Jinan 250012, China.
| | - Fan Yi
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China.
| |
Collapse
|